STATISTICS AND ITS INTERFACE Volume 8 (2015) 295-303

A regression analysis of expected

ZONGWU CAIl, JIA SU, AND SUFIANTI

To estimate the expected shortfall, a coherent risk mea-
sure, this paper proposes an easily implemented regression
technique based on a proportional mean residual life regres-
sion model with explanatory (lagged) variables. The param-
eters are estimated by using a quasi-likelihood method and
the asymptotic normality of the proposed estimator is de-
rived under an a-mixing process assumption. Based on a
simulation study, the proposed estimator performs fairly
well. In the empirical study, the backtesting procedure is
conducted based on the daily and weekly return of S&P
500 Index using the 95% confidence level. The performance
of the model is evaluated by its ability to accurately esti-
mate ES compared with two more alternative models. The
results generally favor the proposed model over the alterna-
tive models.
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1. INTRODUCTION

In today’s financial world, risk management has taken
an increasingly important role in sustaining an institution’s
financial stability and its ability to remain economically vi-
able. Following several financial crises in global financial
markets, accurate and reliable risk measures have become
essential to cope with future adverse events. Value-at-risk
(VaR) and expected shortfall (ES) are two of the more well-
known quantitative risk measures for a portfolio of asset(s)
adopted by financial institutions and regulators.

VaR, being conceptually simpler, is described as

VaR = —inf{z e R: Pz >2z)<1—a}
= —inf{x €R:F(z) >a}=—-F ()
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at a given « € (0, 1), where F(+) represents the distribution
function of z; (say, the log return, where —x; is the loss)
with its inverse F~1(-), and (1 —a) x 100% is the confidence
level. However, by simply being the threshold of possible
losses, VaR does not give any information about the severity
of losses by which it is exceeded. On the other hand, ES,
formally defined as

1 —VaR
ES = —FEfz | —xt>VaR]:—a/ xf(x)dz > VaR

— 0o

or the conditional expected value of losses given that the
losses are larger than VaR, takes into consideration the mag-
nitude of the losses beyond VaR. Furthermore, VaR violates
the subadditivity principle, one of the four axioms of a co-
herent risk measure (Artzner, Delbaen, Eber and Heath,
1999), in the sense that it does not promote portfolio di-
versification, while ES is coherent; see Acerbi and Tasche
(2002) for details. Thus, ES is preferred for practical appli-
cations.

Various quantitative models, from parametric to non-
parametric, characterize ES. For a fully parametric estima-
tion of ES, the unconditional return, or log-return series, is
often assumed to follow a certain distribution, e.g., a normal
or Student’s t-distribution, or an other type of distribution.
Alternatively, the conditional return and variance can be as-
sumed to follow some time series model, such as the autore-
gressive moving average (ARMA) model (Box and Jenkins,
1970) for returns and generalized autoregressive conditional
heteroskedasticity (GARCH) model (Bollerslev, 1986) for
variance. Using parametric models is simple and requires
little information, but misspecification of models and distri-
butions will produce misleading results. For nonparametric
ES estimation, the commonly used methods for nonpara-
metric ES estimation include historical simulation (HS) and
Monte Carlo simulation. Other models found in the liter-
ature include Scaillet (2004, 2005), Cai and Wang (2008),
and Chen (2008), and the references therein. While no dis-
tributional assumption is needed, the biggest drawbacks of
using pure nonparametric models are the complexity and
high computational cost.

One might prefer using an easily implemented semipara-
metric model which incorporates parametric and nonpara-
metric components with possible explanatory variables. By
requiring no distributional assumption and working effi-
ciently when only little information is available, a semi-
parametric model combines the merits of both paramet-
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ric and nonparametric models. Extreme value theory (Em-
brechts, Kluppeberg and Mikosch, 1999) and filtered histor-
ical simulation (Barone-Adesi, Bourgoin and Giannopoulos,
1998, 1999) are two semiparametric approaches that can
be applied to estimate ES. A new semiparametric model
is adopted from a popular concept in actuarial studies. The
model, termed the proportional mean residual life (PMRL)
model, is originally proposed by Oakes and Dasu (1990) to
measure human life expectancy. To account for the presence
of covariates in regression analysis, Maguluri and Zhang
(1994) extended the PMRL model to operate in a more gen-
eral framework.

However, the original PMRL regression model was de-
veloped for independent and identically distributed (i.i.d.)
data. As seen by practitioners in the financial market, mak-
ing an i.i.d. assumption for financial returns is completely
unreasonable. A financial return series shows little or no se-
rial correlation while its absolute and squared counterparts
are often found to be highly serially correlated (with pos-
itive and significantly greater than zero autocorrelations),
resulting in time-varying volatility and volatility cluster-
ing. Since small (large) returns are almost always followed
by small (large) returns, returns cannot be assumed to be
iid.

We address this by proposing a modification to the
asymptotic normality of the PMRL regression model to
account for the peculiarities of financial data. The result-
ing asymptotic properties are derived under an a-mixing
process assumption. Next, a simulation study is performed
to evaluate the performance of the regression parameter
estimates with a time series assumption. Finally, we per-
form an empirical study with real market outcomes to
compare the accuracy and reliability of the original and
the modified PMRL regression models in ES estimation,
under both the i.i.d. and time series assumptions, along
with other generally known models using the backtesting
method.

The rest of the paper is structured as follows. Section 2
describes the model and derives the asymptotic properties
of the estimator, and also presents a significance test to see
whether the explanatory variables can be used to explain the
risk in the model. Section 3 displays the simulation and real
data application of the model. Section 4 outlines the main
findings and conclusions of our study. All technical details
are given in the Appendix.

2. ANALYSIS FRAMEWORK

2.1 The model and estimation procedure

The mean residual life function e(z) of a non-negative
random variable x; with survival function S(z) and finite
mean p is

e(z) = E(x; — x|y > ) = S(x) ! /00 S(u)du.
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Then, S(x) can be derived from e(z) by the inversion for-

mula
ZEZ; exp{ - /Ox e(u)—ldu}.

Two survival functions Sp(z) and Si(x) are said to have
proportional mean residual life if in an obvious notation

(1)

Therefore,

S(z) =

e1(x) = feg(x) for all x >0, 6 > 0.

x){/:o So(u)du/uo}l/e_l.

It is well known that a necessary and sufficient condition
for Sy (z) to be a survival function for all § > 0 is that eg(z)
is nondecreasing; see Maguluri and Zhang (1994) for details.
Oakes and Dasu (1990) proposed a semparametric PMRL
model, whereas Maguluri and Zhang (1994) extended this
model to a regression context. Model (1) can be extended
to a more general setting with explanatory variable z,

(2) e(wz) = exp(—B72)eo ().

Clearly, 8 = In[e(z|z = 0)/e(z|z = 1)] which measures
the risk so that 8 is commonly called the log of risk. It fol-
lows from (2) that for some baseline survival function Sy(-),

Sl (I) =

}exp(ﬁTZ)—l

(3)  S(alo) = SO(JU){ [ Sotuidu/ig

where the corresponding baseline mean is pg =
Elexp(B8T2)x|2]; see Maguluri and Zhang (1994) for details.
In the PMRL model, Dasu and Oakes (2003) proposed a
class of weighted ratio estimators. Suppose that we observe
time series sample {(z¢, z;) }_; from a population satisfying
(2). Our method of constructing an estimator B of 3 is based
on the solution of

T Zt 1 Ttz €Xp 5 Zt

U(B) =
= + 31y wrexp(Bz)

(4)

——Zzt—O

Clearly, when the baseline survival function is the expo-
nential distribution So(z) = exp(z/o), then (4) is the true
maximum likelihood equation of this exponential regression
model. Therefore, the estimator given by (4) is called the
quasi-likelihood estimate.

2.2 Asymptotic theories

In estimating VaR and ES, the financial data are com-
monly assumed to follow a certain time series model such as
an ARMA or GARCH process. We consider a more general
structure in the form of an a-mixing process. The asymp-
totic results of the paper are derived under the ca-mixing
assumption. In this section, to establish the large sample
theory, we require the following assumptions.



Assumptions

Al. Parameter space © C RP is compact. Function U () is
a measurable function of observations for each 5 € ©,
and U(B) is continuous in S € ©. Objective function
U(B3) uniformly converges over © to Uy(8) = E(U(B)).
Time series {(z¢,2])} is stationary a-mixing. Fur-
ther, assume that there exists some & > 0, such that
Elziexp(BT2)?T0 < oo and El|zyz exp(BT2)?10 <
00, and that there exists r > 2, such that the mixing
coefficient «(i) = O(:~7), where 7 = (6 +r)/0.

There is a unique Sy € © such that U(5p) = 0.

The first order derivative U’ (8) is a negative semidef-
inite matrix that uniformly converges to the negative

’

definite matrix Uy = E(U'(3)).

A2.

A3.
Ad.

Theorem 1 presents the consistency and asymptotic normal-
ity of the estimator. This result is new in the sense that it
generalizes the result of Maguluri and Zhang (1994).

Theorem 1: Assume that Assumptions A1-A4 are satis-
fied. Then,

VT(B—By) =N (0,35),

where Y5 = AWAHT, A = Var(z) and
Vo= pp[Var(&) + 2372, Cov(&r,&ar)] with & =
[z exp(Bg 2t) — po] (2 — pz).

The variance-covariance matrix g can be consistently
estimated by using the heteroskedasticity and autocorre-
lation consistent (HAC) estimation method of Newey and

West (1987), given by 35 = A~'W(A™1T, where A =
%ZthlA(zt — (2 — f)" with @i = i, 2, and
Vo= To+ X' w0y +T7) with w;, = w(j), T; =
m Zz:lj Etgfﬂ, | denoting the lag truncation pa-
rameter, and w(-) being the weighting function. In particu-
lar, when the data are independent, the variance-covariance
matrix reduces to X5 = A~ Var(&) (A~ g 2, similar to
that in Maguluri and Zhang (1994), and it further reduces to
Y5 = A~! when the baseline survival function is exponen-
tial. In our time series model, the variance-covariance matrix
plays an important role in the inference. For the HAC co-
variance matrix, besides the weighting function w(-) such as
the Barlett function defined by w; = w(j) =1—j/(1+ 1),
other weighting functions can also be considered. Newey and
West (1987) showed that if | = I[(T) — oo and I*/T — 0,
V is a consistent estimator of V. Newey and West (1994)
also pointed out that the choice of the kernel is not particu-
larly important. The truncated parameter is a more impor-
tant determinant of the finite sample property. In our paper,
we propose using the Barlett function and choose the trun-
cated parameter as in Schwert (1987), I = int{4(7/100)*/}.
To implement the HAC estimator, we can simply use the
package sandwich in R with the command vcovHAC() or
meatHAC().

2.3 Hypothesis testing

It is natural to investigate whether certain variables are
statistically significant after fitting the model. This leads to
the testing problem Hy : 8 = (o versus H; : 8 # 5y. More
generally, one may consider the pair of null and alternative
hypotheses as Hy : R3 = r versus Hy : RS # r, where Ris a
J X p matrix with full rank and J < p. The testing problem
can be validated by the Wald statistic as Wp = T(RB —
MNT(RAWWATRT)"Y (RS — r). Tt is straightforward to
show that when Assumptions A1-A4 are satisfied, under the
null hypothesis, the distribution of the Wald statistic Wp
can be approximated by a X2J distribution with J degrees
of freedom. In particular, for testing Hy : 3; = Bo; versus
Hy : B; # Poj for any 1 < j < p, the test statistic is t? =
T(Bj — ﬁoj)2/(A_1VA_1T)j’j, and t3 —>d X%

3. EMPIRICAL STUDIES

3.1 A simulated example

In this section, we evaluate the performance of esti-
mator B A simulation study is carried out using sample
sizes of T = 100, 200, and 500. We consider the case
when z; = (214, 29¢)7 is generated by the AR(1) model as
21t = Q121(¢-1) + W1t and z9; = Q223(¢—1) + Wat, where w1
and we; are independently generated from N (0, 1) and are
mutually independent. Here a1 and as measure the degree
of the dependency of {z:}. To consider different dependen-
cies, we consider cases where (o, as) take the values (0, 0),
(0.5,0.5) and (0.9,0.9), respectively. From (3), we have

Stalo) = so0){ [ so<u>du/uo}cxp(ﬁTz)_l.

Given covariate z; and baseline survival function Sp(z), 2;
can be generated from this equation. Throughout the paper,
we assume that the baseline distribution follows an exponen-
tial distribution, or So(z) = exp(—x). Therefore, (4) is the
maximum likelihood equation of this exponential regression
model and 3 is asymptotically efficient. The 8 values used
in our simulation are taken to be 5; = 0.5 and (35 = 1.

Table 1 provides a summary of the simulation results
when the baseline distribution is assumed to follow a unit
exponential distribution. The mean and standard deviation
of B for each case are computed based on 1,000 simulations.
As we can see from Table 1, the second column gives the
mean of /3, the third column comprises the standard devia-
tion of B , denoted by SD L and the fourth and fifth columns
contain the mean of estimated standard error, denoted by
SE (see Theorem 1 for the detailed formulation) for C' = 0
and C' = 1, respectively.

When estimating the standard error, we carefully
choose the appropriate kernel and lag to ensure a con-
sistent variance-covariance matrix, given the time series
specification. We use the Bartlett kernel and lag [ =
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Table 1. Simulation Results for the Exponential Distribution

Table 2. Simulated Power Function of the Test When ai; = 0

(a1, 2) T Mean of SD; SE SE and oz =0
8 (Cc=0 (C=1) C=0 c=1

100 0.5018 0.1070 0.1028 0.1023 T ¥ 1% 5% 10% 1% 5% 10%
0.9985 0.1119 0.1017 0.1006 0 0.017  0.043 0.127  0.010 0.046  0.094
(0, 0) 200 0.5021 0.0692 0.0707 0.0704 0.1 0.112 0.243 0.336 0.136  0.260  0.367
1.0010 0.0719 0.0710 0.0709 100 0.2 0.338 0.515 0.666  0.395 0.580  0.685
500 0.5006 0.0440 0.0447 0.0445 0.3 0.727  0.871 0.926 0.769  0.900  0.940
0.9995 0.0454 0.0445 0.0445 0.4  0.946 0.980 0.991 0.946  0.982 0.991
100 0.5049 0.0912 0.0897 0.0883 0 0.011 0.0564 0.106 0.004 0.041 0.088
1.0029 0.0943 0.0910 0.0890 0.1 0.137  0.295 0.398  0.153  0.317  0.435
(0.5, 0.5) 200 0.5010 0.0619 0.0609 0.0609 200 0.2 0.619 0.783 0.866  0.637  0.802 0.870
0.9982 0.0630 0.0612 0.0610 0.3 0.947  0.986 0.994 0943 0987  0.996
500 0.4997 0.0388 0.0385 0.0382 0.4  0.999 1.000 1.000 1.000 1.000 1.000
1.0001 0.0391 0.0386 0.0384 0 0.010 0.051 0.103  0.006 0.044 0.104
100 0.5025 0.0582 0.0593 0.0572 0.1 0.351 0.586 0.703  0.361 0.583  0.712
0.9998 0.0594 0.0588 0.0573 500 0.2 0.975 0.994 0999 0.971 0.995 0.999
(0.9, 0.9) 200 0.4993 0.0363 0.0356 0.0349 0.3 1.000 1.000 1.000  0.997 1.000 1.000
1.0006 0.0368 0.0359 0.0352 0.4 1.000 1.000 1.000 1.000 1.000 1.000

500 0.4994 0.0201 0.0204 0.0200

0.9994 0.0209 0.0206 0.0200

Table 3. Simulated Power Function of the Test When
oy = 0.5 and Qo = 0.5
C int{4(T/100)*/} as in Schwert (1987), where C'is a con- C—=0 C =1

stant, either C' = 0 or 1. As presented in Table 1 for all 7 ~ 1% 5% 10% 1% 5% 10%
settings, when the sample size is increased, 8 converges to 0 0.019 0.071 0.125 0.007 0.051 0.105
the true value of 8 and both SDB and SE decrease. This im- 0.1 0.109 0.239 0336 0.152 0.292 0.394
plies that the proposed estimator is consistent. When C' =0 100 0.2 0411 0.616 0.728 0.474 0.664 0.763
(the i.i.d. case), the resulting estimated standard errors are 0.3 0838 0937 0988 0842 0.937  0.967
surprisingly close to the standard deviation of the estimated 04 0984 0997 0.998 0.988 0999 0.999
coefficient in all cases for C, although the independent case 0 0.015 0.068  0.124  0.008  0.051  0.109
(1 = ag = 0) has estimated standard errors slightly closer 0.1 0179 0388 0504 0.231 0427 0544
to SD» than do the other two cases (a — o =0 5) and 200 0.2 0.778 0.912 0.961 0.808  0.942 0.968
B 1 2 ’ 0.3 0.984 0.995 0.998 0.986 0.994 0.998
(Oél = (g = 09) where the data are dependent. Therefore, 0.4 1.000 1.000 1.000 1.000 1.000 1.000
we can conclude that the proposed estimation procedure 0 0.009 0.063 0.115 0.008 0.058 0.106
performs fairly well. 0.1 0488 0.696 0.800 0.492 0.714  0.806
To demonstrate the power of the proposed misspecifica- 500 0.2 0996 0.999 1.000 0.995 1.000 1.000
tion test, we consider the null hypothesis Hy : 8; = 0; 0.3 1.000 1.000 1.000 0.997  1.000  1.000
0.4 1.000 1.000 1.000 1.000 1.000 1.000

J = 1,2 versus the alternative H,: at least one 3; # 6;. The
power function is evaluated under a family of alternative
models indexed by vy, H, : §; = 6; + +v0;, where v > 0. For
each sample 7' = 100, 200, and 500, the test described in
Section 3 is implemented by running the simulation by per-
forming 1,000 replications. The resulting simulated power
functions against -y are presented in Table 2 for a; = ay = 0,
Table 3 for a; = as = 0.5, and Table 4 for a; = as = 0.9,
respectively. Note that when « = 0, the specified alternative
hypothesis collapses into the null hypothesis.

First, let us look at Table 2, where we can see that when
C =1, there is a minor size distortion when the sample size
equals 100. This distortion may be due to the small sample
size and using HAC with dependence. Overall, C = 0 has a
better performance compared to the other case. Obviously,
for C = 0 case, performance improves as the sample size
increases.
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From Table 3 when oy = ag = 0.5 for which the data
are somewhat dependent, one can see that there is a severe
positive size distortion at all three significance levels for the
independent case C = 0. However, when C' = 1, the em-
pirical sizes generated from simulation are close to the sig-
nificance levels, in particular, when the sample size equals
500. This demonstrates that the estimate of the null distri-
bution is approximately correct. Also, the power functions
for C =1 are larger than those for C' = 0. Furthermore, we
can see that the power functions reach one quickly when
departs slightly from zero. This shows that our test is indeed
powerful.

To evaluate the power performance for strongly corre-
lated data, Table 4 presents the simulated power function
against v when oy = ag = 0.9. The results in Table 4 for the



Table 4. Simulated Power Function of the Test When
a1 = 0.9 and as = 0.9

Table 5. Testing for Autocorrelations

Daily S&P 500 Weekly S&P 500

C=0 C=1
T vy 1% 5% 10% 1% 5% 10%
0 0.0269 0.085 0.121  0.011  0.057  0.107
0.1 0.315 0.505 0.609 0.391 0.570  0.660
100 0.2 0.816 0.905 0943 0.848 0.926 0.953
0.3 0.974 0.994 0996 0977 0.994  0.998
0.4 1.000 1.000  1.000 1.000 1.000  1.000
0 0.013 0.062 0.130 0.009 0.042 0.108
0.1 0.634 0.821 0.876 0.679 0.823  0.888
200 0.2 0.992 1.000  1.000 0.992  0.997  1.000
0.3 1.000 1.000  1.000  1.000 1.000  1.000
0.4 1.000 1.000  1.000  1.000 1.000  1.000
0 0.014 0.051  0.108 0.006 0.051  0.096
0.1 0.990 0.999 1.000 0.989 1.000 1.000
500 0.2 1.000 1.000  1.000 1.000 1.000  1.000
0.3 1.000 1.000  1.000  1.000 1.000  1.000
0.4 1.000 1.000 1.000 1.000 1.000  1.000

C' = 0 case are similar to those when a; = as = 0.5; it is
obvious that a very serious positive size distortion for C' = 0
exists. Particular for oy = as = 0.9, C' = 1 predominantly
outperforms the other case.

3.2 A real example

For an empirical application using real market data, the
performance of the PMRL regression model in ES estima-
tion will be compared under both the i.i.d. (C' = 0) and time
series case (C' = 1) as well as with two alternative models,
namely Historical Simulation and GARCH(1, 1) with con-
stant mean and Gaussian error. For the PMRL regression
model, to obtain the ES estimates, VaR is calculated us-
ing the Conditional Autoregressive Value-at-Risk (CAViaR)
model with asymmetric slope specification of Engle and
Manganelli (2004),

Fe) = +v2fier (V) + 3w +alye-1) 7,

where VaR, = —fi(7), (y)T =

—min(y, 0).

We evaluate performance using the backtesting method
applied to a portfolio consisting of a single stock index. The
historical data used in this paper are daily and weekly log
returns of S&P 500 Index (GSPC) from January 1990 to
October 2011. We use a confidence level of 95% and test-
ing window sizes of 500 and 250 observations as well as 15
and 12 lags for the daily and weekly data, respectively. The
backtesting criterion is as follows.

The performance measure proposed by Kerkhof and Me-
lenberg (2004) is implemented by backtesting ES estimates
using their violation rate. This method relies on approxi-
mating the specific quantile level that the ES falls at, i.e.,
the nominal level §,,. The nominal levels (using the 95% con-
fidence level) are 1.96% for parametric models and 1.8% for

max(y,0), and (y)~ =

Lags p-value X2 Lags p-value X2
5 1.701e7°7 39.7197 4 0.09477 7.9141
10 4.496e 98 54.1777 8 0.05672 15.1273
15 4.478e 1 81.0545 12 0.01918 24.1881

semiparametric and nonparametric models. The violation
rate is defined as the proportion of observations for which
the actual loss exceeds the estimated ES, or

n
2ic1 I{Li>ﬁ?}
—

ESRate =

The series of ES estimates should have an ESRate close to
the nominal level, d,. Thus, ESRatio = ESRate/d,, is used
to compare the models. Models with ESRatio =~ 1 are most
desirable. When the ratio is less than one, it means that the
ES model is conservative (has overestimated the risk) while
the risk is underestimated (lower than the actual) by the
model when the ratio is greater than one. Formal testing
with the 95% confidence level is achieved using

e Kupiec’s proportion of failures (POF) test (Kupiec,
1995), to test whether the observed frequency of vi-
olations is consistent with the frequency of expected
violations estimated by the ES model and chosen con-
fidence level.

e Christoffersen’s interval forecast test (Christoffersen,
1998), to test whether the violations estimated by the
ES model between two successive days are independent.

e Mixed Kupiec test (Haas, 2001), to measure the time
between violations and hence is useful to capture the
more general form of dependence between violations.

Before estimating ES, we briefly perform a preliminary
analysis on the correlations of the real market data. For both
the daily and weekly return of S&P 500 Index, the Ljung
Box Q-test is applied to examine the correlations in returns
data. Using the 95% confidence level, Table 5 indicates that
the daily return of S&P 500 Index exhibits serial correlations
for the first 15 lags, while the weekly returns are serially
uncorrelated for the first 10 lags and then subsequent lags
are correlated with one another

After testing for correlations in the historical data, we
carry out a coefficient estimation based on the PMRL re-
gression model as the first step in forecasting ES. The co-
efficients for both the i.i.d and time series specifications of
the PMRL regression model are estimated by using the nu-
merical optimization method, the Newton-Raphson method
with the following conditions: (1) Initial number of lags is
10; (2) Error bound of 1078 to ensure accuracy; (3) Maxi-
mum number of iterations: 500; and (4) The initial value for
all lags is zero.
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Table 6. t-Statistic Values of All Lags Using Two-sided t-test

Daily S&P 500

Weekly S&P 500

o = 95% o = 95% o = 90%
C=0 c=1 C=0 c=1 C=0 c=1

Lag  |t| Lag || Lag [t] Lag |t| Lag |t] Lag [t

1 2393 1 3.136 1 1491 1 1755 1 1491 1 1.755
2 1.989 2 2337 2 1102 2 1381 2 1102 2  1.381
3 0508 3 0525 3 0533 3 0534 3 0533 3 0534
4 0628 4 0695 4 0987 4 1051 4 0987 4  1.051
5 1158 5 1300 5 1171 5 1111 5 1171 5 1111
6 0266 6 0271 6 1450 6 1529 6 1450 6  1.529

7 1676 7 1914 7 1112 7 1.038 7 1112 7  1.038
8 0581 8 0526 8 1.337 8 1461 8 1337 8  1.461
9 0161 9 0164 9 0258 9 0247 9 0258 9  0.247
10 0994 10 1.141 10 1590 10 1471 10 1590 10 1471
11 0820 11 0682 11 2.200 11 2.151 11 2.200 11 2.151
12 1.798 12 1.983 12 0743 12 0769 12 0.743 12 0.769
13 0916 13 1.178

14 0457 14 0.502

15 1.088 15  0.995

Table 7. Final Estimation Results for Coefficients 5's
(two-sided test, critical value = 1.96)

Daily S&P 500 Weekly S&P 500

C=0 c=1 C=0 c=1
Lag Coeff. Lag Coeff. Lag Coeff. Lag  Coeff.
1 0.5551 1 0.5478 11 —-1.0993 11 —1.0993
2 05629 2 0.5661
12 —0.4501

The resulting t-statistics of all coefficient estimates for
both the daily and weekly return of S&P 500 Index are
given in Table 6, based on the testing procedure in Sec-
tion 2.3.

For the daily return, using a time series specification re-
sults in more significant coefficients than using the i.i.d.
specification. For the weekly return, both specifications pro-
duce the same number of significant coefficients at the 95%
confidence level. However, Table 6 shows that the C = 1
specification results in larger t¢-statistic value for the first
lag, which is significant if the 90% confidence level is used
instead. Therefore, it is more appropriate to use the time
series specification as it is generally known that a finan-
cial time series is serially correlated with its first lag. For
backtesting purposes, we use the final significant coefficient
estimate found in Table 7 (tested for significance using the
95% confidence level).

Aside from estimating the coefficients of the PMRL re-
gression model, to get the ES estimates we have to conduct
a parameter estimation for the CAViaR model to calculate
VaR. The estimation uses the slightly modified code from
Engle and Manganelli (2004). The resulting CAViaR equa-
tions for both return series are
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VaR;(y) = 0.0003 + 0.9406VaR;_;(7)
—0.0008 max(y;_1, 0) + 0.1878(— min(y;_1, 0))

for the daily return and for the weekly return,

—0.0733 max(y:—1,0) 4+ 0.2814(— min(y:—1, 0)).

The backtesting results are given in Table 8. As stated in
Table 8, for the daily return of S&P 500 Index, our PMRL
regression model with a time series specification slightly out-
performs its i.i.d. counterpart based on the ESRatio. Fur-
thermore, both PMRL models typically produce an ES-
Ratio closer to 1, compared to other alternative models,
and simultaneously pass all three formal tests. Meanwhile,
both the HS and GARCH(1,1) models are deemed less ad-
equate models for ES estimation, given the data, with the
GARCH(1,1) model being the most inadequate model as in-
dicated by a very small ESRatio and being rejected by all
three tests.

The results for daily return and the weekly return of
S&P 500 Index are similar as the PMRL regression model
with both i.i.d. and time series specifications (C' = 0 and
C = 1) produce ESRatios closest to 1 and pass all three for-
mal tests. They outperform the two alternative models. The
i.i.d. specification produces an identical ESRatio to the time
series case due to using the same significant coefficient. The
HS and GARCH(1,1) models are again seen as inadequate
models, however, in this case the HS model is deemed as the
worst model with an ESRatio farthest from 1 and also being
rejected by all tests.

For the empirical example using the daily and weekly re-
turn of S&P 500 Index, backtesting results have shown that
both the i.i.d. and time series specifications of the PMRL



Table 8. Backtesting Results

Daily S&P 500

Weekly S&P 500

C=0 C=1 HS GARCH(1,1) C=0 Cc=1 HS GARCH(1,1)
ESRatio 1.2222 1.1111 1.4444 0.1020 1.5556 1.5556  2.8889 0.4082
Kupiec POF  Accept Accept Accept Reject Accept Accept Reject Accept
Christoffersen ~ Accept Accept Accept Reject Accept Accept Reject Reject
Mixed Kupiec Accept Accept Reject Reject Accept Accept Reject Reject

regression model generate ES estimates which are closer to
the actual losses within the testing window compared to
the alternative models (the HS and GARCH(1,1) with con-
stant mean and normal error distribution), while the time
series case of the model performs slightly better than the
i.i.d case. The superiority of time series specification over
the i.i.d one is more prominent for daily return series. As
generally known, daily return series is more serially corre-
lated compared to weekly return, and hence for data with
higher serial correlations, the proposed estimator performs
better with respect to the applied data and backtesting cri-
terion.

4. CONCLUSION

We introduce the proportional mean residual life (PMRL)
regression model, commonly used in reliability and survival
analysis, as a new semiparametric model in estimating ES.
To account for the dependence characteristic of financial
data, the asymptotic normality of the proposed estimator,
based on the PMRL regression model, is derived under an
o-mixing assumption. To evaluate the performance of our
new model, we conduct a simulation study and an empirical
application using real market data. A simulation study is
conducted under several cases to evaluate the regression pa-
rameter estimates under a non-i.i.d. assumption. The result
shows that when the sample size is small our estimation and
testing perform reasonably well for both empirical size and
power.

For the empirical application, we perform a backtesting
procedure using the daily and weekly log-return series of
S&P 500 Index and compare the performance of our model
using a time series specification to its i.i.d. counterpart and
to two other models based on the criterion proposed by
Kerkhof and Melenberg (2004). The backtesting results for
both series generally indicate that the PMRL model with
time series specification performs better than the other mod-
els. The superiority of using the non-i.i.d. assumption over
the i.i.d. case is more apparent for data with higher serial
correlations, shown by the daily return series results as the
daily return exhibits stronger serial correlation than does
the weekly return series.

APPENDIX

Lemma 1: If Assumptions Al and A3 are satisfied, then B
is a consistent estimator of Jy.

Proof: It follows by the extreme value lemma of White
(1994). This proof is complete. [ |

Lemma 2: If Assumptions Al-A4 are satisfied, and

E22(1 + 22T ) exp(287 2,)] < oo, then, U'(By) = Var(z) +
op(1).

Proof: Re-express U (By) as U (By) = [D..D, —
D,.DY /D2, where D, = % 23:1 zexp(BL zp),
D,, = T ZtT:1 viexp(BLz) szl and D, =
%Zthl rizeexp(Blz;). Tt suffices to show that

D, = o + 0p(1), Dy = pop + o0p(l) and
D, = poE[z2]]+0,(1). Then, the lemma is proved. When
{(z¢,2)} is stationary a-mixing, so are {z;exp(8{2)},
{xizeexp(BE 20)}, {12028 exp(BL 2¢)} with the same mixing
coefficient. Clearly, E[D,] = uo and

T Var(D,) = Var(z, exp(8L2))

+ % Z Cov (s exp(BL 2t), x5 exp(BE 25))
t#s
= Var(act exp(Ba 21))

7 Z

>1

—1)Cov(xy exp(BL 21), 2111 exp(BL 2141)))

T-1

<CrL+Cy Y (1=1/T)a(l)/
>1
T-1

SCL+Cy Y (1= 1/T)ImOFn/0+2) =

1>1

=0(1)

by using Davydov’s inequality (Hall and Heyde 1980, Cor-
rolly A.2), and Assumption A2. Therefore, Var(D,) — 0,
which implies that D, = g + o0,(1) holds true.
By the same token, for D,., FE(zziexp(flz)) =
E{E[ziexp(B z)|ze]2t)} = moE(z) = pop. and
Var(D,.) — 0. Similarly, E(z;exp(8dz)zzf) =
E{E[exp(ﬁgzt)xﬂzt]ztzf} = poE(z2z!) and Var(D,,) —
0. Therefore, U (8y) = Var(z) + o,(1). This proof is
complete. |

Lemma 3: If Assumptions Al-A4 are satisfied, and
E[2?(1 + 22 ) exp(287 2,)] < oo, we have
VTU(Bo) = VTE o + 0p(1) — N(0,V).
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Proof: It is clear that

T
U(0) = 7 Y wexp(58 z0)(5—2) = E-[Dampiol ),

which implies that vTU (8y) = VT€/ Dy —[Dy— pio) VT (2 —
2)/Dy = VTE/ o + 0,(1) —% N(0,V) by the law of large
numbers and the central limit theorem for the a-mixing
process in Ibragimov and Linnik (1971). This proof is
complete. |

Proof of Theorem 1: Using the Taylor mean value the-
orem and letting 8* = ABp + (1 — A\)3, where 0 < A < 1,
we can obtain that U(3) = U(Bo) + U (8*)(B — o). To get
the asymptotical properties, it suffices to show that consis-
tency 3 —P By and asymptotic normality vTU(By) —¢
N(0,V), where V = limy_0, TE(U(Bo)U(Bo)")/u3. By
Lemma 1, B is a consistent estimator of 5. By (*
Ao+ (1 =A)B = By + (L= A)(B — Bo) = Po, and the
continuity of Uy(5o), Uy(8*) —P Uy(Bo) holds true. Also, by
the triangle inequality and the uniform weak law of large
numbers for U’ (Bo),

U (8%) = Up(Bo)ll <

sup [|U'(8%) — Uy(8%)]|
B*ER

+1[Ua(B87) = Us(Bo)l| =P 0.

Because Uy (o) is nonsingular, so is U’ (5*) for T sufficiently
large. Therefore, we obtain

VT(B - o) = U (B*)""VTU(By).

A combination of these results with the Slutsky theorem and
Lemmas 2 and 3 gives

VT(B=po) = U (8*)'VTU(Bo) —a N(0, A~V (A7),
Thus, the proof is complete. |
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