
Statistics and Its Interface Volume 8 (2015) 255–266

A simulation study of the p1 model for directed
random graphs

Ting Yan
∗,†

and Chenlei Leng

The p1 exponential-family distribution in Holland and
Leinhardt (1981) is one of the earliest models for directed
random graphs and has been widely used in practice. The
conditions for the existence and uniqueness of the maximum
likelihood estimate (MLE) have been derived. However, it is
a daunting task to investigate the large-sample properties of
the MLE theoretically as the number of graphical vertices
goes to infinity. The uniform consistency and asymptotic
normality of the MLE have been derived for some special-
ized models closely related to the p1 model but general re-
sults are lacking. In this article, we explore the consistency
and asymptotic normality of the MLE in the p1 model as the
network size increases through numerical simulations. The
results indicate that the p1 model also enjoys good asymp-
totic properties.
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1. INTRODUCTION

Complex social relationships can be conveniently repre-
sented by a directed graph, in which each vertex stands for a
person and the directed edges indicate directed relationships
between these individuals (Leinhardt, 1977). Such graph
data are ubiquitous not only in social sciences but also in
various other fields such as online communication networks,
food webs and protein-protein interaction networks. We as-
sume that there are no self-edges (one vertex connecting to
itself) and at most one edge exists between any two distinct
vertices in a given direction. To allow for the simultaneous
estimation of parameters that measure both the strength of
reciprocation of directed edges and the differential attrac-
tiveness exhibited by each vertex, Holland and Leinhardt
(1981) proposed the earliest p1 exponential-family distribu-
tion to model the directed network data.

∗Corresponding author.
†Partially supported by the National Science Foundation of China (No.
11341001)

The p1 model can be summarized as follows. Assume that
there are n vertices 1, . . . , n in a directed graph. Let X =
(Xij) be its adjacent matrix, where

Xij =

{
1, there is an edge from i pointing to j,
0, otherwise.

Denote Dij = (Xij , Xji), i < j, as the n(n− 1)/2 dyads. By
assuming that {Dij}1≤i<j≤n are mutually independent, the
p1 probability distribution for each Dij (1 ≤ i < j ≤ n) is
specified as

pij(1, 1) :=P (Dij = (1, 1))

=
1

kij
exp(ρ+ 2θ + αi + αj + βi + βj),

pij(1, 0) :=P (Dij = (1, 0)) =
1

kij
exp(θ + αi + βj),

pij(0, 1) :=P (Dij = (0, 1)) =
1

kij
exp(θ + αj + βi),

pij(0, 0) :=P (Dij = (0, 0)) =
1

kij
,

where

kij = 1 + exp(θ + αi + βj) + exp(θ + αj + βi)

+ exp(ρ+ 2θ + αi + αj + βi + βj)

is the normalization constant. The parameter ρ measures
the average tendency toward reciprocation for all pairs of
vertices, θ is a density parameter of edges, and αi quantifies
the effect of an outgoing edge from vertex i. If αi is large
and positive, vertex i will tend to have a relatively large
out-degree. On the other hand, βj quantifies the effect of
an incoming edge connecting to vertex j. If βj is large and
positive, vertex j will tend to have a large in-degree. The
likelihood for the p1 model is easily seen as

P (X = x) = exp

(
ρm+ θx++ +

n∑
i=1

αixi+(1)

+

n∑
j=1

βjx+j

)
×

( ∏
1≤i<j≤n

kij

)−1

,

where m, x++, xi+, and x+j are the observed values of M =∑
1≤i<j≤n XijXji, X++ =

∑n
i,j=1 Xij , Xi+ =

∑n
j=1 Xij ,
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and X+j =
∑n

i=1 Xij respectively. For parameter identifica-
tion, αi and βj are subject to the constraint that

∑n
i=1 αi =

0 and
∑n

i=1 βj = 0. Therefore the dimension of the param-
eter space is 2n although the p1 model is parametrized by a
total of 2n+ 2 parameters.

Since Holland and Leinhardt (1981), various versions of
exponential random graph models (ERGMs) have been pro-
posed in which algorithms for obtaining the maximum like-
lihood estimate (MLE) are introduced as well [cf., Frank
and Strauss (1986); Wang and Wong (1987); Wasserman
and Pattison (1996); Wasserman and Robins (2005); Robins
et al. 2007(a, b)]. However, there is a huge gap between
the model development and the asymptotic theories of the
MLE in ERGMs. Even for the simple p1 model introduced
by Holland and Leinhardt (1981), asymptotic results have
not yet been provided. This is partly because networks are
a non-standard type of data in which edges may be depen-
dent and the number of parameters may be comparable to
the size of network. As far as we know, the consistency and
asymptotic normality of the MLE are derived only for se-
lected models simpler than the p1 model when the size of
network goes to infinity. For example, the β-model coined
by Chatterjee et al. (2011) with the degree sequence as its
natural sufficient statistics, is a simple undirected version of
p1 model. It can also be seen as a heterozygous version of
the Erdős-Rényi model (Erdős and Rényi, 1959) for undi-
rected random graphs. The asymptotic and non-asymptotic
properties of the β-model have been basically understood.
In particular, Chatterjee et al. (2011) proved that the MLE
in the β-model is uniformly consistent as the number of pa-
rameters goes to infinity, and developed a simple algorithm
for calculating the MLE. Yan and Xu (2013) established
asymptotic normality of the MLE by using a simple matrix
to approximate the inverse of the Fisher information matrix,
in which the asymptotic variance of the parameter for ver-
tex i is the ith diagonal element of the inverse of the Fisher
information matrix. Rinaldo et al. (2013) used the polytope
of degree sequences to derive necessary and sufficient con-
ditions for the existence and uniqueness of the MLE for the
β-model as well as other network models including the p1
model. Blitzstein and Diaconis (2011) developed a sequen-
tial importance sampling algorithm for generating a random
graph with a given degree sequence.

Another exponential model closely related to the p1
model is the Bradley-Terry model (Bradley and Terry, 1952)
for ranking and rating individuals joined in paired compar-
isons. As pointed out by Frank (1981), the outcomes of
paired comparisons can be represented in a directed ran-
dom graph whose vertices represent the individuals and the
weighted directed edges indicate the number of times that
one individual is preferred to another individual. By assum-
ing that each pair has the same number of comparisons,
Simons and Yao (1999) proved that the MLE is uniformly
consistent and asymptotically normal when the number of
parameters goes to infinity. The proof of asymptotic normal-
ity is conducted through approximating the inverse of the

Fisher information matrix. The asymptotic variances of the
MLEs are the diagonal elements of the inverse of the Fisher
information matrix. The Rasch model (Rasch, 1960) that are
widely used for analyzing item response experiments, whose
outcomes can be represented in a bipartite graph, is also a
cousin to the p1 model (Haberman, 1981). By assuming that
the item parameters are bounded, Haberman (1977) proved
that the MLE is uniformly consistent and asymptotically
normal as the number of items goes to infinity.

For the p1 model, Holland and Leinhardt (1981) provided
a simple generalized iterative scaling algorithm for solving
the MLE. This algorithm does not directly solve the MLE,
but obtain the MLEs p̂ij(a, b) of pij(a, b), a, b = 0, 1. Even if
the MLE does not exist (i.e., the MLE is unbounded), cor-
responding to that some values of p̂ij(a, b), a, b = 0, 1 equal
zero or one, the iterative scaling algorithm automatically
adjusts for this and converges. Moreover, the computations
for the iterative scaling algorithm are simple, only requiring
row and column multiplications. For a given adjacent matrix
X = x, in the online supplementary materials of Rinaldo
et al. (2013) and Rinaldo et al. (2010), they derived the nec-
essary and sufficient conditions for the existence and unique-
ness of the MLE in the p1 model. Feinberg et al. (2011) and
Petrović (2010) carried out an algebraic statistics analysis
of the p1 model. As pointed out by these authors, investigat-
ing the asymptotic behaviors of the MLE is a daunting task
since the model complexity is twice as many as the network
size and statistical inferences are based on only one real-
ization of the network. Although theoretical investigation is
challenging, numerical studies are always possible. The aim
of this article is to carry out simulation studies to investi-
gate the asymptotic properties of the MLE. This is done in
the next section. Further discussion is given in Section 3.

2. SIMULATIONS

Let ϕ = (θ, ρ, α1, . . . , αn, β1, . . . , βn)
′ and ϕ̂ be its MLE.

We evaluate the accuracy of the MLE through simula-
tion studies by recording the average values of θ̂ − θ,
ρ̂ − ρ, maxi |α̂i − αi| and maxj |β̂j − βj | as well as the
probabilities that the MLE does not exist. Let V be the
Fisher information matrix of ϕ. Due to the restrictions∑

i αi = 0 and
∑

j βj = 0, V is not invertible. We use
φ = (θ, ρ, α1, . . . , αn−1, β1, . . . , βn−1)

′ as the independent
parameters and V ∗ as its Fisher information matrix, whose
expression is given in Appendix. Let U be the inverse matrix
of V ∗, and Û be its estimated value by replacing ϕ in U with
ϕ̂. Similar to Yan and Xu (2013), we use U as the covariance

matrix of φ̂. In particular, the values of (θ̂ − θ)/(Û11)
1/2,

(ρ̂− ρ)/(Û22)
1/2,

ξi :=
(α̂i − αi)

(Û2+i,2+i)1/2
, ηj :=

(β̂j − βj)

(Ûn+1+j,n+1+j)1/2
,

were recorded. The quantile-quantile (QQ) plots were drawn
to assess the asymptotic normality of these values. We also
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Table 1. The accuracy of estimation for θ = 0 and ρ = 0. The values in parentheses and square brackets are the estimated
standard errors (the corresponding entries of the inverse of Fisher information matrix) and the frequencies that the MLE does

not exist. If the square brackets are not shown, then the frequencies are zeros

Ln 0 [log(log(n))]1/2 log(log(n)) log(n)

n = 100

|θ̂ − θ| 0.029(0.035) 0.033(0.043) 0.036(0.048) 0.056(0.053)[0.2]
|ρ̂− ρ| 0.048(0.058) 0.054(0.072) 0.061(0.083) 0.095(0.081)[0.2]
maxi |α̂i − αi| 0.566 0.648 0.683 1.104[0.2]

maxj |β̂j − βj | 0.568 0.646 0.687 1.106[0.2]
|α̂1 − α1| 0.162(0.203) 0.169(0.214) 0.182(0.221) 0.254(0.318)[0.2]
|α̂n/2 − αn/2| 0.161(0.203) 0.199(0.248) 0.212(0.270) 0.388(0.446)[0.2]
|α̂n−1 − αn−1| 0.161(0.203) 0.193(0.243) 0.208(0.262) 0.371(0.429)[0.2]

|β̂1 − β1| 0.163(0.203) 0.175(0.216) 0.175(0.222) 0.259(0.319)[0.2]

|β̂n/2 − βn/2| 0.159(0.203) 0.197(0.248) 0.213(0.269) 0.377(0.438)[0.2]

|β̂n−1 − βn−1| 0.162(0.203) 0.199(0.245) 0.217(0.263) 0.370(0.429)[0.2]

n = 500

|θ̂ − θ| 0.006(0.007) 0.007(0.009) 0.008(0.011) 0.145(0.012)
|ρ̂− ρ| 0.009(0.011) 0.011(0.015) 0.014(0.019) 0.261(0.018)
maxi |α̂i − αi| 0.292 0.336 0.360 0.946

maxj |β̂j − βj | 0.292 0.335 0.362 0.947
|α̂1 − α1| 0.073(0.090) 0.075(0.096) 0.083(0.101) 0.117(0.155)
|α̂n/2 − αn/2| 0.069(0.090) 0.088(0.112) 0.102(0.126) 0.529(0.218)
|α̂n−1 − αn−1| 0.070(0.090) 0.090(0.111) 0.098(0.125) 0.470(0.221)

|β̂1 − β1| 0.074(0.090) 0.075(0.096) 0.079(0.101) 0.120(0.155)

|β̂n/2 − βn/2| 0.072(0.090) 0.091(0.112) 0.098(0.125) 0.554(0.216)

|β̂n−1 − βn−1| 0.070(0.090) 0.091(0.111) 0.101(0.125) 0.472(0.221)

n = 1,000

θ̂ − θ 0.003(0.003) 0.003(0.004) 0.004(0.006) 0.009(0.007)
ρ̂− ρ 0.004(0.006) 0.006(0.007) 0.006(0.011) 0.015(0.011)
maxi |α̂i − αi| 0.218 0.251 0.277 0.468

maxj |β̂j − βj | 0.219 0.252 0.276 0.469
|α̂1 − α1| 0.049(0.063) 0.056(0.068) 0.059(0.072) 0.095(0.118)
|α̂n/2 − αn/2| 0.052(0.063) 0.064(0.079) 0.070(0.091) 0.136(0.168)
|α̂n−1 − αn−1| 0.053(0.063) 0.065(0.080) 0.074(0.090) 0.137(0.167)

|β̂1 − β1| 0.049(0.063) 0.054(0.068) 0.056(0.072) 0.094(0.118)

|β̂n/2 − βn/2| 0.049(0.063) 0.063(0.080) 0.068(0.091) 0.137(0.169)

|β̂n−1 − βn−1| 0.050(0.063) 0.065(0.079) 0.067(0.090) 0.137(0.167)

considered the combinations
∑r

i=1 ciα̂i and
∑r

i=1 ciβ̂i for
some fixed r. For the sake of simplicity, we set r = 2. For
some pairs (i, j), the QQ-plots of

ξij :=
α̂i − α̂j − (αi − αj)√

Û2+i,2+i + Û2+j,2+j − 2Û2+i,2+j

,

ηij :=
β̂i − β̂j − (βi − βj)√

Ûn+1+i,n+1+i + Ûn+1+j,n+1+j − 2Ûn+1+i,n+1+j

were also depicted.
Following Yan and Xu (2013), the parameters αi and βi

are specified via a linear type as

βi = αi =

{
iLn/(n/2), i = 1, . . . , n/2

−(i− n/2)Ln/(n/2), i = n/2 + 1, . . . , n,

such that
∑

i αi = 0,
∑

i βi = 0 and maxi |αi| =
maxi |βi| = Ln. Here we set (α1, . . . , αn) = (β1, . . . , βn)
considering that these two vectors have similar asymptotic
behaviors since they are row and column exchangeable.
Four different combinations of (θ, ρ) = (0, 0), (−2, 0.5),
(− log(log n), log(log n)) and (− log n, logn) were consid-
ered. Since most of the real network data are sparse, we
do not consider any positive density parameter for θ here.
In fact, in the friendship data example of Holland and
Leinhardt (1981), θ̂ = −2.5. Due to the consideration of
computation time, we only simulated three values for n as
n = 100, 500, or 1,000, and four different values of Ln as
0, [log(logn)]1/2, log(log n) and logn. Each simulation was
based on 1,000 repetitions.

When (θ, ρ) = (− log n, log n), the frequencies that the
MLE does not exist are close to 100% because under this
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Table 2. The accuracy of estimation for θ = −2 and ρ = 0.5. The values in parentheses and square brackets are the estimated
standard errors (the corresponding entries of the inverse of Fisher information matrix) and the frequencies that the MLE does

not exist. If the square brackets are not shown, then the frequencies are zeros

Ln 0 [log(log(n))]1/2 log(log(n)) log(n)

n = 100

|θ̂ − θ| 0.075(0.037) 0.082(0.041)[0.076] 0.085(0.043)[0.172] 0.091(0.059)[0.908]
|ρ̂− ρ| 0.095(0.116) 0.080(0.095)[0.076] 0.078(0.093)[0.172] 0.146(0.090)[0.908]
maxi |α̂i − αi| 1.010 1.252[0.076] 1.303[0.172] 1.321[0.908]

maxj |β̂j − βj | 1.003 1.256[0.076] 1.300[0.172] 1.317[0.908]
|α̂1 − α1| 0.254(0.307) 0.236(0.293)[0.076] 0.229(0.288)[0.172] 0.257(0.331)[0.908]
|α̂n/2 − αn/2| 0.251(0.308) 0.189(0.227)[0.076] 0.199(0.229)[0.172] 0.296(0.335)[0.908]
|α̂n−1 − αn−1| 0.250(0.307) 0.405(0.497)[0.076] 0.447(0.543)[0.172] 0.499(0.806)[0.908]

|β̂1 − β1| 0.249(0.308) 0.233(0.293)[0.076] 0.231(0.289)[0.172] 0.258(0.331)[0.908]

|β̂n/2 − βn/2| 0.250(0.308) 0.188(0.227)[0.076] 0.189(0.231)[0.172] 0.333(0.339)[0.908]

|β̂n−1 − βn−1| 0.250(0.307) 0.410(0.496)[0.076] 0.428(0.538)[0.172] 0.470(0.797)[0.908]

n = 500

|θ̂ − θ| 0.014(0.007) 0.016(0.008) 0.017(0.008) 0.028(0.013)[0.029]
|ρ̂− ρ| 0.018(0.023) 0.015(0.018) 0.015(0.018) 0.240(0.020)[0.029]
maxi |α̂i − αi| 0.460 0.611 0.685 1.146[0.029]

maxj |β̂j − βj | 0.464 0.610 0.686 1.152[0.029]
|α̂1 − α1| 0.110(0.135) 0.102(0.128) 0.100(0.126) 0.129(0.162)[0.029]
|α̂n/2 − αn/2| 0.108(0.135) 0.079(0.099) 0.085(0.103) 0.477(0.176)[0.029]
|α̂n−1 − αn−1| 0.105(0.135) 0.172(0.219) 0.199(0.251) 0.502(0.478)[0.029]

|β̂1 − β1| 0.110(0.135) 0.098(0.129) 0.106(0.126) 0.125(0.162)[0.029]

|β̂n/2 − βn/2| 0.108(0.135) 0.081(0.099) 0.085(0.104) 0.491(0.176)[0.029]

|β̂n−1 − βn−1| 0.110(0.135) 0.178(0.219) 0.198(0.250) 0.506(0.470)[0.029]

n = 1,000

θ̂ − θ 0.007(0.004) 0.008(0.004) 0.008(0.004) 0.015(0.007)[0.004]
ρ̂− ρ 0.009(0.011) 0.007(0.009) 0.007(0.009) 0.016(0.011)[0.004]
maxi |α̂i − αi| 0.339 0.454 0.510 0.927[0.004]

maxj |β̂j − βj | 0.340 0.452 0.512 0.897[0.004]
|α̂1 − α1| 0.077(0.095) 0.072(0.091) 0.070(0.089) 0.102(0.123)[0.004]
|α̂n/2 − αn/2| 0.074(0.095) 0.057(0.070) 0.059(0.074) 0.112(0.133)[0.004]
|α̂n−1 − αn−1| 0.077(0.095) 0.130(0.156) 0.142(0.180) 0.278(0.347)[0.004]

|β̂1 − β1| 0.074(0.095) 0.073(0.091) 0.073(0.089) 0.097(0.123)[0.004]

|β̂n/2 − βn/2| 0.076(0.095) 0.057(0.070) 0.059(0.074) 0.110(0.133)[0.004]

|β̂n−1 − βn−1| 0.077(0.095) 0.126(0.156) 0.150(0.180) 0.273(0.342)[0.004]

setting most of the probabilities pij(a, b) are nearly degen-
erate, close to 0 or 1. As a result, some estimated p̂ij equal
to 0 or 1 (i.e., the MLE does not exist) with a very high
probability. These phenomena indicate that controlling the
increasing rate of max1≤i≤2n+2 |ϕi| is crucial to guarantee
the good asymptotic properties of the MLE.

By comparing Tables 1, 2 and 3, we have the following
conclusions:

(1) The values of |θ̂−θ|, |ρ̂−ρ|, maxi |α̂i−αi| and maxj |β̂j−
βj | decrease as n increases, and become larger as Ln

increases. For example, when Ln = 0, θ = −2 and ρ =
0.5, |θ̂−θ|, |ρ̂−ρ| decrease from 0.075 and 0.095 to 0.007
and 0.009 respectively as n increases from 100 to 1,000.
This is not difficult to understand since there are more
samples as n increases when the range of parameters is
fixed. On the other hand, the MLE is more variable as

Ln becomes larger for fixed n. It can be expected that
as n goes to infinity, the errors will decrease to zero
when max1≤i≤2n+2 |ϕi| is controlled at an appropriate
increasing rate. Similar phenomena could be observed
for the square roots of diagonal elements of Û .

(2) The accuracy of estimation in Table 1 is better than
that in Tables 2 and 3. It may be due to that the data
become sparse when θ is negative and deviate far away
from 0.

(3) The values of maxi |α̂i−αi| and maxj |β̂j−βj | are much

larger than those of single |α̂i − αi| and |β̂j − βj | and
have a slower decreasing rate as n increases.

(4) For 1 ≤ i ≤ n, α̂i and β̂i have very similar errors,

and Û2+i and Ûn+1+i are almost equal. It shows that if
αi and βi are equal, they may have similar asymptotic
behaviors.
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Table 3. The accuracy of estimation for θ = − log log(n) and ρ = log log(n). The values in parentheses and square brackets
are the estimated standard errors (the corresponding entries of the inverse of Fisher information matrix) and the frequencies

that the MLE does not exist. If the square brackets are not shown, then the frequencies are zeros

Ln 0 [log(log(n))]1/2 log(log(n)) log(n)

n = 100

|θ̂ − θ| 0.043(0.034) 0.051(0.039) 0.055(0.042) 0.102(0.061)[0.240]
|ρ̂− ρ| 0.067(0.072) 0.072(0.083) 0.078(0.092) 0.149(0.104)[0.240]
maxi |α̂i − αi| 0.702 0.879 0.922 1.389

maxj |β̂j − βj | 0.707 0.878 0.937 1.407
|α̂1 − α1| 0.195(0.231) 0.201(0.239) 0.209(0.246) 0.296(0.362)[0.240]
|α̂n/2 − αn/2| 0.199(0.231) 0.199(0.234) 0.214(0.255) 0.398(0.426)[0.240]
|α̂n−1 − αn−1| 0.196(0.231) 0.306(0.362) 0.324(0.393) 0.523(0.658)[0.240]

|β̂1 − β1| 0.199(0.231) 0.207(0.240) 0.209(0.246) 0.295(0.362)[0.240]

|β̂n/2 − βn/2| 0.193(0.231) 0.204(0.234) 0.218(0.255) 0.403(0.423)[0.240]

|β̂n−1 − βn−1| 0.194(0.231) 0.296(0.359) 0.327(0.394) 0.541(0.657)[0.240]

n = 500

|θ̂ − θ| 0.010(0.007) 0.012(0.008) 0.014(0.009) 0.092(0.014)
|ρ̂− ρ| 0.014(0.015) 0.015(0.017) 0.018(0.022) 0.321(0.045)
maxi |α̂i − αi| 0.385 0.505 0.553 1.242

maxj |β̂j − βj | 0.384 0.499 0.559 1.238
|α̂1 − α1| 0.093(0.109) 0.095(0.111) 0.102(0.116) 0.145(0.182)
|α̂n/2 − αn/2| 0.093(0.109) 0.089(0.104) 0.102(0.117) 0.640(0.265)
|α̂n−1 − αn−1| 0.091(0.109) 0.154(0.182) 0.173(0.207) 0.621(0.396)

|β̂1 − β1| 0.094(0.109) 0.093(0.111) 0.101(0.116) 0.154(0.182)

|β̂n/2 − βn/2| 0.092(0.109) 0.091(0.104) 0.098(0.117) 0.711(0.263)

|β̂n−1 − βn−1| 0.094(0.109) 0.145(0.182) 0.166(0.207) 0.589(0.396)

n = 1,000

θ̂ − θ 0.006(0.003) 0.007(0.004) 0.008(0.005) 0.019(0.007)
ρ̂− ρ 0.008(0.008) 0.008(0.009) 0.009(0.013) 0.031(0.012)
maxi |α̂i − αi| 0.296 0.390 0.445 0.752

maxj |β̂j − βj | 0.296 0.393 0.441 0.763
|α̂1 − α1| 0.064(0.079) 0.069(0.080) 0.072(0.083) 0.121(0.137)
|α̂n/2 − αn/2| 0.066(0.079) 0.063(0.074) 0.073(0.084) 0.138(0.154)
|α̂n−1 − αn−1| 0.068(0.079) 0.116(0.135) 0.135(0.156) 0.261(0.298)

|β̂1 − β1| 0.067(0.079) 0.068(0.080) 0.071(0.083) 0.116(0.137)

|β̂n/2 − βn/2| 0.068(0.079) 0.064(0.074) 0.073(0.084) 0.135(0.154)

|β̂n−1 − βn−1| 0.069(0.079) 0.112(0.135) 0.127(0.156) 0.249(0.298)

Due to limited space, the QQ-plots are shown here only
for n = 500. By observing Figures 1–3, the quantiles of
ξi and ηj coincide with the theoretical quantiles very well
when Ln ≤ log(log n), indicating that the MLE enjoys good
asymptotic normality. There are similar phenomena for ξij
and ηij when Ln ≤ log(logn), whose figures are not shown.
However, there are obvious deviations when Ln = logn
in the middle and right subfigures of Figures 1–3 (d). For
i = j = n/2, the QQ-plots of ξi and ηj deviate upward; for
i = j = n − 1, they are in opposed directions. In Figure 4,
only the middle subfigures have deviations corresponding to
ξn/2,n/2+1 and ηn/2,n/2+1. It further confirms that asymp-
totic normality requires the control of the increasing rate of
max1≤i≤2n+2 |ϕi|.

Figure 5 shows that the sample quantiles of (θ̂ −
θ)/(Û11)

1/2 coincide with the theoretical quantiles only

when maxi |αi| = maxi |βi| = 0, [log(log n)]1/2 and θ = 0.
For other cases, there are obvious deviations. From Fig-
ure 6, the QQ-plots of (ρ̂ − ρ)/(Û22)

1/2 coincide with the
diagonal lines only when max{θ, ρ,maxi |αi|,maxi |βi|} ≤
[log(log n)]1/2. For other subfigures, there are more or less
deviations. Especially when maxi |αi| = maxi |βi| = logn,
the deviation is very large.

The above phenomena were also observed in the fig-
ures of the QQ-plots when n = 100 or 1,000 (results not
shown).

3. DISCUSSION

We have presented a simulated study about the large-
sample properties of the p1 model. Although we only pre-
sented the results for a linear sequence for the values of
α1, . . . , αn and β1, . . . , βn, similar phenomena were observed
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Figure 1. The QQ-plots for θ = 0 and ρ = 0 (n = 500). The red color is the diagonal line (y = x). For each subfigure (a)–(d),
the plots of the left, middle and right columns are ξ1, ξn/2, ξn−1 in the first row; the second row corresponds to η1, ηn/2,

ηn−1, respectively. The horizontal and vertical axises are the theoretical and sample quantiles, respectively.

for other values of parameters. The aim of the simulation is
not to cover all possible combinations of these parameters,

but to obtain some intuitive understandings on the asymp-
totic behaviors of the MLE by considering selected values

for the parameters. The results present strong evidences for
consistency and asymptotic normality of the maximum like-

lihood estimate in the p1 model as the number of graphical
vertices goes to infinity, when the increasing rate of maxi |φi|
is controlled at some level. We make the following conjec-

tures.

Conjecture 1 (Consistency). Assume that the density pa-

rameter θ and the reciprocity parameter ρ are constants.
Let Ln = max{α1, . . . , αn, β1, . . . , βn}, and θ̂, ρ̂, α̂1, . . . , α̂n,

β̂1, . . . , β̂n be the MLEs of θ, ρ, α1, . . . , αt, β1, . . . , βn. If

Ln = o(log(logn)), then as n goes to infinity, the MLE ex-
ists with probability approaching one and satisfies

|θ̂ − θ| = op(1), |ρ̂− ρ| = op(1),

max
i=1,...,n

|α̂i − αi| = op(1), max
i=1,...,n

|β̂j − βj | = op(1)

Conjecture 2 (Central limit theorem). Let φ =
(θ, ρ, α1, . . . , αn−1, β1, . . . , βn−1)

′ and V be the Fisher infor-
mation matrix of φ whose entries are given in the Appendix.
Denote U = V −1. If Ln = o(log(logn)), then as n goes to
infinity, for any fixed r,

ρ̂− ρ√
U22

D→ N(0, 1),

(α̂1 − α1, . . . , α̂r − αr)
T D→ N(0, Ui,j=3,...,2+r),

(β̂1 − β1, . . . , β̂r − βr)
T D→ N(0, Ui,j=2+n,...,2+n+r),

where
D→ denotes convergence in distribution.
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Figure 2. The QQ-plots for θ = −2 and ρ = 0.5 (n = 500). The red color is the diagonal line (y = x). For each subfigure
(a)–(d), the plots of the left, middle and right columns are ξ1, ξn/2, ξn−1 in the first row; the second row corresponds to η1,

ηn/2, ηn−1, respectively. The horizontal and vertical axises are the theoretical and sample quantiles, respectively.

The condition Ln = o(log(logn)) is motivated by a
similar one in Yan and Xu (2013). For the above conjec-
tures, another motivation is that the large-sample theories
for some simpler network models (e.g., the β-model, the
Bradley-Terry model, the Rasch model) have been estab-
lished. We point out, however, that a different phenomenon
is revealed. More specifically, (θ̂ − θ)/

√
U11 does not fol-

low asymptotically a standard normal distribution accord-
ing to the simulations. The sufficient statistics of θ, αi and
βj are

∑
i,j Xij ,

∑
k Xik and

∑
k Xkj , respectively. Clearly,

the sufficient statistic of θ is a linear sum of
∑

k Xik tied
to αi (also of

∑
k Xkj tied to βj). In this sense, the asymp-

totic distribution of θ̂ depends on all of the estimated pa-
rameters α̂i, β̂i, 1 ≤ i ≤ n. Therefore, the asymptotic be-
havior of θ̂ may be different from other estimated parame-
ters.

The independence assumption in the p1 model im-
plies that it cannot represent tendencies toward transi-
tivity, cliquing, hierarchy, stars and so on. To deal with
complicated dependent structures, other exponential ran-
dom graph models have been proposed. Frank and Strauss
(1986) introduced the Markov random graphs to tie suf-
ficient statistics by counts of various triangles and stars.
Wasserman and Pattison (1996) described a more general
p∗ model that can accommodate clustering and centraliza-
tion characteristics in social networks. Hunter (2007) dis-
cussed curved exponential family models. For recent re-
views, see Wasserman and Robins (2005) and Robins et al.
(2007a, b). Like the p1 model, little asymptotic properties
are known for these general ERGMs. Recently, Shalizi and
Rinaldo (2012) proved the consistency of maximum likeli-
hood estimation under the projected ERGMs in which pa-
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Figure 3. The QQ-plots for θ = − log(logn) and ρ = log(log n) (n = 500). The red color is the diagonal line (y = x). For
each subfigure (a)–(d), the plots of the left, middle and right columns are ξ1, ξn/2, ξn−1 in the first row; the second row
corresponds to η1, ηn/2, ηn−1, respectively. The horizontal and vertical axises are the theoretical and sample quantiles,

respectively.

rameters derived from the observed sub-network could be
consistently applied to the whole network. We hope that
our simulations also shed light on the large-sample prop-
erties of maximum likelihood estimation for these general
ERGMs.
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APPENDIX

The log-likelihood function of the p1 model is easily seen

as

�(φ) = ρm+ θx++ +

n∑
i=1

αixi+ +

n∑
j=1

βjx+j

− 1

2

n∑
i,j=1;i �=j

log kij

:= �1 −
1

2
�2 − �3,
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Figure 4. The QQ-plots for ξij and ηij when Ln = logn. The red color is the diagonal line (y = x). For each subfigure
(a)–(c), the plots of the left, middle and right columns are ξ12, ξn/2,n/2+1, ξn−2,n−1 in the first row; the second row

corresponds to η12, ηn/2,n/2+1, ηn−2,n−1, respectively. The horizontal and vertical axises are the theoretical and sample
quantiles, respectively.

where

�1 = ρm+ θx++ +

n∑
i=1

αixi+ +

n∑
j=1

βjx+j ,

�2 =

n−1∑
h,g=1;h �=g

log khg,

�3 =

n−1∑
g=1

log kng.

The Fisher information matrix V ∗ of the parameter vector
φ∗ is

V = −E

[
∂2�(φ)

∂φT∂φ

]
=

1

2

∂2�2(φ)

∂φT∂φ
+

∂2�3(φ)

∂φT∂φ
.

For convenience, denote aij = exp(θ+αi+βj), bij = exp(θ+
βi + αj) and cij = exp(ρ + 2θ + αi + αj + βi + βj) for all
pairs (i, j), i �= j and define aii = 0, bii = 0 and cii = 0.
Note that the transpose of A is B and that the matrix C
is symmetric, where A = (aij)i,j=1,...,n, B = (bij)i,j=1,...,n

and C = (cij)i,j=1,...,n. By direct calculations, the entries of
∂2�2(φ)

∂φT ∂φ
and ∂2�3(φ)

∂φT ∂φ
are given by

∂2�2
∂ρ2

=

n−1∑
i,j=1;i �=j

(
cij
kij

− c2ij
k2
ij

)
,

∂2�2
∂θ∂ρ

=

n−1∑
i,j=1;i �=j

[
2cij
kij

− cij(aij + bij + 2cij)

k2
ij

]
,

∂2�2
∂αi∂ρ

= 2

n−1∑
g=1;g �=i

[
cig
kig

− cig(aig + cig)

k2
ig

]
,
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Figure 5. The QQ-plots of (θ̂ − θ)/(Û11)
1/2 (n = 500). The red color is the diagonal line (y = x). For each subfigure (a)–(d),

the plots of the left, middle and right columns correspond to (θ, ρ) = (0, 0), (−2, 0.5) and (− log(logn), log(log n)),
respectively. The horizontal and vertical axises are the theoretical and sample quantiles, respectively.

∂2�2
∂βi∂ρ

= 2

n−1∑
g=1;g �=i

[
cig
kig

− cig(big + cig)

k2
ig

]
,

∂2�2
∂θ2

=

n−1∑
i,j=1;i �=j

[
aij + bij + 4cij

kij
− (aij + bij + 2cij)

2

k2
ij

]
,

∂2�2
∂αi∂θ

= 2

n−1∑
g=1,g �=i

(aig + cig)

kig

[
1− (aig + big + cig)

kig

]
,

∂2�2
∂βi∂θ

= 2

n−1∑
g=1,g �=i

(big + cig)

kig

[
1− (aig + big + cig)

kig

]
,

∂2�2
∂α2

i

= 2

n−1∑
g=1;g �=i

[
aig + cig

kig
− (aig + cig)

2

k2
ig

]
,

∂2�2
∂αi∂αj

= 2

(
cij
kij

− c2ij
k2
ij

)
,

∂2�2
∂αi∂βj

=
aij + cij

kij
− (aij + cij)

2

k2
ij

+
bji + cij

kij
− (bji + cij)

2

k2
ij

,

∂2�2
∂β2

i

= 2

n−1∑
g=1;g �=i

[
big + cig

kig
− (big + cig)

2

k2
ig

]
,

∂2�2
∂βi∂βj

= 2

(
cij
kij

− c2ij
k2
ij

)
,

∂2�3
∂ρ2

=

n−1∑
g=1

[
cng

kng
− c2ng

k2
ng

]
,

∂2�3
∂θ∂ρ

=

n−1∑
g=1

[
2cng

kng
− cng(ang + bng + 2cng)

k2
ng

]
,

∂2�3
∂αi∂ρ

=

n−1∑
g=1

[
cng(ang + cng)

k2
ng

− cng

kng

]
+

cni

kni
− cni(bni + cni)

k2
ni

,
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Figure 6. The QQ-plots of (ρ̂− ρ)/(Û22)
1/2 (n = 500). The red color is the diagonal line (y = x). For each subfigure (a)–(d),

the plots of the left, middle and right columns correspond to (θ, ρ) = (0, 0), (−2, 0.5) and (− log(log n), log(logn)),
respectively. The horizontal and vertical axises are the theoretical and sample quantiles, respectively.

∂2�3
∂βi∂ρ

=

n−1∑
g=1

[
cng(bng + cng)

k2
ng

− cng

kng

]
+

cni

kni
− cni(ani + cni)

k2
ni

,

∂2�3
∂θ2

=

n−1∑
g=1

[
ang + bng + 4cng

kng
− (ang + bng + 2cng)

2

k2
ng

]
,

∂2�3
∂αi∂θ

=

n−1∑
g=1

[
(ang + bng + 2cng)(ang + cng)

k2
ng

− ang + 2cng

kng

]

+
bni + 2cni

kni
− (ani + bni + 2cni)(bni + cni)

k2
ni

,

∂2�3
∂βi∂θ

=

n−1∑
g=1

[
(ang + bng + 2cng)(bng + cng)

k2
ng

− bng + 2cng

kng

]

+
ani + 2cni

kni
− (ani + bni + 2cni)(ani + cni)

k2
ni

,

∂2�3
∂α2

i

=

n−1∑
g=1

[
[ang + bng1{g=i} + cng(1− 1{g=i})]

kng

− [ang − bng1{g=i} + cng(1− 1{g=i})]
2

k2
ng

]
,

∂2�3
∂αj∂αi

=

n−1∑
g=1

[
ang + cng

kng
− (ang + cng)

2

k2
ng

]

+
(bni + cni)(ani + cni)

k2
ni

+
(bnj + cnj)(anj + cnj)

k2
nj

− cni

kni
− cnj

knj
,

∂2�3
∂βj∂αi

=

n−1∑
g=1

[
cng

kng
− (ang + cng)(bng + cng)

k2
ng

]
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+
(bni + cni)

2

k2
ni

+
(anj + cnj)

2

k2
nj

− anj

knj
− bni

kni

− cni

kni
− cnj

knj
,

∂2�3
∂β2

i

=

n−1∑
g=1

[
[bng + ang1{g=i} + cng(1− 1{g=i})]

kng

− [bng − ang1{g=i} + cng(1− 1{g=i})]
2

k2
ng

]
,

∂2�3
∂βj∂βi

=

n−1∑
g=1

[
bng + cng

kng
− (bng + cng)

2

k2
ng

]

+
(ani + cni)(bni + cni)

k2
ni

+
(anj + cnj)(bnj + cnj)

k2
nj

− cni

kni
− cnj

knj
.
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Rinaldo, A., Petrović, S. and Fienberg, S. E. (2013). Maximum
likelihood estimation in the beta model. The Annals of Statistics
41 1085–1110. MR3113804

Robins, G. L., Pattison, P. E., Kalish, Y., and Lusher, D. (2007a).
An introduction to exponential random graph (p∗) models for social
networks. Social Networks 29 173–191.

Robins, G. L., Snijders, T. A. B., Weng, P., Handcock, M. S.,
and Pattison, P. E. (2007b). Recent developments in exponential
random graph (p∗) models for social networks. Social Networks 29
192–215.

Shalizi, C. R. and Rinaldo, A. (2013). Consistency under sampling
of exponential random graph models. The Annals of Statistics 41
508–535. MR3099112

Simons, G. and Yao, Y.-C. (1999). Asymptotics when the number of
parameters tends to infinity in the Bradley-Terry model for paired
comparisons. The Annals of Statistics 27 1041–1060. MR1724040

Wang, Y. J. and Wong, G. Y. (1987). Stochastic blockmodels for
directed graphs. Journal of the American Statistical Association
82 8–19. MR0883333

Wasserman, S. and Pattison, P. E. (1996). Logit models and logistic
regressions for social networks. I. An introduction to Markov graphs
and p∗. Psychometrika 61 401–425. MR1424909

Wasserman, S. and Robins, G. L. (2005). An introduction to random
graphs, dependence graphs, and p∗. In: Models and Methods in So-
cial Network Analysis, Carrington, P., Scott, J., and Wasserman, S.,
eds, Cambridge University Press, New York, pp. 148–161.

Yan, T. and Xu, J. (2013). A central limit theorem in the β-model
for undirected random graphs with a diverging number of vertices.
Biometrika 100 519–524. MR3068452

Ting Yan
Department of Statistics
Central China Normal University
Wuhan 430079
China
E-mail address: tingyanty@mail.ccnu.edu.cn

Chenlei Leng
Department of Statistics
University of Warwick
CV4 7AL
United Kingdom
E-mail address: C.Leng@warwick.ac.uk

266 T. Yan and C. Leng

http://www.ams.org/mathscinet-getitem?mr=2809836
http://www.ams.org/mathscinet-getitem?mr=0070925
http://www.ams.org/mathscinet-getitem?mr=2857452
http://www.ams.org/mathscinet-getitem?mr=0120167
http://www.ams.org/mathscinet-getitem?mr=0608176
http://www.ams.org/mathscinet-getitem?mr=0860518
http://www.ams.org/mathscinet-getitem?mr=2856692
http://www.ams.org/mathscinet-getitem?mr=0501540
http://www.ams.org/mathscinet-getitem?mr=0608176
http://www.ams.org/mathscinet-getitem?mr=0608176
http://www.ams.org/mathscinet-getitem?mr=2730754
http://www.ams.org/mathscinet-getitem?mr=2730754
http://www.ams.org/mathscinet-getitem?mr=3113804
http://www.ams.org/mathscinet-getitem?mr=3099112
http://www.ams.org/mathscinet-getitem?mr=1724040
http://www.ams.org/mathscinet-getitem?mr=0883333
http://www.ams.org/mathscinet-getitem?mr=1424909
http://www.ams.org/mathscinet-getitem?mr=3068452
mailto:tingyanty@mail.ccnu.edu.cn
mailto:C.Leng@warwick.ac.uk

	Introduction
	Simulations
	Discussion
	Acknowledgements
	Appendix
	References
	Authors' addresses

