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Spectral analysis of quadratic variation
in the presence of market microstructure noise∗

Fangfang Wang

We analyze the ex-post variation of equity prices in the
frequency domain. A realized periodogram-based estimator
is proposed, which consistently estimates the quadratic vari-
ation of the log equilibrium price process. For prices which
are contaminated by market microstructure noise, the pro-
posed estimator behaves like a filter: it removes the noise by
filtering out high frequency periodograms. In other words,
the proposed estimator converts high frequency data into
low frequency periodograms. We show, through a simula-
tion study and an application to the General Electric trans-
action prices, that the proposed estimator is insensitive to
the choice of sampling frequency and it is competitive with
other existing volatility measures.

Keywords and phrases: Jump diffusion, Quadratic varia-
tion, Periodogram, Discrete Fourier transform, Spectral den-
sity, Market microstructure noise.

1. INTRODUCTION

Suppose that X(t) is the log equilibrium price of an
equity at time t and it follows a continuous-time semi-
martingale. Denote by [X,X](T ) its quadratic variation
(henceforth denoted by QV ) over a fixed interval of time
[0, T ]. It follows from probability theory that a sum of
squared increments over fine intervals consistently estimates
[X,X](T ). To be specific, supposing that X is discretely
sampled at Πn = {0 = t0 < t1 < . . . < tn = T},
RV X

n
.
=

∑n
j=1(X(tj) − X(tj−1))

2 converges to [X,X](T )
in probability as the mesh of the partition Πn goes to zero,
and RV X

n is known as realized variance in financial econo-
metrics. See for instance [4], [3], [29], [8], [1], [10], [25], [31],
among many others.

It has been widely recognized that ultra high frequency
prices are contaminated by market microstructure(MS)
noise. In other words, when the mesh of Πn is small enough
(less than 1 minute), the observed prices are not true prices.
Let Yj be noisy observation of X(t) at tj for j = 0, . . . , n.
The realized variance computed from the noisy prices,
RV Y

n =
∑n

j=1(Yj − Yj−1)
2, can not identify the true price

∗The author would like to thank the Editor, Associate Editor and the
Referee for their valuable comments.

variation – see for instance [2], [22], [7], [11], among others.
Because RV Y

n can be decomposed as a sum of periodograms
that are attributable to different Fourier frequencies and
RV Y

n contains both signal X and noise, one can think of
extracting signal from RV Y

n by filtering out periodograms
due to noise.

In this paper, we propose a realized periodogram-based
estimator of QV which is the weighted average of peri-
odograms over non-zero Fourier frequencies. This is moti-
vated by the fact that the estimation of QV is analogue to
estimating spectral density of a stationary process at zero
frequency. The proposed estimator transfers high frequency
data into low frequency periodograms. The estimator is
determined by three factors: sample size, a so-called cut-
off frequency which controls the number of periodograms
to be included, and spectral window. We will study the
periodogram-based estimator with and without the MS con-
tamination, and derive the optimal cut-off frequency which
minimizes the effect of the noise on the periodogram-based
estimator.

The proposed estimator generalizes the Fourier estimator

of [27], which is defined as σ̂
2(X)
N,n = (2N +1)−1

∑N
k=−N |ck|2

with ck =
∑n

j=1 e
−2π

√
−1ktj−1/T (X(tj)−X(tj−1)). The pro-

posed estimator features a weighting structure and it does
not include zero frequency periodogram. Assigning different
weight (or a spectral window) to a different periodogram
can potentially improve the finite sample performance. We
will show, through a simulation study, that the weight does
matter. Periodogram at zero-frequency is excluded so that
the estimator is invariant to the mean shift in the data. In
other words, one does not need to demean raw data before
computing the estimator.

The new estimator has a natural connection with the
auto-covariance-based estimators of QV in the time domain,
for instance, the kernel-based estimator of [36] and [22], the
realized kernel of [11]. Therefore this work fills the gap be-
tween time-domain and frequency-domain analysis of QV,
and it enriches the literature of the ex-post measure of price
variation. Moreover, compared with the auto-covariance-
based estimators, the proposed estimator is easy to imple-
ment and the fast Fourier transform makes it computation-
ally efficient.

The rest of paper is organized as follows. In section 2,
we lay out the model and introduce the periodogram-based
estimator. Its properties are derived in Section 3 and Sec-
tion 4. The first focuses on the true price process, while the
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latter deals with the noisy observations. Section 5 discusses
the choice of the cut-off frequency in a finite sample. In Sec-
tion 6, we perform a simulation experiment to evaluate the
accuracy of the proposed estimator, and an empirical exer-
cise is presented in Section 7. Section 8 concludes the paper.
All the proofs are collected in an Appendix.

2. A REALIZED PERIODOGRAM-BASED
ESTIMATOR OF QV

Suppose that the log equilibrium price X(t) is defined on
some filtered probability space (Ω,F , (Ft)t≥0, P ) and has
the dynamics
(1)

X(t) = X0 +

∫ t

0

μ(s)ds+

∫ t

0

σ(s)dB(s) +

∫
[0,t]×R

xJ̃X(ds× dx),

where B is a standard Brownian motion, μ(t) and σ2(t)

are adapted processes satisfying E[
∫ T

0
μ2(t)dt] < ∞ and

E[
∫ T

0
σ4(t)dt] < ∞. The volatility σ(t) is almost surely

positive. The jump measure JX is a Poisson random mea-
sure with Lévy measure ν satisfying

∫
|x|≤1

xν(dx) < ∞,∫
|x|>1

x2ν(dx) < ∞, and J̃X is the compensated jump mea-
sure.

The MS noise εj = Yj −X(tj) satisfies the following as-
sumption

Assumption 2.1. (1) {εj} is white noise with variance σ2
ε ,

and E(ε4j ) = ησ4
ε < ∞. (2) {εj} is uncorrelated with X at

all lags and leads.

Let ΔXj = X(tj) − X(tj−1) and ΔYj = Yj − Yj−1. If
{ΔXj} is covariance stationary, the spectral density of ΔYj

is given by

(2) fΔY (ω) = (2πn)−1E[X,X](T ) + σ2
ε (1− cosω)/π,

for ω ∈ (−π, π]. At ω = 0, 2πnfΔY (0) is the expected value
of QV, E[X,X](T ). The noise affects spectral density at
non-zero frequencies. The spectral density increases as ω
moves towards π or −π. This is consistent with the empirical
feature of tick-by-tick data. Figure 1 plots the power spec-
trum of log-returns for General Electric transaction prices
on Feb 1, 2007.1 The periodogram is small around zero fre-
quency and tends to increase with the frequency. So the
problem of estimating QV in the presence of noise would
be analogue to the estimation of fΔY (0), i.e., using peri-
odograms close to zero frequency.

Define the discrete Fourier transform of an arbitrary se-
quence {Zj}nj=1 at frequency ω ∈ (−π, π]:

(3) JZ
n (ω) =

n∑
j=1

e−iωjZj ,

1See Section 7 for details.

Figure 1. Power Spectrum for GE transaction prices on Feb 1,
2007.

where i =
√
−1 is the imaginary unit. The sample peri-

odogram of {Zj}nj=1 at ω is then

(4) IZn (ω) = n−1|JZ
n (ω)|2.

We propose a realized periodogram-based estimator of QV:

(5) F̂ΔY (N,n) = n
∑

1≤k≤N

W (k)IΔY
n (ωk),

where ωk = 2πk/n is the Fourier frequency, and the weight
W (k) satisfies:

Assumption 2.2. W (k) ≥ 0 for k ∈ Z.
∑N

k=1 W (k) =
1, W (−k) = W (k) for 1 ≤ k ≤ N and 0 otherwise.

limN→∞
∑N

k=1 W
2(k) = 0.

As a result F̂ΔY (N,n) =
∑

1≤|k|≤N 2−1W (k)|JΔY
n (ωk)|2.

We exclude periodogram at zero frequency, in that peri-
odograms are invariant to location shift at the non-zero
Fourier frequencies.2 Thus we don’t need to demean raw
data before computing the estimator.

The proposed estimator is determined by two types of
frequencies: the sampling frequency T/n and the cut-off
Fourier frequency 2πN/n (for irregularly sampled data, T/n
measures the average distance between successive observa-
tions). The first determines how often the data should be
sampled, while the latter controls the number of Fourier
frequencies to be included in estimation. Note that RV Y

n =∑
1≤k≤n |JΔY

n (ωk)|2 due to the Parseval’s theorem. When n

is even and W (k) = 1/N , we have F̂ΔY (n/2, n) = RV Y
n . So

the periodogram-based estimator includes realized variance
as a special case.

2This is common practice in estimating spectral density at zero-
frequency, see for instance [21], [18].
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Remark 2.1. The periodogram-based estimator has the fol-
lowing time-domain representation

(6) F̂ΔY (N,n) =

n−1∑
h=−(n−1)

W ∗(h)γY (h),

where γY (h) =
∑n−|h|

j=1 ΔYjΔYj+|h| and W ∗(h) =∑N
k=1 W (k) cos(ωkh) is lag window. The right hand side of

(6) is similar in spirit to the Realized Kernel of [11] and
[14]. In particular, the non-negative Realized Kernel of [14]
is defined as

(7) K(Y ) =

H∑
h=−H

Λ(
h

H
)γY (h),

where the kernel weight Λ(·) has the property of Λ(0) = 1,
Λ(1) = 0, and Λ′(0) = Λ′(1) = 0. Moreover, considering
γY (h) =

∑
1≤k≤n I

ΔY
n (ωk)e

ihωk , we can rewrite K(Y ) as

(8) K(Y ) =
∑

1≤k≤n

Λ∗(k)|JΔY
n (ωk)|2,

where Λ∗(k) = n−1
∑H

h=−H Λ( h
H )eihωk and

∑n
k=1 Λ

∗(k) =

1. The two estimators, F̂ΔY (N,n) and K(Y ), are linked

with each other. Yet, they work differently: F̂ΔY (N,n) elim-
inates the noise by removing high frequency periodograms –
in the frequency domain, while the realized kernel estima-
tor eliminates the noise by removing the autocovariances at
higher lags – in the time domain.

3. FREQUENCY-DOMAIN
REPRESENTATION OF QV

We first study the periodogram-based estimator in
the absence of the MS noise, namely, F̂ΔX(N,n) =∑

1≤k≤N W (k)|JΔX
n (ωk)|2.

Suppose that there is a continuous record on the sample
path of X over [0, T ]. We define a continuous-time counter-

part of F̂ΔX(N,n):

F̂ dX(N) = T 2
∑

1≤k≤N

W (k)|F(dX)(k)|2,

where F(dX)(k) = T−1
∫ T

0
e−2πikt/T dX(t) is the

continuous-time Fourier transform of X at k ∈ Z. Propor-
tion 3.1 below shows that the drift has a negligible effect on
F̂ dX(N).

Proposition 3.1. Let Xc(t) = X(t) −
∫ t

0
μ(s)ds. Under

Assumption 2.2, we have

lim
N→∞

∑
1≤k≤N

W (k)
(
|F(dX)(k)|2 − |F(dXc)(k)|2

)
= 0 in L2.

Moreover,

Proposition 3.2. Let Xc(t) = X(t)−
∫ t

0
μ(s)ds, and define

F̂ dXc

(N) accordingly. Under Assumption 2.2,
(9)

plimN→∞F̂ dXc

(N) =

∫ T

0

σ(t)2dt+
∑
t≤T

(X(t)−X(t−))2,

where ‘plim’ means convergence in probability.

Therefore F̂ dX(N) is consistent for [X,X](T ).
Consider the discretely sampled process {X(tj), j =

0, 1, . . . , n}. The next theorem derives the consistency of

F̂ΔX(N,n).

Theorem 3.1. Suppose that the conditions in Proposition
3.2 hold. Let ρ(n) = maxj=1,2,...,n |tj−Tj/n|∨|tj−1−Tj/n|.
Assume that ρ(n) = O(n−1) and N = o(n). Then
(10)

plimN,n→∞F̂ΔX(N,n) =

∫ T

0

σ(t)2dt+
∑
t≤T

(X(t)−X(t−))2.

Remark 3.1. As a corollary to Propositions 3.1 and 3.2,
we have

(11) F(dX) 
B F(dX) =
1

T
F([dX, dX]),

where F(d[X,X])(k) = T−1
∫ T

0
e−2πikt/T d[X,X](t), and 
B

is the Bohr convolution product.3 The convergence of convo-
lution product in (11) is held in probability. Equality (11) ex-
tends Theorem 2.1 of [27] to jump diffusion processes. More
generally, consider two jump diffusion processes X1(t) and
X2(t) satisfying (1). Denote by [X1, X2](t) the quadratic co-
variation between X1(t) and X2(t). Note that [X1, X2](t) =
2−1{[X1 +X2, X1 +X2](t)− [X1, X1](t)− [X2, X2](t)}. We
have

T−1F(d[X1, X2])

= 2−1{F(dX1) 
B F(dX2) + F(dX2) 
B F(dX1)}.

If the true price process were observable, the peridogram-
based estimator consistently estimates QV. For sufficiently
large n, F̂ΔX(N,n) provides a spectral decomposition of
[X,X](T ). Since the drift μ(t) does not influence the asymp-

totic behavior of F̂ dX(N) and periodogram is invariant to
location shift at the non-zero Fourier frequencies, we will
assume μ(t) = 0 in the rest of the paper.

4. ESTIMATE QV USING NOISY
OBSERVATIONS

In this section, we will study the impact of market MS
noise on the periodogram-based estimator with a focus on
the finite sample properties.

3For f and g: Z �→ C, the Bohr convolution product between f and g,
denoted by f �B g, defines a map from Z to C such that (f �B g)(k) =

limN→∞(2N+1)−1
∑N

s=−N f(s)g(k−s) provided that limN→∞(2N+

1)−1
∑N

s=−N f(s)g(k − s) exists.
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Denote by IΔX,Δε
n (ω) the cross periodogram between

{ΔXj} and {Δεj}:

IΔX,Δε
n (ω) = n−1JΔX

n (ω)JΔε
n (−ω).

For any ω ∈ (−π, π], IΔY
n (ω) = IΔX

n (ω) + IΔε
n (ω) +

IΔX,Δε
n (ω) + IΔX,Δε

n (−ω). Consequently, we can rewrite

F̂ΔY (N,n) as the sum of three components:
(12)

F̂ΔY (N,n) = F̂ΔX(N,n) + F̂Δε(N,n) + F̂ΔX,Δε(N,n),

where F̂Δε(N,n) =
∑N

k=1 W (k)|JΔε
n (ωk)|2, and

F̂ΔX,Δε(N,n) =
∑N

k=1 W (k)(nIΔX,Δε
n (ωk) +

nIΔX,Δε
n (−ωk)). The two additional terms are due to

the presence of the noise. We measure the accuracy of
F̂ΔY (N,n) as an estimator of QV by its mean squared

error: E(F̂ΔY (N,n) − [X,X](T ))2. To understand the
noise-induced bias, we derive the mean and variance of
F̂ΔX(N,n), F̂Δε(N,n), and F̂ΔX,Δε(N,n) as functions of
N and n.

We consider F̂Δε(N,n) first. If F̂Δε(N,n) is di-

vided by the sample size n, n−1F̂Δε(N,n) estimates
the spectral density of the MS noise at 0 fre-
quency and hence E(n−1F̂Δε(N,n)) = o(1) and

(
∑

k W (k)2)−1V ar(n−1F̂Δε(N,n)) = o(1) if N → ∞ and
N/n → 0 as n → ∞.4 We show below a refined result for

F̂Δε(N,n).

Proposition 4.1. Suppose that N → ∞, n
∑

k W (k)2 →
∞, and N2/n → 0 as n → ∞, and assumptions 2.1, 2.2
hold. Then

V ar(|JΔε
n (ωs)|2)(13)

= σ4
ε

[
2(η + 1) + 2(η − 1)nω2

s +O(N4/n2)
]
, 0 < s ≤ N,

Cov(|JΔε
n (ωs)|2, |JΔε

n (ωl)|2)(14)

= σ4
ε

[
2(η + 1)− 2ω2

s − 2ω2
l +O(N4/n3)

]
, 0 ≤ s �= l ≤ N.

As a result,

EF̂Δε(N,n) = 2σ2
ε [1 + 2−1(n− 1)

∑
1≤k≤N

W (k)ω2
k] +O(N4/n3),

V arF̂Δε(N,n) = σ4
ε [2(η + 1) + 4n

∑
1≤k≤N

W (k)2ω2
k] + o(N4/n2).

We turn to the cross periodogram next which character-
izes the interaction between noise and the true price. Assume
that

Assumption 4.1. The volatility σ2(u) is stationary, and
Πn is an equally spaced partition of [0, T ].

Proposition 4.2. Suppose that N → ∞, n
∑

k W (k)2 →
∞, and N2/n → 0 as n → ∞, and assumptions 2.1, 2.2

4See for instance [15], [32], [20], [17], [16], [18].

and 4.1 hold. We have EF̂ΔX,Δε(N,n) = 0, and

V arF̂ΔX,Δε(N,n)

= 4σ2
εσ

2
X

∑
k

W (k)2(1 + nω2
k/2) + o(N4/n2),

where σ2
X = E[X,X](T ).

Last but not least, we look at F̂ΔX(N,n). Because
IΔX
n (ωs) = n−1

∑
|h|<n γX(h)e−iωsh where γX(h) =∑n−|h|

j=1 ΔXjΔXj+|h|, we have E|JΔX
n (ωs)|2 = σ2

X .

Let EΔX4
j = ξnσ

4
X/n2. Note that ξn is O(1)

due to the Burkholder-Davis-Gundy Inequality. Then
V ar(|JΔX

n (ωs)|2) = (n−1(ξn−3)+1)σ4
X for 0 < ωs < π, and

Cov(|JΔX
n (ωs)|2, |JΔX

n (ωl)|2) = n−1(ξn − 3)σ4
X for ωs 
= ωl.

Therefore

Proposition 4.3. Under assumption 4.1, EF̂ΔX(N,n) =

σ2
X and V arF̂ΔX(N,n) = n−1(ξn−3)σ4

X+
∑N

k=1 W (k)2σ4
X ,

where σ2
X = E[X,X](T ).

By virtue of Propositions 4.1, 4.2 and 4.3, we have the
following theorem which presents the main result.

Theorem 4.1. Suppose that N = o(n1/2),
limn,N→∞ n

∑
k W (k)2 = ∞, and Assumptions 2.1,

2.2 and 4.1 hold. We have

(15) lim
N,n→∞

E(F̂ΔY (N,n)− [X,X](T )) = 2E(ε2j ),

and
(16)

lim
N,n→∞

E(F̂ΔY (N,n)− [X,X](T ))2 = 2E(ε4j ) + 6(E(ε2j ))
2.

Remark 4.1. In the presence of the MS noise, the MSE
does not vanish when both n and N go to infinity. This is
due to end-point effects, and it can be eliminated asymp-
totically by jittering, namely, average the first m and last
m observations (see for instance [24] and [14]). The revised
estimator is asymptotically unbiased when m → ∞, and it is
consistent for QV.5 Yet, jittering will complicate the compu-
tation of the mean and variance of F̂ΔX(N,n), F̂Δε(N,n),

and F̂ΔX,Δε(N,n) in finite samples. So we will not pursue
it in this paper.

Remark 4.2. The asymptotic bias of F̂ΔY (N,n), 2E(ε2j),
does not hinge on the spectral window. This contradicts The-
orem 2 of [28], which states that the Fourier estimator, in
the presence of the MS noise, is asymptotically unbiased.
This is due to an error in the proof of Theorem 2 of [28]: j′

should be 2 on line 27 and line 28.

The discussion so far assumes that the MS noise is uncor-
related with the true price process at all frequencies. This
assumption is reasonable when intraday returns are sampled

5This is currently studied by [35].
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every 15 ticks or so (see for instance [22]). We will next con-
sider endogenous noise, namely, noise correlated with the
true price. As in [22] and [11], we assume that the noise εj
has the following decomposition

Assumption 4.2. εj = αΔXj + ε̃j where ε̃j is white noise
with variance σ2

ε̃ and E(ε̃4j ) = ησ4
ε̃ < ∞, and {ε̃j} is uncor-

related with X at all lags and leads.

The next theorem shows that the asymptotic bias (15)
and the asymptotic MSE (16) are invariant of the interaction
between noise and the true price process.

Theorem 4.2. Theorem 4.1 still holds if Assumption 2.1
is replaced with Assumption 4.2.

5. THE CHOICE OF CUT-OFF FREQUENCY
IN A FINITE SAMPLE

A practical issue arises: how to choose cut-off frequency
N for a given data. In this section, we discuss optimal cut-off
frequency by virtue of MSE minimization. BecauseN should
be less than n/2 to avoid aliasing, we define the optimal cut-
off frequency as follows

(17) Nopt = arg min
N≤n/2,N∈Z

E(F̂ΔY (N,n)− [X,X](T ))2.

Theorem 5.1 below provides an approximation to choose
the optimal cut-off frequency Nopt.

Theorem 5.1. Suppose that N = o(n1/2),
limn,N→∞ n

∑
k W (k)2 = ∞, and Assumptions 4.2,

2.2 and 4.1 hold. To leading order,

Nopt = arg min
0<N≤n/2,N∈Z

{n
∑

1≤k≤N

W (k)ω2
k(18)

+
∑

1≤k≤N

W (k)2
[
ρ2 + 2ρ+ (1 + ρ)nω2

k

]
},

where ωk = 2πk/n, ρ = (2σ2
ε )

−1σ2
X , and σ2

ε = E(ε2j), σ
2
X =

E
∫ T

0
σ(t)2dt+ T

∫
R
x2ν(dx).

In the absence of the noise, i.e., σ2
ε = 0, we have Nopt =

[n/2] the integer part of n/2. This is consistent with Theo-
rem 3.1.

As an application of Theorem 5.1, we discuss two special
cases when one can find Nopt in closed-form.

Define the rectangular window:

(19) W (k) = 1/N for |k| = 1, . . . , N and 0 otherwise.

It satisfies Assumption 2.2. We have F̂ΔY (N,n) =

N−1
∑N

k=1 |JΔY
n (ωk)|2. This is the Fourier estimator of [26].

By virtue of Theorem 5.1, the optimal cut-off frequency is
Nopt = min([N∗], [n/2]), where

N∗ =− b+ (−b3 − d+
√
d(d+ 2b3))1/3(20)

+ (−b3 − d−
√
d(d+ 2b3))1/3,

and b = 12−1(5 + 2ρ), d = −3nρ(ρ+2)
16π2 . See also [34].

Next we consider a triangular window which is defined in
the following corollary.

Corollary 5.1. Let H(k) = (N − |k|)/N2 for |k| =
0, 1, . . . , N − 1. The proposed estimator, with W (1) = H(0)
and W (k) = 2H(|k|−1) for |k| = 2, . . . , N and 0 otherwise,
is given by

F̂ΔY (N,n) = nN−1IΔY
n (ω1)

(21)

+ 2n
∑

1≤k≤N−1

(N − |k|)N−2IΔY
n (ωk+1).

The optimal cut-off frequency is then Nopt =
min([N∗], [n/2]), where N∗ has the form of (20) with

b = 2(6+ρ)
15 , and d = −nρ(ρ+2)

2π2 .

The following is a variant of the triangular window de-
fined in Corollary 5.1.

Corollary 5.2. With W (k) = 2(N + 1− |k|)(N(N + 1))−1

for |k| = 1, . . . , N and 0 otherwise, we have F̂ΔY (N,n) =
2(N(N +1))−1

∑
1≤k≤N (N +1− |k|)|JΔY

n (ωk)|2. The opti-
mal cut-off frequency is Nopt = min([N∗], [n/2]), where N∗
approximately has the form of (20) with b = 19+4ρ

30 , and

d = −nρ(ρ+2)
2π2 .

Theorem 5.1 is practically important. It provides a sim-
ple approximation to compute the optimal cut-off frequency
for a given data set. It should be noted that the results hold
when the volatility σ2(t) is stationary and the prices are
sampled at regular intervals (i.e., Assumption 4.1). Though
the stationarity of σ2(t) is required, it does not rule out
conditional heteroskedasticity in the volatility process. Sta-
tionary volatility processes have been widely discussed in
literature. Examples include, but are not limited to, the con-
stant elasticity of variance (CEV) process, the non-Gaussian
Ornstein-Uhlenbeck (OU) process, and the sum or superpo-
sitions of independent CEV or OU processes. See also the
eigenfunction stochastic volatility(SV) models of [6]. It has
been shown that these SV models are empirically reason-
able. See [13], [8], [19], [30], [6], [33], among others.

Theorem 5.1 applies to intraday returns that are sam-
pled at evenly spaced intervals, i.e., calendar time sampling.
Calendar time sampling is common for exchange rates data,
for instance, the data from Olsen & Associates. When deal-
ing with trade and quote data, it is more natural to sam-
ple prices in tick time (number of trades between observa-
tions). We will consider irregularly spaced data in a simula-
tion study, and assess numerically how sampling frequency
affects the optimal cut-off frequency given in equation (18).

6. SIMULATION STUDY

In this section a simulation experiment is performed to
evaluate the accuracy of F̂ΔY (N,n) as an estimator of QV
in finite samples, especially at N = Nopt.
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Two data generating processes are considered. The first
is a GARCH diffusion process

(22)
dX(t) = σ(t)dB1(t),

dσ(t)2 = θ(� − σ(t)2)dt+
√
2λθσ(t)2dB2(t),

where B1(t) and B2(t) are Brownian motions, with the lever-
age correlation corr(dB1, dB2) = ϕ. We use the parameter
setting in [5] and [23]: θ = 0.0350, � = 0.6365, λ = 0.2962,
ϕ = −0.62. The second model is a stochastic volatility model
with jumps (SVJ)

(23)
dX(t) = σ(t)dB1(t) + J(t)dN(t),
dσ(t)2 = θ(� − σ(t)2)dt+ λσ(t)dB2(t),

whereN(t) is a compound Poisson process with intensity λJ .
We use values reported in [9]: θ = 0.01, � = 0.5, λ = 0.05,
λJ = 2 and the jump size is Gaussian with mean 0 and
variance 0.64�, and corr(dB1, dB2) = −0.62.

The true log price process is generated via the Euler dis-
cretization: take one day as a reference measure, and simu-
late 6.5 hours of trading with dt = 1/23,400, i.e., a total of
23,400 second-by-second returns per day. We simulate 500
daily replications, with X(0) = log(100) and σ(0)2 = �.
The noise εt is specified as Gaussian with mean 0 and vari-
ance σ2

ε . Two variance levels are considered: σ2
ε = 0.000142

and 0.00142.

Denote by NoptR and NoptT the optimal cut-off frequen-
cies for the rectangular window and the triangular window
respectively, which are calculated from (20) and Corollary
5.1. Figure 2 displays NoptR and NoptT as functions of sam-
pling interval ranging from 1 second to 3 minutes for σ2

ε =
0.000142, and from 20 seconds to 9 minutes for σ2

ε = 0.00142,
whereX(t) follows GARCH diffusion (22). The dashed curve
corresponds to the Nyquist frequency n/2. When the sam-
pling interval is smaller than 30 seconds for σ2

ε = 0.000142
and 3 minutes for σ2

ε = 0.00142, NoptR and NoptT are much
smaller than the Nyquist frequency. This observation shows
that the effect of the MS noise is pronounced at ultra high
frequencies. The plots for SVJ model (23) are similar and
hence are omitted.

We then compute the periodogram-based estimators with
rectangular and triangular windows. For comparison pur-
poses, we also use the Realized Kernel to estimate daily
QV. As suggested in [14], we compute the Realized Kernel
with the Parzen weight

(24) Λ(x) =

⎧⎨
⎩

1− 6x2 + 6x3 if 0 ≤ x ≤ 1/2,
2(1− x)3 if 1/2 ≤ x ≤ 1,
0 if x > 1.

The preferred bandwidth is H∗ = 3.51ξ4/5n3/5 with ξ2 =
σ2
ε√∫ 1

0
σ(u)4du

. Prior to computing the realized kernel, we av-

erage the first two prices and the last two prices to remove

Figure 2. Nopt versus sampling interval, GARCH diffusion
(22).

end-effects as suggested in [14]. Since the MS effect is pro-
nounced at ultra high frequencies, we focus on prices at fre-
quencies of 1 second, 5 seconds, 10 seconds, 20 seconds and
30 seconds. Meanwhile, we also consider returns that are
sampled at randomly spaced time points. Noisy prices are
picked up at times {t̃j} where t̃j − t̃j−1 is Exponential dis-
tributed with mean duration τ . We consider the following
values of τ : 5 seconds, 10 seconds, 20 seconds and 30 sec-
onds.

Tables 1 and 2 report mean squared errors for regularly-
sampled and irregularly-sampled prices, respectively. For the
periodogram-based estimators, we report not only the mean
squared error at the optimal cut-off frequency – see the num-
ber in the parentheses, but also the minimum mean squared
error (min MSE) with the associated cut-off frequency –
see the number in the parentheses. Evidently, the approxi-
mation in equation (18) offers a good representation of the
optimal cutting frequency, and it is not sensitive to the sam-
pling frequency. Moreover, the periodogram-based estima-
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Table 1. Mean squared error, evenly sampled data

n Triangular window Rectangular window Realized Kernel

min MSE MSE at Nopt min MSE MSE at Nopt MSE

σ2
ε = 0.000142, GARCH diffusion (22)

1 sec 23400 4.25 (1528) 4.82 (2017) 4.45 (1169) 4.83 (1343) 9.01
5 sec 4680 7.69 (860) 8.70 (1091) 7.90 (577) 8.77 (699) 18.96
10 sec 2340 10.19 (671) 10.95 (828) 10.53 (439) 11.26 (520) 25.07
20 sec 1170 12.76 (585) 12.76 (585) 13.49 (386) 13.58 (384) 32.94
30 sec 780 15.99 (390) 15.99 (390) 14.39 (389) 15.99 (320) 38.71

σ2
ε = 0.00142, GARCH diffusion (22)

1 sec 23400 10.17 (645) 12.01 (463) 10.38 (408) 12.97 (321) 25.00
5 sec 4680 21.80 (343) 24.03 (260) 22.76 (231) 27.93 (176) 47.10
10 sec 2340 28.48 (260) 31.17 (201) 30.97 (186) 34.33 (134) 62.52
20 sec 1170 38.38 (196) 41.14 (155) 40.73 (142) 44.88 (102) 84.21
30 sec 780 43.71 (171) 47.63 (133) 47.93 (106) 52.49 (86) 97.12

σ2
ε = 0.000142, SVJ model (23)

1 sec 23400 11.59 (1960) 14.46 (2799) 11.63 (1105) 13.96 (1843) 23.71
5 sec 4680 17.01 (978) 22.61 (1498) 17.25 (707) 20.34 (945) 46.00
10 sec 2340 21.56 (846) 24.23 (1130) 23.71 (675) 24.46 (699) 60.93
20 sec 1170 26.83 (585) 26.83 (585) 27.29 (577) 29.82 (513) 80.08
30 sec 780 35.67 (390) 35.67 (390) 31.40 (373) 32.38 (390) 96.87

σ2
ε = 0.00142, SVJ model (23)

1 sec 23400 22.65 (778) 23.45 (675) 23.14 (543) 25.28 (463) 66.75
5 sec 4680 43.19 (384) 43.20 (376) 46.36 (322) 52.21 (251) 163.29
10 sec 2340 57.68 (302) 57.91 (290) 62.35 (199) 65.96 (191) 229.08
20 sec 1170 81.86 (249) 83.89 (222) 89.48 (163) 98.31 (143) 302.53
30 sec 780 92.41 (227) 98.12 (190) 99.76 (160) 113.88 (121) 352.59

Note: The mean squared errors have been multiplied by 104.

Table 2. Mean squared error, unevenly sampled data

τ Triangular window Rectangular window Realized Kernel

min MSE MSE at Nopt min MSE MSE at Nopt MSE

σ2
ε = 0.000142, GARCH diffusion (22)

5 sec 9.40 (834) 10.40 (1095) 9.39 (583) 10.46 (701) 20.92
10 sec 13.11 (666) 14.04 (828) 13.33 (452) 13.69 (520) 28.24
20 sec 18.04 (614) 18.04 (614) 18.79 (389) 19.01 (392) 38.78
30 sec 22.87 (402) 22.87 (402) 21.65 (379) 22.65 (325) 47.37

σ2
ε = 0.00142, GARCH diffusion (22)

5 sec 23.97 (335) 25.73 (260) 23.76 (235) 26.72 (176) 50.34
10 sec 34.16 (255) 36.34 (200) 36.89 (163) 40.23 (133) 63.27
20 sec 44.01 (198) 47.67 (155) 45.76 (152) 52.02 (102) 89.83
30 sec 54.47 (176) 59.35 (131) 57.91 (115) 66.49 (85) 113.29

σ2
ε = 0.000142, SVJ (23)

5 sec 20.93 (883) 27.13 (1511) 21.23 (637) 27.07 (954) 45.84
10 sec 28.03 (858) 30.45 (1140) 30.29 (424) 31.03 (706) 71.77
20 sec 43.23 (610) 43.23 (610) 41.48 (514) 42.76 (523) 104.94
30 sec 70.64 (389) 70.64 (389) 66.06 (384) 67.42 (389) 113.59

σ2
ε = 0.00142, SVJ (23)

5 sec 46.12 (386) 46.32 (373) 56.08 (302) 59.59 (249) 257.97
10 sec 67.69 (323) 68.72 (294) 74.85 (192) 75.12 (194) 312.55
20 sec 85.97 (250) 88.37 (219) 94.44 (168) 107.37 (141) 409.86
30 sec 110.59 (184) 110.63 (187) 115.59 (108) 121.02 (120) 555.99

Note: The mean squared errors have been multiplied by 104.
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Figure 3. GE transaction prices on Feb 1, 2007.

tors are competitive with the Realized Kernel. When the
sample path does not feature jumps, the triangular window
is preferred over the rectangular window. When jumps are
present, the rectangular window achieves a smaller mean
squared error for σ2

ε = 0.000142. The simulation results also
suggest using returns sampled at the highest possible fre-
quency to construct the periodogram-based estimators.

7. REAL DATA ANALYSIS

In this section, we consider an application on the transac-
tion prices of General Electric on Feb 1, 2007. The intraday
data are extracted from the Wharton Research Data Ser-
vices, TAQ database. We focus on the prices from the New
York Stock Exchange. Transaction prices before 9:30 am and
after 4:00 pm were removed. We deleted entries with zero
prices. For multiple transactions with the same time stamp,
we used the median price. We also filtered out prices that
are more than one spread away from the bid and ask quotes.
There are 8,052 observations left in the sample, so the prices
are recorded every 3 seconds on average. The price series are
plotted in Figure 3.

As suggested by the simulation study, we will use all the
available data to construct the periodogram-based estima-
tor. To compute the optimal cut-off frequency, we need to
estimate σ2

X and σ2
ε . Denote by RVsparse the subsampled RV

based on 20-minute returns, which is the average of 1,200
RV’s by shifting the time of the first observation in 1 second
increment. Define

σ̂2
e = q−1

q∑
j=1

(2n(j))
−1RV (j),

where RV (1), RV (2), . . . , RV (q) are q distinct realized vari-
ances based on every qth trade by varying the starting point,
and n(j) is the number of non-zero returns in the calculation

of RV (j). We use RVsparse and σ̂2
e as estimators of σ2

X and

Figure 4. Volatility Signature Plot.

σ2
ε respectively, with q = 50 (see [12] for details). We ob-

tained σ̂2
e = 0.0065% and σ̂2

X = 1.98%. The optimal cut-off
frequencies are 169 for the rectangular window and 247 for
the triangular window. The periodogram-based estimators
at the optimal cut-off frequency are 1.66% and 1.71% for the
rectangular window and the triangular window respectively.

Figure 4 presents volatility signature plot for the real-
ized variance, periodogram-based estimators using rectan-
gular window and triangular window. We consider both
tick time sampling and calendar time sampling. The hor-
izontal line is the subsampled 20-minute RV. The signa-
ture plots for the periodogram-based estimators are almost
level, especially for the triangular window, which shows that
the periodogram-based estimators are robust to market mi-
crostructure noise.

8. CONCLUSION

In this paper, we proposed a new frequency-domain es-
timator of quadratic variation. It is based on the weighted
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average of periodograms at non-zero Fourier frequencies. It
is nonparametric in nature. The performance of the estima-
tor depends on both sample size n and cut-off frequency N .
We provide a simple approximation to calculate the optimal
cut-off frequency for a given data set. This work fills the gap
between the time-domain and the frequency-domain analy-
sis of the ex-post measure of price variation. The appeal of
the proposed estimator is its flexibility and simplicity. It is
easy to implement and is computationally efficient as well.
We show, through a simulation study, that the proposed
estimators with rectangular window and triangular window
are competitive with the realized kernel of [14], and they are
insensitive to the choice of the sampling frequency.

APPENDIX A. TECHNICAL APPENDICES

A.1 Proof of Proposition 3.1

Let A(t) =
∫ t

0
μ(s)ds. Note that F(dX)(k) = F(dA)(k)+

F(dXc)(k). We obtained

|F(dX)(k)|2

= |F(dA)(k)|2 + |F(dXc)(k)|2

+ F(dA)(k)F(dXc)(−k) + F(dA)(−k)F(dXc)(k).

It suffices to show that

(A.1) lim
N→∞

∑
1≤k≤N

W (k)|F(dA)(k)|2 = 0 in L2.

Note that
∑

1≤k≤N W (k)|F(dA)(k)|2 = T−2
∫ T

0
b(s)μ(s)ds

where b(s) =
∫ T

0
DN ((s − t)/T )μ(t)dt, and DN (v) =∑

1≤k≤N W (k)e2πikv. Because

E

(∫ T

0

b(s)μ(s)ds

)2

≤ E

∫ T

0

b(s)2dsE

∫ T

0

μ(s)2ds

≤ T 2

∫ 1

0

|DN (u)|2du
(
E

∫ T

0

μ(s)2ds

)2

,

and
∫ 1

0
DN (v)e−2πikvdv = W (k) for 1 ≤ k ≤ N and

0 otherwise, it follows from the Parseval’s theorem that∫ 1

0
|DN (v)|2dv =

∑
1≤k≤N W (k)2 and hence (A.1) holds.

A.2 Proof of Proposition 3.2

Note that |F(dXc)(k)|2 = F(dXc)(k)F(dXc)(−k). It fol-
lows from the Ito’s lemma that

T 2|F(dXc)(k)|2

= [X,X](T ) +

∫ T

0

Ik(h−)dI−k(h) +

∫ T

0

I−k(h−)dIk(h),

where Ik(h) =
∫ h

0
e−2πikt/T dXc(t). Let R(k) =∫ T

0
Ik(h−)dI−k(h) +

∫ T

0
I−k(h−)dIk(h). Next we will show

that

(A.2) lim
N→∞

∑
1≤k≤N

W (k)R(k) = 0 in L2.

It suffices to prove that (E|AN |2)2 ≤ C
∫ 1

0
|DN (v)|4 dv

for some constant C > 0, where AN =
∫ T

0

∫ h−
0

DN ((h −
t)/T )dXc(t)dXc(h) and DN (v) =

∑
1≤k≤N W (k)e2πikv.

Let Z(t) =
∫ t

0
σ(s)dB(s) and G(h) =

∫ h−
0

DN ((h −
t)/T )dXc(t). Then

AN =

∫ T

0

G(h)dZ(h)︸ ︷︷ ︸
T1

+

∫ T

0

∫ ∞

−∞
G(h)xJ̃X(dh× dx)︸ ︷︷ ︸

T2

.(A.3)

Note that

E|T1|2 = E

∫ T

0

|G(h)|2σ(h)2dh(A.4)

≤

√
E

∫ T

0

|G(h)|4dh

√
E

∫ T

0

σ(h)4dh,

E|T2|2 = E

∫ T

0

∫ ∞

−∞
|G(h)|2x2dhν(dx)(A.5)

= E

∫ T

0

|G(h)|2dh
∫ ∞

−∞
x2ν(dx).

Let Gc(h) =
∫ h

0
DN ((h − t)/T )dZ(t), and GJ(h) =∫ h−

0

∫∞
−∞ DN ((h− t)/T )xJ̃X(dt× dx). Then

E

∫ T

0

|G(h)|4dh ≤ 27

(
E

∫ T

0

|Gc(h)|4dh+ E

∫ T

0

|GJ(h)|4dh
)
.

It follows from the Burkholder-Davis-Gundy inequality that
there exists a constant C1 > 0 such that

E

(∫ T

0

|Gc(h)|4dh
)

≤ C1E

∫ T

0

∫ h

0

|DN ((h− t)/T )|4σ(t)4dtdh

= C1

∫ T

0

|DN (u/T )|4duE
∫ T

0

σ(t)4dt,(A.6)

and

E|GJ (h)|4

≤ C1E(

∫ h−

0

∫ ∞

−∞
DN ((h− t)/T )2x2JX(dt× dx))2

≤ C1T

∫ h

0

DN ((h− t)/T )4dt

(∫ ∞

−∞
x2ν(dx)

)2

.

Therefore,

E

∫ T

0

|GJ(h)|4dh(A.7)

≤ C1T
2

∫ T

0

DN (u/T )4du

(∫ ∞

−∞
x2ν(dx)

)2

.
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In view of (A.6) and (A.7), we have

(E|AN |2)2 ≤ C

∫ 1

0

|DN (v)|4 dv

for some constant C > 0.

A.3 Proof of Theorem 3.1

It suffices to prove that

(A.8)
∥∥|JX

n (ωk)|2 − T 2|F(dX)(k)|2
∥∥
2
≤ Ckρ(n),

for some C > 0.
It follows from Lemma 3.1 and Proposition 3.2 that

E|F(dX)(k)|4 < ∞. Let H(t) =
∑n

j=1 e
−iωj1(tj−1,tj ](t).

Then

JX
n (ω) =

∫ T

0

H(t)μ(t)dt︸ ︷︷ ︸
T0

+

∫ T

0

H(t)σ(t)dB(t)︸ ︷︷ ︸
T1

(A.9)

+

∫ T

0

∫ ∞

−∞
H(t)xJ̃X(dt× dx)︸ ︷︷ ︸

T2

.

Since |H(t)| ≤ 1, there exists a constant C1 > 0 such that

E|T0|4 ≤ C1(E
∫ T

0
μ(s)2ds)2, E|T1|4 ≤ C1E

∫ T

0
σ(t)4dt,

E|T2|4 ≤ C1(
∫∞
−∞ x2ν(dx))2 due to the Burkholder-Davis-

Gundy inequality. Hence E|JX
n (ω)|4 is bounded uniformly

in n.
Let M(t) =

∑n
j=1(e

−2πijk/n − e−2πikt/T )1(tj−1,tj ](t). We
have ∥∥|JX

n (ωk)|2 − T 2|F(dX)(k)|2
∥∥
2

≤
(
‖JX

n (ωk)‖4 + ‖TF(dX)(k)‖4
)
‖T‖4,

where T =
∫ T

0
M(t)dX(t). Decompose T as T = T0+T1+T2,

where Tk is defined in (A.9) with H(·) replaced by M(·).
Note that |M(t)| ≤ 2πkρ(n)/T . For some constant C2 > 0,

E|T0|4 ≤ C2k
4ρ(n)4

(
E

∫ T

0

μ(s)2ds

)2

,

E|T1|4 ≤ C2k
4ρ(n)4(E

∫ T

0

σ(t)2dt)2,(A.10)

E|T2|4 ≤ C2k
4ρ(n)4(

∫ ∞

−∞
x2ν(dx))2,

where (A.10) is due to equation (35) of [27]. Therefore there
exists a constant C3 > 0 which is independent of n such that
‖T‖4 ≤ C3kρ(n). The proof is complete.

A.4 Proof of Equality (11)

By definition,

(F(dX) �B F(dX)) (k)

= lim
N→∞

1

2N + 1

N∑
s=−N

F(dX)(s)F(dX)(k − s).

Let Ik(h) =
∫ h

0
e−2πikt/T dX(t). Because

T 2F(dX)(s1)F(dX)(s2) =
∫ T

0
e−2πi(s1+s2)t/T d[X,X](t) +∫ T

0
Is1(h−)dIs2(h)+

∫ T

0
Is2(h−)dIs1(h) due to Ito’s Lemma,

we have

1

2N + 1

N∑
s=−N

F(dX)(s)F(dX)(k − s)

=
1

T
F(d[X,X])(k)

+
1

(2N + 1)T 2

N∑
s=−N

(∫ T

0

Is(h−)dIk−s(h)

+

∫ T

0

Ik−s(h−)dIs(h)
)
.

We need to show that 1
2N+1

∑N
s=−N (

∫ T

0
Is(h−)dIk−s(h) +∫ T

0
Ik−s(h−)dIs(h)) = op(1) for any k ∈ Z. It suffices to

prove

(A.11)
1

2N + 1

N∑
s=−N

(∫ T

0

Is(h−)dIk−s(h)
)
= op(1).

Note that

1

2N + 1

N∑
s=−N

(∫ T

0

Is(h−)dIk−s(h)

)

=

∫ T

0

∫ h−

0

DN ((h− t)/T )dX(t)dX(h),

where DN (v) = e−2πikh/T 1
2N+1

∑N
s=−N e2πisv. Similar to

the proofs of Lemma 3.1 and Proposition 3.2, we have(
E

∣∣∣∣∫ T

0

∫ h−

0

DN ((h− t)/T )dX(t)dX(h)

∣∣∣∣2
)2

≤ C

∫ 1

0

|DN (v)|4 dv,

for some constant C > 0. Since
∫ 1

0
|DN (v)|4 dv ≤∫ 1

0
|DN (v)|2 dv = (2N + 1)−1, (A.11) is true and this com-

pletes the proof.

A.5 Proof of Proposition 4.1

Equalities (13) and (14) follow from Lemma A.1. There-
fore

V arF̂Δε(N,n)

=
∑
k

W (k)2V ar|JΔε
n (ωk)|2

+
∑
k �=k′

W (k)W (k′)Cov(|JΔε
n (ωk)|2, |JΔε

n (ωk′)|2)

= σ4
ε [2(η − 1) + 4(η − 3)(n− 1)(1−

∑
k

W (k) cosωk)
2

+ 4(
∑
k

W (k) cosωk)
2

+ 4n
∑
k

W (k)2(1− cosωk)(n− (n− 2) cosωk)]
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= σ4
ε [2(η + 1) + 4n

∑
k

W (k)2ω2
k] + o(N4/n2).

Note that IΔε
n (ω) = n−1

∑
|h|<n γε(h)e

−iωh where γε(h) =∑n−|h|
j=1 ΔεjΔεj+|h|. We have

EF̂Δε(N,n)

= 2σ2
ε [n− (n− 1)

∑
1≤k≤N

W (k) cosωk]

= 2σ2
ε [1 + (n− 1)

∑
1≤k≤N

W (k)ω2
k/2] +O(N4/n3).

The proof of Proposition 4.1 needs the following lemma.

Lemma A.1. Consider an MA(1) process Pj = (1− θB)ej
where B is the backshift operator and et is white noise with
variance σ2

e and Ee4t = ηeσ
4
e < ∞. Then for 0 < ωs =

2πs/n < π,

V ar(|JP
n (ωs)|2)

= σ4
e(ηe − 3)(1 + θ4 + (n− 1)(1 + θ2 − 2θ cosωs)

2)

+ 4θ2σ4
e + σ4

e((1 + θ2)n− 2θ(n− 1) cosωs)
2,

and for 0 ≤ ωs 
= ωl ≤ π,

Cov(|JP
n (ωs)|2, |JP

n (ωl)|2)
= σ4

e(ηe − 3)(n− 1)(1 + θ2 − 2θ cosωs)(1 + θ2 − 2θ cosωl)

+ σ4
e(ηe − 3)[1 + θ4] + 4θ2σ4

e (1 + cosωs cosωl) .

Proof of Lemma A.1: Let ω = ωj , λ = ωk. According to
the proof of Theorem 10.3.2 of [18],

Cov(IP (ω), IP (λ))

= n−2(ηe − 3)σ4
e

n∑
s,t,u,v=1

ψ∗
s,t,u,ve

−iω(t−s)e−iλ(v−u)

+

⎛
⎝n−1

n∑
s,u=1

γ(u− s)e−iωs−iλu

⎞
⎠

⎛
⎝n−1

n∑
t,v=1

γ(v − t)eiωt+iλv

⎞
⎠

+

⎛
⎝n−1

n∑
s,v=1

γ(v − s)e−iωs+iλv

⎞
⎠

⎛
⎝n−1

n∑
t,u=1

γ(u− t)eiωt−iλu

⎞
⎠

where ψ∗
s,t,u,v = ψt−sψu−sψv−s + ψ1ψt−s+1ψu−s+1ψv−s+1,

and ψ0 = 1, ψ1 = −θ and ψk = 0 for k 
= 0, 1; and γ(h) =
(1 + θ2)σ2

e if h = 0, −θσ2
e if h = ±1 and 0 for the others.

Note that for 0 ≤ ω, λ ≤ π,
n∑

s,t,u,v=1

ψt−sψu−sψv−se
−iω(t−s)e−iλ(v−u)

=

n∑
s=1

(

n−s∑
t=1−s

ψte
−iωt)(

n−s∑
v=1−s

ψve
−iλv)(

n−s∑
u=1−s

ψue
iλu)

= 1 + (n− 1)(1− θe−iω)|1− θe−iλ|2,

and
n∑

s,t,u,v=1

ψt−s+1ψu−s+1ψv−s+1e
−iω(t−s)e−iλ(v−u)

= − θ3 + (n− 1)eiω(1− θe−iω)|1− θe−iλ|2.

Moreover,

n∑
s,u=1

γ(u− s)e−iωs−iλu(A.12)

=

⎧⎨⎩
θσ2

e(e
−iω + e−iλ) for 0 < ω, λ < π,

(n+ nθ2 − 2(n− 1)θ)σ2
e for ω = λ = 0,

(n+ nθ2 + 2(n− 1)θ)σ2
e for ω = λ = π,

and

n∑
s,v=1

γ(v − s)e−iωs+iλv

(A.13)

=

{
θσ2

e(e
−iω + eiλ) for 0 ≤ ω �= λ ≤ π,

σ2
e((1 + θ2)n− 2θ(n− 1) cosλ) for 0 ≤ ω = λ ≤ π.

As a result, for 0 ≤ ω 
= λ ≤ π,

Cov(nIP (ω), nIP (λ))

= σ4
e(ξn − 3)(1 + θ4 + (n− 1)(1 + θ2 − 2θ cosω)

× (1 + θ2 − 2θ cosλ))

+ θ2σ4
e [4 + 4 cosω cosλ] ,

and for 0 < ω < π

V ar(nIP (ω))

= σ4
e(ξn − 3)(1 + θ4 + (n− 1)(1 + θ2 − 2θ cosω)2)

+ 4θ2σ4
e + σ4

e((1 + θ2)n− 2θ(n− 1) cosω)2.

A.6 Proof of Proposition 4.2

By the definition of F̂ΔX,Δε(N,n), EF̂ΔX,Δε(N,n) = 0.

Let F̂X,ε
1 (N,n) =

∑N
k=1 W (k)JΔX

n (ωk)J
Δε
n (−ωk). We

have

V ar
(
F̂X,ε
1 (N,n)

)
= E

∣∣∣F̂X,ε
1 (N,n)

∣∣∣2

=
∑
k

W (k)2E|JΔX
n (ωk)|2E|JΔε

n (ωk)|2

+
∑
k �=k′

W (k)W (k′)E
[
JΔX
n (ωk)J

ΔX
n (−ωk′ )

]

× E
[
JΔε
n (−ωk)J

Δε
n (ωk′ )

]
.

Note that E(JΔε
n (ωs)J

Δε
n (ωk)) =

∑n
j,l=1 e

−iωsj−iωklγ(j− l).
In view of (A.12) and (A.13), we have

E(JΔε
n (ωs)J

Δε
n (ωk))

= σ2
ε (e

−iωs + e−iωk), for 0 ≤ ωs, ωk ≤ π,

E(JΔε
n (ωs)J

Δε
n (−ωk))

=

{
σ2
ε (e

−iωs + eiωk) for 0 ≤ ωs 
= ωk ≤ π,
2σ2

ε (n− (n− 1) cos(ωs)) for 0 ≤ ωs = ωk ≤ π.

Note also that E(JΔX
n (ωs)J

ΔX
n (ωk)) =∑n

j=1 e
−iωs+kjEΔX2

j = 0 for ωs + ωk 
= 0 (mod 2π),

otherwise, EJΔX
n (ωs)J

ΔX
n (ωk) = σ2

X . As a result,

V ar
(
F̂X,ε
1 (N,n)

)
= 2σ2

εσ
2
X

∑
k

W (k)2(n− (n− 1) cos(ωk)).
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Let F̂ ε,X
2 (N,n) =

∑N
k=1 W (k)[JΔε

n (ωk)J
ΔX
n (−ωk)]. We

have for N < n/2,

Cov
(
F̂X,ε
1 (N,n), F̂ ε,X

2 (N,n)
)

=
∑
k,k′

W (k)W (k′)

(
n∑

j=1

e−iωk+k′ jEΔX2
j

)(
σ2
ε (e

iωk + eiωk′ )
)

= 0.

It follows that V ar(F̂ΔX,Δε(N,n)) = 4σ2
εσ

2
X

∑
k W (k)2(n−

(n− 1) cosωk) = 4σ2
εσ

2
X

∑
k W (k)2(1 + nω2

k/2) + o(N4/n2).

A.7 Proof of Theorem 4.1

Let V = [X,X](T ). Because Cov
(
F̂ΔX,Δε(N,n), F̂Δε(N,n)

)
= 0 and Cov

(
F̂ΔX,Δε(N,n), F̂ΔX(N,n)

)
= 0, we have

E(F̂ΔY (N,n)− V )2

=
(
EF̂Δε(N,n)

)2

+ V arF̂ΔX(N,n)

+ V arF̂Δε(N,n) + V arF̂ΔX,Δε(N,n).

Note that(
EF̂Δε(N,n)

)2

= 4σ4
ε + 4σ4

εn
∑
k

W (k)ω2
k +O(N4/n2),

V arF̂ΔX(N,n) = n−1(ξn − 3)σ4
X +

∑
k

W (k)2σ4
X ,

V arF̂Δε(N,n) = σ4
ε [2(η + 1) + 4n

∑
k

W (k)2ω2
k] + o(N4/n2),

V arF̂ΔX,Δε(N,n) = 4σ2
εσ

2
X

∑
k

W (k)2(1 + nω2
k/2) + o(N4/n2).

As a result,

E(F̂ΔY (N,n)− V )2(A.14)

= (2η + 6)σ4
ε + n−1(ξn − 3)σ4

X + 4σ4
εn

∑
k

W (k)ω2
k

+
∑
k

W (k)2
[
σ4
X + 4σ4

εnω
2
k + 4σ2

εσ
2
X(1 + nω2

k/2)
]

+O(N4/n2).

Therefore with N2 = o(n), E(F̂ΔY (N,n) − V )2 = (2η +
6)σ4

ε + o(1).

A.8 Proof of Theorem 4.2

Let Zj = (1 − (1 + α)−1αB)ΔXj where B is the backshift
operator. We have

F̂ΔY (N,n) = (1 + α)2F̂Z(N,n) + F̂Δε̃(N,n)(A.15)

+ (1 + α)F̂Z,Δε̃(N,n),

where F̂Z,Δε̃(N,n) =
∑

1≤k≤N W (k)(JZ
n (ωk)J

Δε̃
n (−ωk) +

JZ
n (−ωk)J

Δε̃
n (ωk). Because Proposition 4.1 applies also to

ε̃, we obtain the following

EF̂Δε̃(N,n) = 2σ2
ε̃ [1 + (n− 1)

∑
k

W (k)ω2
k/2] +O(N4/n3),

V arF̂Δε̃(N,n) = σ4
ε̃ [2(η + 1) + 4n

∑
k

W (k)2ω2
k] + o(N4/n2).

Moreover,

EF̂Z(N,n) = σ2
X(1− θ)2 +O(N2/n2),

(A.16)

V arF̂Z(N,n) = σ4
X

∑
k

W (k)2
[
(1− θ)4 + 4θ(1− θ)2n−1](A.17)

+ n−1(ξn − 3)σ4
X(1− θ)4 + o(N2/n2),

and

EF̂Z,Δε̃(N,n) = 0,

V ar(F̂Z,Δε̃(N,n)) = 4(1− θ)2σ2
ε̃σ

2
X

∑
k

W (k)2(1 + nω2
k/2)

(A.18)

+ 16θσ2
Xσ2

ε̃n
−1 + o(N2/n2),

where θ = (1 + α)−1α. (They will be verified later.)
Because the variance of εj is σ2

ε = α2σ2
X/n+σ2

ε̃ , we have

EF̂ΔY (N,n)− σ2
X

= (1 + α)2EF̂Z(N,n) + EF̂Δε̃(N,n)− σ2
X

= 2E(ε2j ) + o(N2/n).

Note that Cov(F̂Z,Δε̃(N,n), F̂Δε̃(N,n)) = 0,

Cov(F̂Z,Δε̃(N,n), F̂Z(N,n)) = 0 and Eε4j = ησ4
ε̃ +

6α2σ2
ε̃σ

2
Xn−1 + α4ξnσ

4
Xn−2. Consequently,

E(F̂ΔY (N,n)− [X,X](T ))2

(A.19)

=
(
EF̂Δε̃(N,n)

)2

+ V arF̂Δε̃(N,n) + (1 + α)4V arF̂Z(N,n)

+ (1 + α)2V arF̂Z,Δε̃(N,n)

= 2Eε4j + 6σ4
ε +

[
(ξn − 3)σ4

X + 8α(2− α)σ2
εσ

2
X

]
n−1

+ 4σ4
εn

∑
k

W (k)ω2
k + (σ4

X + 4σ2
εσ

2
X)

∑
k

W (k)2

+ (4σ4
ε + 2σ2

εσ
2
X)n

∑
k

W (k)2ω2
k +O(N4/n2)

+ o(N2/n
∑

W (k)2)

= 2Eε4j + 6σ4
ε + o(1).

Proof of (A.16): Note that IZn (ω) =

n−1
∑

|h|<n γZ(h)e
−iωh where γZ(h) =

∑n−|h|
j=1 ZjZj+|h|,

and cosω = 1− ω2/2 +O(ω4). We have

EF̂Z(N,n)

= σ2
ΔX [n(1 + θ2)− 2θ(n− 1)

∑
1≤k≤N

W (k) cosωk]

= σ2
X(1− θ)2 +O(N2/n2).

Proof of (A.17): It follows from Lemma A.1 that, with
EΔX4

j = ξnσ
4
X/n2,

V ar(nIZn (ωs))

= n−2σ4
X(ξn − 3)(1 + θ4 + (n− 1)(1 + θ2 − 2θ cosωs)

2)

+ 4θ2n−2σ4
X + n−2σ4

X((1 + θ2)n− 2θ(n− 1) cosωs)
2,
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for 0 < ωs = 2πs/n < π, and

Cov(nIZn (ωs), nI
Z
n (ωl))

= n−2σ4
X(ξn − 3)(n− 1)(1 + θ2 − 2θ cosωs)(1 + θ2 − 2θ cosωl)

+ n−2σ4
X(ξn − 3)(1 + θ4) + 4θ2n−2σ4

X (1 + cosωs cosωl) ,

for 0 ≤ ωs 
= ωl ≤ π. Note also that ξn = O(1). We have

V arF̂Z(N,n)

=
∑
s

W (s)2V ar|JZ
n (ωs)|2

+
∑
s �=l

W (s)W (l)Cov(|JZ
n (ωs)|2, |JZ

n (ωl)|2)

= n−2σ4
X(ξn − 3)(1 + θ4) + 4θ2n−2σ4

X

+ n−2σ4
X(ξn − 3)(n− 1)

[
1 + θ2

]2
+ (1 + θ2)2σ4

X

∑
s

W (s)2

− 4θ(1 + θ2)n−2σ4
X(ξn − 3)(n− 1)

[∑
s

W (s)(cosωs)

]

+ 4θ2n−2σ4
X [(ξn − 3)(n− 1) + 1]

[∑
s

W (s)(cosωs)

]2

+ 4θ2σ4
X(1− 2n−1)

∑
s

W (s)2(cosωs)
2

− 4(1 + θ2)θ(1− n−1)σ4
X

∑
s

W (s)2 cosωs

= σ4
X

∑
s

W (s)2
[
(1− θ)4 + 4θ(1− θ)2n−1]

+ n−1(ξn − 3)σ4
X(1− θ)4 + o(N2/n2).

Proof of (A.18): Let F̂Z,Δε̃
1 (N,n) =∑N

k=1 W (k)JZ
n (ωk)J

Δε̃
n (−ωk). We have

V ar
(
F̂Z,Δε̃
1 (N,n)

)
=

∑
k �=k′

W (k)W (k′)E
[
JZ
n (ωk)J

Z
n (−ωk′)

]
E
[
JΔε̃
n (−ωk)J

Δε̃
n (ωk′)

]
+

∑
k

W (k)2E|JZ
n (ωk)|2E|JΔε̃

n (ωk)|2.

In view of (A.12) and (A.13), we obtain

E(JΔε̃
n (ωs)J

Δε̃
n (ωk))

= σ2
ε̃ (e

−iωs + e−iωk ), for 0 < ωs, ωk < π,

E(JΔε̃
n (ωs)J

Δε̃
n (−ωk))

=

{
σ2
ε̃ (e

−iωs + eiωk ) for 0 < ωs �= ωk < π,
2σ2

ε̃ (n− (n− 1) cosωs) for 0 < ωs = ωk < π,

and

E(JZ
n (ωs)J

Z
n (ωk))

= θσ2
ΔX(e−iωs + e−iωk ), for 0 < ωs, ωk < π,

E(JZ
n (ωs)J

Z
n (−ωk))

=

{
θσ2

ΔX(e−iωs + eiωk ) for 0 < ωs �= ωk < π,
σ2
ΔX((1 + θ2)n− 2θ(n− 1) cosωs) for 0 < ωs = ωk < π,

where σ2
ΔX = n−1σ2

X . Consequently,

V ar
(
F̂Z,Δε̃
1 (N,n)

)
= 2σ2

ε̃σ
2
ΔX

∑
k

W (k)2(n− (n− 1) cosωk)︸ ︷︷ ︸
T1

× ((1 + θ2)n− 2θ(n− 1) cosωk)︸ ︷︷ ︸
T1

+ θσ2
ΔXσ2

ε̃

∑
k �=s

W (k)W (s)(e−iωs + eiωk )(eiωs + e−iωk)

︸ ︷︷ ︸
T2

.

Because (n− (n− 1) cosωk)((1 + θ2)n− 2θ(n− 1) cosωk) =
(1− θ)2n+ 2θ + (1− θ)2n2ω2

k/2 +O(nω2
k), we have

T1 = 2σ2
ε̃σ

2
X

∑
k

W (k)2((1− θ)2 + 2θn−1 + (1− θ)2nω2
k/2)

+O(N2/n2
∑

W (k)2).

Note also that (e−iωs + eiωk)(eiωs + e−iωk) = 2(1 +
cosωk cosωs − sinωk sinωs). With some algebra, we have

T2 = 4θσ2
Xσ2

ε̃n
−1

[
1−

∑
W (k)2

]
+O(N2/n3).

It follows that

V ar
(
F̂Z,Δε̃
1 (N,n)

)
= 2(1− θ)2σ2

ε̃σ
2
X

∑
k

W (k)2(1 + nω2
k/2)

+ 4θσ2
Xσ2

ε̃n
−1 +O(N2/n2

∑
W (k)2).

Let F̂Δε̃,Z
2 (N,n) =

∑N
k=1 W (k)[JΔε̃

n (ωk)J
Z
n (−ωk)]. Then

V ar
(
F̂Δε̃,Z
2 (N,n)

)
= V ar

(
F̂Z,Δε̃
1 (N,n)

)
,

and

Cov
(
F̂Z,Δε̃
1 (N,n), F̂Δε̃,Z

2 (N,n)
)

= n−1θσ2
Xσ2

ε̃

∑
k,k′

W (k)W (k′)(e−iωk + e−iωk′ )(eiωk + eiωk′ ).

Because
∑

k,k′ W (k)W (k′)(e−iωk + e−iωk′ )(eiωk + eiωk′ ) =

4 +O(N2/n2), we have

Cov
(
F̂Z,Δε̃
1 (N,n), F̂Δε̃,Z

2 (N,n)
)
= 4n−1θσ2

Xσ2
ε̃+O(N2/n3).

Consequently,

V ar
(
F̂Z,Δε̃
1 (N,n) + F̂Δε̃,Z

2 (N,n)
)

= 16θσ2
Xσ2

ε̃n
−1 + 4(1− θ)2σ2

ε̃σ
2
X

∑
k

W (k)2(1 + nω2
k/2)

+ o(N2/n2).
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A.9 Proof of Theorem 5.1

It follows from (A.19) that for a fixed n, the optimal cut-
off frequency should be such that minimizes to leading order

4σ4
εn

∑
k

W (k)ω2
k + (σ4

X + 4σ2
εσ

2
X)

∑
k

W (k)2

+ (4σ4
ε + 2σ2

εσ
2
X)n

∑
k

W (k)2ω2
k

= 4σ4
ε

(
n
∑
k

W (k)ω2
k +

∑
k

W (k)2
[
ρ2 + 2ρ+ (1 + ρ)nω2

k

])(A.20)

where ρ = (2σ2
ε )

−1σ2
X .

A.10 Proof of Corollary 5.1

Note that
∑

1≤k≤N W (k)2 = 1
N2 + 2(N−1)(2N−1)

3N3 ,∑
1≤k≤N W (k)k2 = [ (N+1)2(N+2)

6N
− 1

N
], and

∑
1≤k≤N W (k)2k2 =

2(N+1)(N3+4N2+6N+4)

15N3 − 3
N2 . Equation (A.20) becomes

2π2

3n
N2 +

8π2(6 + ρ)

15n
N +

4(ρ2 + 2ρ)

3

1

N
.

For N ∈ (0,∞), N �→ 2π2

3n N2 + 8π2(6+ρ)
15n N + 4(ρ2+2ρ)

3
1
N is

minimized at N∗ = −b+(−b3−d+
√

d(d+ 2b3))1/3+(−b3−
d −

√
d(d+ 2b3))1/3 where b = 2(6+ρ)

15 , and d = −nρ(ρ+2)
2π2 ,

and ρ = σ2
X/(2σ2

ε ). The proof is complete.

A.11 Proof of Corollary 5.2

Because
∑

k W (k)k2 = (N+1)(N+2)
6 and

∑
k W (k)2k2 =

2
15 [N + 3 + 4

N − 1
N+1 ], (A.20) is equal to

2(ρ2 + 2ρ)

3

[
1

N
+

1

N + 1

]
+

4π2

n

(N + 1)(N + 2)

6

+
8π2(1 + ρ)

15n

[
N + 3 +

4

N
− 1

N + 1

]
≈ 2π2

3n
N2 +

2π2(19 + 4ρ)

15n
N +

4(ρ2 + 2ρ)

3

1

N
.

For N ∈ (0,∞), N �→ 2π2

3n N2 + 2π2(19+4ρ)
15n N + 4(ρ2+2ρ)

3
1
N

is minimized at N∗ = −b + (−b3 − d +
√
d(d+ 2b3))1/3 +

(−b3 − d −
√
d(d+ 2b3))1/3 b = 19+4ρ

30 , and d = −nρ(ρ+2)
2π2 .

The proof is complete.
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