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Componentwise variable selection in finite

mixture regression

BiN CHEN* AND KEYING YE

The finite mixture regression is a method to account for
heterogeneity in relationship between the response variable
and the predictor variables. The goal of this research is to in-
vestigate the variable selection issue within each component
in the finite mixture regression. This has not been studied
much in the literature from a Bayesian perspective. We pro-
pose an approach by embedding variable selection into the
data augmentation method that iteratively updates estima-
tion in two steps: estimate parameters for each component
and determine the latent membership of each observation.
Componentwise variable selection is realized by imposing
special priors or procedures designed for parsimony in the
first step. Due to separation of the two steps, our approach
provides a freedom to choose from a wide variety of variable
selection techniques. In particular, we illustrate how two
popular variable selection techniques can be embedded in
the proposed approach: g-prior and Stochastic Search Vari-
able Selection. A simulation study is conducted to assess
performance of the proposed approach under a variety of sce-
narios through investigating accuracy of variable selection
and clustering. Results show that the proposed approach
successfully identifies important variables even in noisy sce-
narios. The proposed approach is also applied to a real data
set from bioinformatics and the results provide evidence to
an existing hypothesis.

KEYWORDS AND PHRASES: Bayesian, Mixture regression,
Componentwise, Variable selection.

1. INTRODUCTION

One of the important problems with a regression model
is variable selection. Existing methodologies often perform
variable selection based on whole observed sample. However,
under many circumstances this practice is inadequate since
the sample may come from a heterogeneous population that
is composed of several subpopulations. For instance, one of
the important econometric topics is to assess which factors
have significant impact on GDP growth. The list of can-
didate factors includes GDP level, life expectancy, primary
school enrollment rate, and so on, e.g., see Fernandez et al.
(2001). The standard treatment is to collect data during a
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certain time period and/or from multiple regions and then
fit one single regression-type model for the whole collected
sample. But we might want to raise the question: is regres-
sion of GDP heterogeneous in nature, that is, can selection
of explanatory factors vary by region or by time?

Dealing with heterogeneous variable selection in regres-
sion involves two inference problems: first, separating the
whole sample into multiple components (Clustering), and
second, each component has its own variable selection (Com-
ponentwise Variable Selection) as well as parameter es-
timation. Statistical literature has seen numerous studies
on clustering and variable selection on their own. Cluster-
ing methods can be commonly categorized into three ma-
jor groups: partitioning algorithms, hierarchical algorithms
(e.g., k-means in MacQueen, 1967), and model-based meth-
ods (e.g., finite mixture model in McLachlan and Peel,
2000). Variable selection techniques could be roughly clas-
sified into four categories: classical methods (e.g., Mallows’
Cp, R?, and subset selection algorithm), information crite-
ria (e.g., AIC and BIC), shrinkage methods (e.g., LASSO
in Tibshirani, 1996) and Least Angle Regression in Efron
et al.,, 2004), and Bayesian methods (Stochastic Search
Variable Selection (George and McCulloch, 1993), g-prior
(Zellner, 1986), and Bayesian LASSO (Park and Casella,
2008).

Although literature is rich in clustering and variable selec-
tion, there is little existing research in tackling the two sub-
jects simultaneously to disclose heterogeneous variable selec-
tion in regression models. Relevant studies such as Gupta
and Ibrahim (2007), who, however, select variables that are
shared by all the components. Khalili and Chen (2007) pro-
pose a frequentist method that truly solves this problem. In
this paper we propose an approach to incorporate variable
selection techniques with the finite mixture regression under
a Bayesian framework.

The paper is organized as follows. In Section 2 we pro-
pose a Bayesian approach for componentwise variable selec-
tion in finite mixture regression. Two commonly used vari-
able selection techniques are then illustrated to fit into the
approach. A series of simulation studies are conducted to
evaluate performance of the proposed approach under var-
ious scenarios in Section 3. The proposed method is ap-
plied to a high-dimension real dataset from bioinformat-
ics in Section 4. Lastly Section 5 concludes with discus-
sions.
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2. COMPONENTWISE VARIABLE
SELECTION IN FINITE MIXTURE
REGRESSION

There exist papers regarding variable selection in hetero-
geneous regression in the last decade. We classify these stud-
ies into two categories: global variable selection and compo-
nentwise variable selection. Global variable selection meth-
ods (e.g., Gupta and Ibrahim, 2007) identify significant vari-
ables that are shared by all the components, whereas the
goal of componentwise variable selection is to select vari-
ables within each component. The latter is the interest of
this paper.

Compared to global variable selection, componentwise
variable selection is a better solution because in many situ-
ations each component may have its own choice of explana-
tory variables. An early study by Wang et al. (1996) takes a
two-stage approach: first to determine the number of com-
ponents with all the variables included, and then to per-
form variable selection within each component using AIC
or BIC. A new-generation study of simultaneously imple-
menting clustering and variable selection with more realis-
tic computation is done by Khalili and Chen (2007). They
propose a frequentist method by replacing the regular like-
lihood function in the mixture likelihood with the penalized
log-likelihood function. The EM algorithm is then used to
maximize the mixture likelihood function. They claim that
their method is consistent in selecting the most parsimo-
nious mixture regression model. With the same research goal
as Khalili and Chen (2007), we propose a Bayesian approach
in this section.

2.1 Data augmentation approach for
componentwise variable selection

We begin with discussing the Bayesian approach to linear
regression, which will be utilized for componentwise estima-
tion later on. Suppose the data have the response variable y
and a set of candidate covariates x1, T2, . .. x,, which are all
n x 1 vectors. The likelihood density of a linear regression
model is

(1)

where X = (1,21,...,2,) and N(-) is the normal distri-
bution density with the parameters 3 and o2. The central
issue of the Bayesian approach to linear regression is the
choice of priors for the parameters 3 and o2. We will briefly
describe three types of priors: conjugate prior, noninforma-
tive prior, and g-prior. Detailed expositions can be found in
excellent references such as Box and Tiao (1973) and Marin
and Robert (2007).

A conjugate prior is assigned for computational conve-
nience. The normal-inverse-gamma structure is the common
conjugate prior for Bayesian analysis in linear regression,

y|X7ﬂ7U2 ~ N(XﬂaO-QI) ’
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that is, imposing a multivariate normal prior distribution

on 3,
(2)

where G~1(+) is the inverse-gamma density function with the
parameters ng and Sy.

Choices of the hyperparameters by, Bg, ng and Sy in (2)
are important, but they are not always easy to assign in
practice. This is one of the reasons that people often use non-
informative (or weakly informative, e.g., see Gelman et al.
2009) priors so that hyperparameters are assigned automat-
ically or semi-automatically. One choice of non-informative
priors is Jeffreys’ prior. For the linear regression model (1),
the independent Jeffreys’ prior is

(3)

One problem with Jeffreys’ prior is its impropriety, that is,
it can not be normalized to become a distribution. To over-
come this drawback, Zellner (1986) proposed the g-prior:

ﬁ|0’2 NN(bQ,O'2B0), and 0'2 ~ g_l (n0/2,50/2),

P(B,0%) x o2

-1
¢ Blo*g~ N (Bonao® (X'x) ).
where g is a scalar.

Usually we assume that the regression parameters in (1)
are homogenous over the population. The inadequacy of this
assumption arises in many areas such as economy, market-
ing, and biology. A reasonable alternative is to assume that
there are K components in the population and each com-
ponent has its own parameter values (8;,0%). A common
approach to handle the varying parameters is finite mixture
regression (FMR), which assumes that each observation y;
is generated from (84, 0%), ..., (Bk, %) with probabilities
w = {wi, ..., wi}, respectively. The likelihood density of
FMR is defined as

n K
(5) P(ylp) = Zwkp (vil Br.» o7)
i=1 k=1
n K
= szk-j\/ (yz | mi/@k’(ji) ’
=1 k=1
where ¥ = {8;,0%,w; | k=1,...,K} is a reparameterized

entity and K is the number of components.

The idea of FMR with the likelihood in (5) first came
from Quandt (1972), who maximized the likelihood func-
tion using a numerical method. Hartigan (1977) attempts
an EM-type algorithm to find the ML estimation, but the
direct use of the EM algorithm is by DeSarbo and Cron
(1988). Quandt and Ramsey (1978) use a method of mo-
ments estimator based on the moment-generating function.
In Bayesian domain, the two common estimation approaches
are the Gibbs sampling (Diebolt and Robert, 1990) and the
Metropolis-Hastings sampling (Hurn et al., 2003 and Celeux



et al., 2000). We next discuss the Gibbs sampling with data
augmentation (Dempster et al., 1977; Tanner and Wong,
1987).

The idea of data augmentation is to incorporate the latent
allocation variable. Let z be the allocation vector such that
z=1(z1,22,...,2n), zi € {1,..., K}, indicating the member-
ship of each observation. Thus, we can have the complete-
data likelihood density,

(6)

n K
P (y,z[9) HZ I —iywiP (vi | Bro?)]

L)

(I T2 (151

k=1li:z;=k

where Iy is the indicator function and nj = Z?:l Lizi—ny
is the number of observations in the k" component. The
likelihood in (6) is factorized into two independent parts
with (8, 0%)’s and w, respectively. A natural way of speci-
fying the prior is that P(v) = P(w) Hk L P(By,0}) assum-
ing independence between w and (3, 0%)’s. Therefore, the
complete-data posterior distribution has the same structure

as (6):
}P(wIZ),

P(lglwalayvz)(xp(ﬁkaglz) H P(yi‘lgkvgl%);

Z"Zi:k
H i

In the above setting (3, 07) and w can be sampled indepen-
dently, which makes the sampling much easier. The following
sampling scheme shows that the parameters and the latent
variables z can be sampled iteratively:

<.

K
P (ly, z) = {H P (B, otly, )
k=1

where

(7)

P (w|z) x P(w

— w |z
vd
/BkV JI% | Y,z

fork=1,....K

Now we are ready to discuss the goal of this paper — com-

ponentwise variable selection. The sampling scheme in (8)

allows for two iterative steps: cluster observations into some

components through sampling z, and then sample other pa-

rameters within each component. In other words given z,

the parameters (3,07, w) can be estimated the way they

are treated in the non-mixture context. If we could make

a further step by assigning special priors on (8, 0%) which

lead to model sparseness, variable selection can be achieved

and it is within each component. Some examples of special
priors for (8y,0%) will be discussed in Section 2.2. In the
rest of this section, we first incorporate an extra parameter
into (8) and then work out the conditional distributions of
w and z.

We first add an extra step into (8) such that

(9)
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where -, is the indicator vector denoting which explanatory
variables are included in or excluded from the k** compo-
nent, for k = 1,..., K. The definition and the derivation of
its posterior distribution of v, will be discussed in detail in
Section 2.2.1. It is worth noting that (9) is a general scheme
which may have variations depending on the variable se-
lection technique implemented. For example, if Reversible
Jump MCMC is used as the variable selection technique,
v, and 3, are estimated in one single step instead of two
separate steps.

Posterior distributions need to be worked out in order
to run the Gibbs sampling. We first work on the posteri-
ors for w and z, while posteriors of other parameters de-
pends on specific variable selection techniques and will be
discussed in Section 2.2. First, from (7), we can see that
ny follows a multinomial distribution. The conjugate prior
is thus a Dirichlet distribution denoted by D(-). We let
w ~ D(ay,...,ak), which leads to the following posterior
distribution

P(w|z) =D (a1 +n1,...,ax +nK).
Second, z tells the membership of each observation. In fact,
the weight parameter w can be viewed as the distribution
of z; without observing the data, i.e., P(z; = k) = wy, for
k=1,...,K. The posterior distribution of each z; can thus
be derived following Bayes’ rule:

N(yi|f'3/'5ka012g> Wk
Z] 1N(yz‘$/637 J)

We now have a general framework for variable selection
within each component in finite mixture regression, as ex-
pressed in the following algorithm.

Algorithm 1. (Data Augmentation Approach for
Componentwise Variable Selection in FMR)

Start with a random allocation z(®) and repeat the fol-
lowing steps for t =1,..., M:

1. Sampling '(/;(t) conditional on z(*~1):

(a) Generate w® from D(a; +ny,...,ax + ng).
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(b) Generate ,Bk , ai(t) and the indicator vector 'y( )
if necessary for k = 1,..., K. Appropriate priors
or procedures are set up in order to impose model

sparseness.
Now we have 1®) = (w“),ﬂﬁ”,--., %)aaf(t)w-w‘f?((t)’
AL,

2. Sampling z® conditional on 1/)(t):

Sample zi(t)

i=1,...,

from P(z; | yi,wi,'zﬂ(t)) given in (1

nand k=1,... K.

0) for

Algorithm 1 is quite flexible so that many variable se-
lection techniques can be easily incorporated into the al-
gorithm.We next demonstrate how different techniques are
incorporated into Algorithm 1.

2.2 Choice of variable selection methods

There are numerous studies on Bayesian variable selec-
tion methods. In Section 1, we listed some important meth-
ods in the literature. The data augmentation framework in
Algorithm 1 is ready to incorporate any of them as a com-
ponent to achieve variable selection. In the following we use
the g-prior and SSVS to demonstrate the details of how they
are embedded into our proposed approach.

2.2.1 g-prior

The general form of g-prior was presented in (4). We now
introduce a latent binary vector v = (y1,...,7p) withy; =1
or 0, which tells the variable is in the model if v; = 1, and
vice versa. The natural prior of +y; is a Bernoulli distribution,
ie., P(y; = 1) = m. The common choice is 7 = .5. Now by
including « we can have the g-prior in the context of variable
selection:

—1
2 2 !
/B'yh/ra' g ~N <0,go’ (X'yX’Y> ) )

where X, and 8, are the design matrix and the regres-
sion coefficients, respectively, corresponding to the model
M., that contains explanatory variables with v; = 1. Coeffi-
cients of the explanatory variables not included in the model
are set to zero, as done by Mitchell and Beauchamp (1988).
The g-prior incorporates the relationship between explana-
tory variables since the term (X! X.)~" provides correlated
priors for 3., by borrowing the covariance structure of the
design matrix X, in the data. The scalar g controls the
amount of information in the prior relative to the data. The
other advantage of the g-prior is that since the prior for 3,
is conditional on o2, the full conditional dlstrlbutlons have
an analytic form. Spemﬁcally, if the prior for o is

P (02) x 0_27

which is actually the limiting form of the inverse gamma
distribution, the full conditional distributions can be derived
as:

2
X, ~N
/67|77Uay? Y (g+1ﬁ

1o (1)),
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(11)

By Xy~ (L5 L3y p

o ~ - =+ —

TPy ¥ S 272 "2+ 1) Ty )
where s? = (y — X.,B.Y)’(y — X.,ﬁ,y) and B'r is the ordinary
least squares estimate. The posterior marginal density for ~
is also available

P(y|y, X)

(g4+1)/2
1 v g
— -9 _yx,
Oc(g+1> <yy g+ 177

where ¢ is the number of variables selected. This is very use-
ful for designing a stochastic search for the most likely model
when there are many candidate explanatory variables. To
do this, we need the full conditional distribution of each ~;.
Let v_; = {71,---»%j—1,%j+15-- - Vp}- The full conditional
distribution of v, P(v; | 7v_;,y,X), can be computed by
evaluating the probability of v; = 0 and v; = 1 while all the
other explanatory variables in v_; stay the same from the
previous step. The most likely model can then be identified
by making inference from the posterior samples of individ-
ual 7;’s. We can easily fit this setting for variable selection
in Step 1 of Algorithm 1. The parameters are sampled for
each component as follows.

() Xy ).

First, we iteratively sample each 73, which takes the val-
ues 1 or 0. Here the subscript kj denotes the j** variable in
the k** component. The probability of Yy = 11is

ij
1+ Ok ’

(12) P (’ij =1 | Vk(fj)aylka) -

where o is the conditional odds:

P (’Yk] =1 | ’Yk( ])7yk7 Vi

) )
(13) o = p (W =0 [ Vi) Y X k)
)

(yk | Tej =1 » Vi(—5)» vk P ij =1)
P (yk | vy = Oa'Yk(—j)aX‘m> P =0)

where P(yy | Ykjs Yi(—j)> X~,) is given in (11) and P(vx;)
is the model prior.

Second, we draw samples of 3, and o? conditional on
the current state of «, within each ‘component,

(14) /6'yk | 7kvalz7ykaX'7k

gk Ik ( / )’1
~ X! X
N(gwlﬁ” g+ 1°F R )

2
O | ’Ykaﬂ'ykaykaX‘yk

ng sk 1 N
v (2 2 T3 TP




where B,Y

0%, respectively. The Gibbs sampling procedure in (12)—-(14)
is illustrated in the diagram below:

. and si are the least square estimates of ,8% and

N R
4
75:—&-1) N O_i(t—i—l) . ,3(t+1)-

The above sampling scheme is different from the usual Gibbs
sampling in that the drawing of -, does not depend on
(ﬁﬂlk ,02). This is not problematic: the Gibbs sampling of v,
converges to the target distribution P(vy; | ¥, Xx). Since
('B'rk ,02) are sampled depending on ~,, through P('B'rk o2 |
Vs Yk, Xk), they are also ensured to converge to the target
distribution P(waaﬁ | ¥, X&) (see Hoff, 2009, Chapter 9).

We now summarize the Gibbs sampling method in the
following algorithm.

Algorithm 2. (Componentwise Variable Selection in
FMR using Gibbs Sampling with g-prior)

Start with a random allocation z(®) and repeat the fol-
lowing steps for t =1,..., M:

1. Sampling ’l,b(t) conditional on z(t=1):

(a) Generate w® from D(ay +ny,...,ax +ng).
(b) Generate 7( ) from BER( 1_?’“; ) given in (12) for

7=1,. ..,pandk:zl , K.

(c) Generate Ui(t) from P(ak | 'yk ,ﬁ(t 2 ](€ 2

X.(,tk_l)) given in (14) for k=1,..., K.
(d) Generate Bffz from P(ka \ 'yg),ai(t),ygf 1),

Xa(f,:l)) given in (14) and let other [i;’s with
K.
() 2

LB

fy,(fj):Obezerofork:L...,

2(t)
YO

Now we have 1p® = (w®), ,6(1t), )
(t) ()
Vi VK-
2. Sampling z* conditional on 1/7(t):
Sample zgt) from P(z | yi, s, v™®) given in (10) for
i=1,....,nand k=1,..., K.
2.2.2 SSVS

Stochastic Search Variable Selection (SSVS) by George
and McCulloch (1993) is another well-known method for
variable selection that can be used to implement 1. Similar
to the method above SSVS also relies on the binary vector
4. The difference is that SSVS allows f}; to shrink towards
zero by assigning a special prior as described next. For each
component, SSVS specifies the priors as follows:

Vkj B (6) )
Brilmg  ~ Ty,=0pN (077—2) + L, =N (0v027—2) )
ol vk G~ (no/2,50/2),

for j = 1,...,p, where B(:) is the density function of a
binomial distribution. We set 7 small so that fy; is likely to

~

~

be close to zero if v;; = 0, and set ¢ (¢ > 0) large so that
Br; is away from zero if y,; = 1. The priors of fi;’s in can
be a multivariate normal,

(15) Bl ~ N (0, Dy RiDy, ),

where D, = diag(ai71,...,a,7,) with a; = 1 if 74; = 0 and
a; = cif y5; = 1. George and McCulloch (1993) derive the
full conditional distributions for 3, o7, and ~,, as follows.
Note that in the light of data augmentation the posteriors
of parameters are all conditional on the allocation z.

P (B | Yi» 00 Xioyy) = N (07 *b, Bre)
Vig (0-]% | IBkn’Ykn—Xkuyk;) = g_1 (Nk/2,8i/2) )

a
P ('ij |’7k(—j),ﬁk702) =B (a+b) )

where N = no +ny, st = S0+ (yy, — XxBy) (s, — XiBy),
By = (0,2 X, Xy + D3R ' D7) 7" by, = Be Xy, a=p-

Bk = Lvk—4); andb— (1 P) SBrIvk; = 0,7k p)-
Here p is the pre-specified prior probability of each variable
being included in the model, f(-) is the prior density in
(15), and 7k(—j) = ('Yk.la v a’yk.(j—l)a ’Yk.(j—i—l)v .o ,’yk_p). See
George and McCulloch (1993) for details of the derivation of
(16). The following algorithm shows how SSVS is embedded
into the general approach in Algorithm 1.

Algorithm 3. (Componentwise Variable Selection in
FMR using SSVS)

Start with a random allocation z(°) and repeat the fol-
lowing steps for t =1,..., M:

(16)

1. Sampling ¥® conditional on z(#—1:

(a) Generate w® from D(ay +ni,...,ax +ng).
(b) Generate ai(t) from P(o? | ﬁ,(:_l),fy,(f_l),Xlgt_l),
y,(ffl)) given in (16) for k =1,..., K.
(c¢) Generate ,6',(5 from P(8;, | 'y (¢=1), Q(t),Xlgt_l)7
yff_l)) given in (16) for k =1,. K
(d) Generate fy,?;.) from P(yy; | ’)’k( ]),ﬂk ; i(t )
given in (16) for j=1,...,pand k=1,... K.
Now we have 9p® = (w(®), ,8(1t), e (I?, Jf(t , f((t),

t t
W),

2. Sampling z(*) conditional on 4®
Sample zi(t) from P(z;|y;, xi, 'c,b(t)) given in the following
fori=1,...,n,

r (Zz =k| yi,mu",b(t))
2
(yz | Z; ﬂk 70k(t)> W](:)
2 b
SN (w8 o)

K.

fork=1,...,
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We have demonstrated how different variable selection
techniques can be embedded in the general Algorithm 1
to accomplish componentwise variable selection in FMR. It
would be helpful if we can evaluate how all these methods
perform in the following simulation studies. We conducted
a preliminary study to compare g-prior versus SSVS and
found their performance was very close. It would be valu-
able if an extensive simulation study could be conducted
to carefully compare their performance under various sce-
narios. However, running many scenarios for each of these
methods would require excessive amount of coding effort
and simulation work. For this reason, only the Gibbs sam-
pling with g-prior as in Algorithm 2 was selected to be im-
plemented in the simulation studies discussed in the next
section. Comparing these techniques or even incorporating
more techniques could be an interesting topic of future re-
search.

The Gibbs sampling with g-prior as in Algorithm 2 is se-
lected for the simulation studies for the following reasons.
First, g-prior has a great number of successful applications.
The Gibbs sampling is usually the search algorithm accom-
panying g-prior. Second, g-prior only requires the specifica-
tion of ¢ to set up for B and o2. Other techniques would
need either tuning or more specifications for hyperparame-
ters. Third, the (X X)~! term in the g-prior takes into ac-
count collinearity in the design matrix, which is a common
problem in regression.

3. SIMULATION STUDY

In the previous section we proposed a Bayesian approach
to componentwise variable selection in FMR and demon-
strated how specific MCMC algorithms are embedded. In
practice, there are many factors that would affect the per-
formance of the approach. For instance, if the sample size is
small relative to the number of parameters, then the poste-
rior distribution could be multimodal and have large vari-
ance. In this section we investigate the performance of the
proposed method under various scenarios via simulations.

3.1 Simulation design

Our proposed method is found to have reliable perfor-
mance on simpler models with fewer components and ex-
planatory variables (e.g., K = 2 and p = 2) in the pre-
liminary study (not shown here). In this section, we only
considered challenging cases with more components and ex-
planatory variables. We simulated a FMR model with four
components, each of which has a different setting of explana-
tory variables. Table 1 shows the true values of the coeffi-
cients of each component in the simulated model.

In addition, the following aspects were considered to cre-
ate a wide set of simulation scenarios:

e Component weight w. Even and uneven weights were
considered. The even weight is w = (.25,.25,.25,.25)
and the uneven one is w = (.3,.3,.3,.1).
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Table 1. Coefficient parameters of simulated data

(Bo, B1, B2, B3, Ba, Bs)
(.3, 1, 0,0, 3, O)
(.8,-4,2,0,0,3)
(.8, -2, 1,0, 2, 1)
(1, 2,0,0,-3,4)

Component 1
Component 2
Component 3
Component 4

Table 2. Various considerations for a,%, p, w, andn

Specifications
o 0.5, 1
P 0, 0.5, 0.7
w | (35 11) (o> 100 100 10)
n 300, 600, 900

e Sample size n. Three levels of sample size were set up
such that the smallest component under uneven com-
ponent weight is guaranteed to have at least 30 obser-
vations.

e Variance of the error term o7. We specified two levels
of variance: o7 = 0.5 and o} = 1.

e Collinearity between variables. The explanatory vari-
ables were generated from a multivariate normal distri-
bution N(0,T). We followed Khalili and Chen (2007)
to assign an autoregressive type of correlation between
x;’s, that is, Cov(x;,z;) = pl"=7l, where p controls the
degree of correlation. Three levels of correlation were
specified: p =0, p=10.5, and p =0.7.

Table 2 summarizes the specifications of data generation by
taking the above discussion into account. As a result, there
are 36 simulation scenarios having different levels of noise
and difficulty.

The results from the main simulations to assess perfor-
mance of our proposed method will be shown in Section
3.3. Before that, we would also like to investigate other im-
portant issues such as selecting appropriate hyperparame-
ters and determining the number of components. It is com-
putationally costly and unnecessary to look into these is-
sues on all the scenario combinations described in Table
2. Rather, we selected some scenarios representing vari-
ous levels of difficulty as shown in Table 3: Scenario 1 is
the easiest scenario, Scenario 2 has medium level of noise,
and Scenarios 3-5 are very challenging ones with high lev-
els of noise. Those selected scenarios are biased high-level
noises in order for a stress test: if they behave well then we
are confident that the remaining scenarios will also behave
well.

All the simulations were programmed in the statistical
package R. The computing time for analyzing 100 datasets
for each scenario ranged from 16 to 21 hours on a 2.2 GHz
dual core processor with 2 GB RAM.



Table 3. Short list of simulation scenarios

Scenario 1 0£=0.5,p:0,w:(i,i7i,i), =600

Scenario 2 0r =05, p=05 w=(3,7,5,2), n=300
Scenario 3 0,%:1,p:0.5,w:(%,%,%,%),n:300
Scenario 4 a,%:1,p:0.7,w=(%,%,%,%),n=600
Scenario 5 0r=1,p=07w=(5 1 16 139), " = 300

3.2 Choice of priors

In order to run Algorithm 2, we set up the priors as fol-
low: the model prior or the prior for inclusion indicators
P(~), the scalar hyperparameter g in the g-prior, and the
hyperparameter « in the Dirichlet distribution for w.

A popular setup for the model prior is an independent
Bernoulli distribution on each «y; such that

P
Py) o [[=7(1—m)',
j=1

where m = P(y = 1) is the prior inclusion probability of each
covariate. The common choice is 7 = 0.5, that is, each co-
variate has a 50% chance of being included, corresponding to
the popular uniform prior P(v) = 0.5P. One can also assign
other values rather than 0.5 to 7. Another more complicated
method is fully Bayesian, that is, putting a hyper-prior on
m, for example, m ~ Beta(a,b) (Brown et al., 1998 and Ley
and Steel, 2009).

Eicher et al. (2011) conclude that the uniform prior with
m = 0.5 outperforms the other values based on a series of
simulation studies where the predictive performance is eval-
uated. Ley and Steel (2009) conduct a more comprehensive
study comparing the fixed-m and the hyper-m model priors.
The results show that 7 = 0.5 with g = p? has fairly com-
parable performance to other hyper-m priors. Based on the
results of the two studies, we only consider 7 = 0.5 in our
simulation studies.

An appeal of using g-prior is that the priors for 8, and
o2 are set automatically if ¢ is chosen, while the choice of g
is the important question, which has attracted many studies
in the literature. These studies can be classified into three
types of methods: fixed ¢ (e.g., Kass and Wasserman, 1995,
Foster and George, 1994 and Fernandez et al., 2001), empir-
ical Bayes (George and Foster, 2000), and full Bayes (e.g.,
Liang et al., 2008, Ley and Steel, 2011 and Cui and George,
2008).

There are some comparison studies on the choice of g in
the literature. Fernandez et al. (2001) recommend g = n and
g = +\/n/p as well as their benchmark prior g = max(n, p?)
after comparing a list of fixed g values. A similar study by
Eicher et al. (2011) finds that g = n outperforms other val-
ues of g in terms of predictive performance. A recent study
by Ley and Steel (2011) compares most of the methods for
specifying g discussed above. The results from their studies
indicate that g = n performs equally well with and in some

scenarios better than other sophisticated methods. Based on
these findings, we will only consider fixed values of ¢ in our
simulation studies.

Now we discuss the prior for the weight parameter w.
As a standard choice, we adopt the conjugate prior for w
is a Dirichlet distribution D(ay,...,ax), which leads to
the posterior distribution D(ay + ny,...,ax + ng). Obvi-
ously, if we have no subjective knowledge of the component
weights, it is sensible to take ay «. Now the question
is how to choose a value for . A common practice is to
take @ = 1. Many studies (e.g., Nobile, 2004) warn that
with such small «, there is a possibility of sampling small
wy, (for the reason just shown above), which in turn causes
an empty component because the components with large wy,
absorb all the observations. However, this is not the case
in the problem considered in this paper because w is drawn
from the posterior distribution D(a+n1,...,a+ng), where
a + ng > 1 no matter how small « is. Apart from o = 1,
other specifications seem arbitrary in the literature. For ex-
ample, & = 4 by Frithwirth-Schnatter (2006, p. 105), and
a = 5 or 10 by Norets and Pelenis (2009). We also con-
sider another specification based on the average sample size,
ie., a= %

We further conducted a sensitivity study to evaluate the
impact of g and «, and determined reasonable values for
the subsequent simulation studies. Following the discussion
above, we narrow down the choices of g and « as follows:

Table 4. Choices of g and «

g | n, p*°, max{n,p’}
P 1,4, n/K

These choices result in nine settings. For each setting,
we generated 100 datasets and implemented the proposed
method in Algorithm 2 under each of the scenarios listed in
Table 3. The results are shown in Table 5, which report 95%
credible intervals of the correction rate of variable selection
(see the definitions in Section 3.3).

We can easily see that choices of g and a have no mate-
rial difference on the inference of variable selection, although
the setting of (a« = 1,9 = n) seems more stable than other
choices and therefore will be used in the subsequent simula-
tions.

Before showing the simulation results, we need to an-
swer another key question in finite mixture model. In the
proposed approach in Section 2 the number of components,
K, is known a priori. However, in real-world analysis we
have no knowledge of K beforechand and have to estimate it
from the data. If we fail to recover the true K in the first
place, the subsequent clustering and variable selection are
meaningless. Finding an optimal choice of K is an inevitable
step in full analysis of finite mixture modeling. Estimating
K is a big topic and has been attracting numerous studies
in Bayesian and frequentist literature. Important Bayesian
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Table 5. Comparison of variable selection under different hyperparameter settings. Each interval is the 95% Bayesian credible
set of the correction rate of variable selection.

Scenario 1  Scenario 2  Scenario 3 Scenario 4 Scenario 5
a=1,9g=n (:95,1) %) (:90,1) (.95,1) (:90,1)
a=1,g=p (1,1) (.95,1) (.90,1) (.95,1) (.90,1)
a=1, g =maz{n,p’} (.95,1) (.95,1) (.92,1) (.95,1) (.90,1)
a=4,g=n (.95,1) (.95,1) (.90,1) (.95,1) (.82,1)
a=4,g=p (.95,1) (.95,1) (.85,1) (.92,1) (.85,1)
a =4, g =mazx{n,p’} (.95,1) (.95,1) (.95,1) (.95,1) (.90,1)
a=n/K,g=n (.95,1) (.95,1) (.95,1) (.92,1) (.90,1)
a=n/K, g=7p (1,1) (1,1) (.90,1) (.95,1) (.85,1)
a=n/K, g=maz{n,p°} (:97,1) (:95,1) (.95,1) (.95,1) (.87,1)

Table 6. Recovery rate of number of components

BIC AIC DIC Marginal PPMS
Scenario 1 1 1 1 1 .02
Scenario 2 .98 .98 .68 .95 .52
Scenario 3 .90 .96 .08 .62 .58
Scenario 4 1 .80 .04 .70 .16
Scenario 5 .60 .92 .02 .52 .62

methods include: information criteria such as AIC (Akaike,
1973) and BIC (Schwarz, 1978), DIC (Spiegelhalter et al.,
2002), marginal likelihood (Chib, 1995), posterior predic-
tive model selection (Laud and Ibrahim, 1995), Bayes Fac-
tor (Raftery, 1995), model space search approaches (Green,
1995), and so on. Can the trueX in our simulated data be re-
covered with these methods? In fact some of these methods
were applied to the simulated data and their performance
was compared in our dissertation research (Chen, 2012). The
results in Table 6 show that AIC and BIC outperformed
other methods.

In this paper we focus on the topic of variable selection,
and are not ambitious to elaborate on these methods. De-
tailed discussion of them as well as a proposed new method
can be found in Chen (2012).

3.3 Main results

We now discuss the performance of variable selection and
clustering of the proposed method under the scenarios spec-
ified above. For each of the 36 scenarios described in Table 2,
100 datasets were generated. The Gibbs sampler described
in Algorithm 2 was then run for each dataset to sample pos-
terior distributions of the parameters. The sampler was ini-
tialized by randomly assigning observations to components,
and was run for 2,500 iterations with the first 1,000 itera-
tions discarded as burn-in.

The main simulation results are given in Tables 7 and 8§,
which show how well the proposed approach identified the
true variables (the column “Variable Selection”) and recov-
ered the grouping of the observations (the column “Cluster-
ing”). These tables report 95% credible intervals of the the
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Table 7. Accuracy of variable Selection and clustering when

a2 =05
Variable Selection Clustering
02=05p=0
w = (.25, .25, .25, .25)
n = 900 (.95, 1) (.76, .82)
n = 600 (.95, 1) (.76, .83)
n = 300 (.95, 1) (.75, .82)
w=1(.3,3,3,.1)

n = 900 (.95, 1) (.76, .81)
n = 600 (.95, 1) (.76, .81)
n = 300 (.95, 1) (.75, .83)

02=05p=05

w = (.25, .25, .25, .25)

n = 900 (.95, 1) (.75, .80)
n = 600 (.99, 1) (.74, .80)
n = 300 (.95, 1) (.72, .81)
w=(.3,.3,.3,.1)
n = 900 (.95, 1) (.74, .79)
n = 600 (.99, 1) (.74, .80)
n = 300 (.90, 1) (.72, .81)
02=05p=0.7
w = (.25,.25,.25,.25)
n = 900 (.95, 1) (.73, .77)
n = 600 (.95, 1) (.72, .78)
n = 300 (.99, 1) (.70, .78)
w=1(.3,.3,.3,.1)
n = 900 (.95, 1) (.72, .76)
n = 600 (.99, 1) (.71, .76)
n = 300 (.95, 1) (.69, .78)

correction rate which is simply:

# of correctly classified items
Total # of items

Correction Rate =

b

where the items could be variables or observations. For vari-
ables, 7, the posterior mean of + is first calculated for each
variable in each component. A variable is determined to be
in the model if 4 > .5, and vice versa. The variable selec-
tion based on ¥ is compared to the true model specified
in Table 1 to calculate the correction rate for variable se-



Table 8. Accuracy of variable selection and clustering when

o2 =1
Variable Selection Clustering
02 =05p=0
w = (.25,.25, .25, .25)
n = 900 (.95, 1) (.71, .75)
n = 600 (.95, 1) (.70, .76)
n = 300 (.95, 1) (.68, .76)
w=(.3,.3,3,.1)
n = 900 (.95, 1) (.69, .74)
n = 600 (.95, 1) (.69, .75)
n = 300 (.90, 1) (.67, .76)
02=05p=0.5
w = (.25, .25, .25, .25)
n = 900 (.95, 1) (.69, .73)
n = 600 (.99, 1) (.67, .73)
n = 300 (.95, 1) (.65, .74)
w=(.3,.3,3,.1)
n = 900 (.95, 1) (.67, .72)
n = 600 (.95, 1) (.67, .73)
n = 300 (.90, 1) (.63, .74)
02=05p=07
w = (.25, .25, .25, .25)
n = 900 (.95, 1) (.65, .70)
n = 600 (.95, 1) (.65, .71)
n = 300 (.95, 1) (.61, .71)
w=(.3,.3,3,.1)
n = 900 (.95, 1) (.65, .70)
n = 600 (.95, 1) (.62, .70)
n =300 (.90, 1) (.60, .70)

lection. For instance, in Component 1 the true explanatory
variables are x; and z4. If 4 concludes that x1, x2, and
x4 are selected, “# of correctly classified items” equals 4,
and the Correction Rate is %. To calculate the rate of ob-
servation clustering, the posterior mean of z (2) and the
majority rule (which allocates an observation to the com-
ponent with the maximum membership probability) is used
to determine which component an observation is allocated
to. For instance, if Z = (.05,.20,.60,.15) then that observa-
tion is allocated to Component 3. By counting how many
observations are correctly allocated, we can calculate the
correction rate of clustering observations.

In the followings are the findings from the simulation
studies.

1. As the results show, the performance of component-
wise variable selection is quite successful in general.
For most of the scenarios, even the lower bound of the
95% credible interval of the correction rate is about .90,
which means in worse cases only about 2-3 variables
are misidentified out of total 20 variables (5 variables
in each component).

2. When 02 = 0.5 (small level of noise), sample size,
collinearity in variables and component weights do not
have much impact on the performance of component-

20
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15
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Frequency
10

Figure 1. Allocation of observations from 4th component in
Scenario 5. The histogram tells how many observations are
allocated to each component given the true parameters.

wise variable selection. However, when o2 is increased

to 1, sample size and component weights have com-
bined influence. When both are stressed, performance
of variable selection is slightly poorer. For example, as
in Table 8, when n = 300 and w = (.3, .3,.3,.1), the cor-
rection rates are comparatively lower than those from
easier situations.

3. The clustering of observations has mixed performance.
In easy scenarios, the correction rate of clustering is
about 0.70-0.80, while in the tough scenarios, the rate
is about 0.60-0.70. To explain why clusterings are not
recovered as well as variable selection, let us look at
membership estimation in Step 2 of Algorithm 2. The
allocation z is sampled from a multinomial distribution
given by

N (yi | m;ﬁkagﬁ) Wk
K ’
Zj:lN(yi ‘ wi:@jvagz‘) Wi

(17) P (2 = klyi, zi, ) =

)

k=1,...,K,

which implies that clustering is influenced by three
sources of variance: sample variance (i.e., the data it-
self), variance in parameter estimation, and random-
ness of multinomial allocation. For demonstration, we
take an example of 30 observations from the 4th com-
ponent that were generated under Scenario 5 during
the simulation study. Now we calculate the member-
ship probability defined in (17) using the true param-
eters (i.e., no variance in parameter estimation is in-
cluded) and apply the majority rule to allocate obser-
vations. The following histogram in Figure 1 describes
how the observations generated from the 4th compo-
nent are allocated to the four components. We can
see that there are a considerable number of observa-
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Table 9. Accuracy of parameter estimation

Scenario 1 Scenario 2

Component 1 2 3 4 1 2 3 4 1

Scenario 3 Scenario 4 Scenario 5
2 3 4 1 2 3 4 1 2 3 4

Recovery Rate

Bo 94 92 96 92 8 96 1 96 92 1 96 86 84 938 8 .92 .74 94 96 .72
81 90 8 1 96 .96 .86 .98 .96 .86 .88 .92 8 .94 .90 .94 .76 .80 .82 .88 .80
Ba - 94 94 - -1 1 - -1 94 - - 8 .86 - - 94 94 -

Bs - - - - -

Ba &6 - 90 92 8 - 1 .92 1 - 98 8 96 - .92 66 .94 - .92 .60
Bs - 96 .92 .98 - .90 .96 .88 - .98 .96 .70 - 92 94 .70 - 92 94 .66
o2 64 02 42 00 .12 .00 .06 .00 .72 24 75 .10 .90 .78 .86 .42 .68 .92 .80 .20
w 1 1 1 1 1 1 1 1 11 1 1 98 98 8 .00 .96 1 1 .00

RMSE

Bo 10 .07 .08 .09 .16 .14 .10 .13 .15 .17 .17 50 .17 .10 .14 .17 21 .20 .19 .53
B 07 09 .07 07 .08 .15 .12 .10 .20 .19 21 .50 .12 .14 .14 .33 .29 .23 24 .64
Bs - 07 .09 - - 11 10 - - 14 18 - - 15 14 - - 24 28 -

Bs - - - - - - - - - - - - T

Ba 12 - .09 .06 .14 - 11 .13 13 - 16 1 10 - .13 40 .17 - 20 .96
Bs - .06 .08 .07 - 13 12 .14 - 15 .15 .85 - 13 14 .37 - 19 27 .80
o> 15 27 16 28 .33 52 38 44 40 56 43 .96 .19 .23 .20 .46 .42 53 .45 .97
w 01 .01 .01 .01 01 .01 .01 .01 03 03 .03 .08 .03 .02 .03 .07 .03 .03 .03 .08

tions which are “mis-allocated” to the first three com-
ponents even though only sample variance is present.
When variance in the parameter estimation and ran-
domness of multinomial allocation are both present,
there will be more misclassifications, which explain the
poor performance on clustering. It is worth pointing
out that “misclassification” may not be an appropriate
word when parameter estimation behaves well since in
this case all three sources of variances are normal fluc-
tuations in data and in the process. However, in the
smallest component in Scenario 5, clustering is vulner-
able since the proportion of misclassified observations
from other components is fairly large due to its own
small sample size. The large portion of foreign observa-
tions in return deteriorates parameter estimation and
variable selection. We call this phenomenon “invasion
disturbance”. As shown in Table 8, the correction rate
of variable selection is comparatively low for scenarios
with n = 300 and w = (0.3,0.3,0.3,0.1). The poorer
performance of parameter estimation in this situation
can be found in Table 9. Performance deterioration due
to mutual influence of clustering and parameter esti-
mation for small components is inherent to the Gibbs
sampling, which is a disadvantage of this approach. Re-
solving this shortcoming could be a topic for further
research.

Parameter estimation is also evaluated for the scenarios in

Table 3. For each simulation (100 datasets were generated
for each scenario as stated above) the root mean square
error (RMSE) and the 95% credible interval of 3, 02, and w
are calculated from the Monte Carlo samples. Suppose (1),
t=1,...,M, are the Monte Carlo samples,
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(0w —6)°
RMSE = \/ s,

where 6 is the true value of the parameter that was used to
simulate the data. The average of RMSE and the percent-
age that the true parameters are covered in the 95% credible
interval (Recovery Rate) are then calculated over 100 simu-
lations and are reported in Table 9. Here are some findings
from Table 9:

1. The estimation of regression coefficients is accurate
when the weights are balanced. Recovery rates are close
to .95 for most of the coefficients and to 0.90 for a few
of them under Scenarios 1 and 2. When the weights
are unbalanced as in Scenarios 3 to 5, the estimation
for the first three components are still satisfactory, but
the small components have comparatively poor recov-
ery rates. Especially, when sample size is small (Sce-
narios 3 and 5), the RMSE for the small component is
much higher, which could be explained as stated above
with Figure 1.

2. For the larger components, the estimation of the weight
parameters is very accurate with almost perfect re-
covery rates. However, under the unbalanced weights
w = (0.3,0.3,0.3,0.1) (Scenarios 3 to 5), the weight for
the small component is overestimated due to “invasion
disturbance” explained in the above.

3. The performance for o2 has a different pattern. In gen-
eral, the performance of o2 is not as good as that of
the coefficients and the weights. The estimation deteri-
orates due to misclassifications. For Scenarios 1 and 2
with 02 = 0.5, the posterior mean of o2 is in the range
of 0.8 and 1.2, while for Scenarios 3 to 5 with o2 = 1,
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Figure 2. Label switch problem and effect of using relabeling algorithm.

the posterior mean was between 1.2 and 1.5. This ex-
plains why Scenarios 1 and 2 have worse recovery rates
than Scenario 3 to 5 even though the former has less
noise.

We have shown and discussed the performance of vari-
able selection, clustering of observations, and parameter es-
timation of the proposed approach. In addition to these, an
assessment of the model fit and the MCMC convergence can
be found in Chen (2012).

Lastly, we want to note an extra step we implemented in
the simulation studies. A notorious problem with finite mix-
ture models is the nonidentifiability of the components and
label switching in MCMC output. Label switching refers to
the invariance of the likelihood under relabeling of the mix-
ture components. As a result, during MCMC the posterior
distribution can be highly symmetric and multimodal, mak-
ing it meaningless to draw inference by summarizing poste-
rior distributions. There exist many methods to resolve this
problem. A classic relabeling algorithm created by Stephens
(1997) has many successful applications (see, for example,
Tadesse et al. (2005), Farrar (2006), and Tatarinova et al.
(2008)). See Appendix A for details of the algorithm. This
algorithm was adopted in our simulation studies to rela-
bel MCMC output for meaningful posterior inference, and
successfully resolved the label switching issues in almost all
the scenarios. The graph in Figure 2 contains MCMC sam-
ples of a coefficient whose values in the first (black) and the
second (red) component are very close. The graph demon-
strates how the samples switched to each other’s component
during iterations and how the algorithm by Stephens (1997)
successfully relabeled their membership so as to make pos-
terior summaries meaningful.

4. REAL DATA APPLICATION

We now analyze a high-dimension real dataset in bioin-
formatics. Living beings depend on genes, as they specify
all structures and functions of an organism through gene
expression, by which information from a gene is turned into
functional gene products (often proteins). Gene regulation

refers to the processes that a cell uses to regulate gene ex-
pression. Knowledge of gene regulation is of fundamental
importance for understanding biological processes within a
cell. It is believed that a large proportion of gene regulation
occurs at the transcription step, i.e., transcriptional regu-
lation, which controls when transcription occurs and how
much RNA is copied. Transcriptional regulation is known to
be realized through the binding of transcription factors (TF)
to specific DNA sequences (motif) that is usually located in
the upstream of a gene (see the demonstration in Figure 3).
Identification of binding sites or motifs of a specific TF for a
certain biological process, or called motif discovery, is crucial
for us understanding gene regulation.

Motif discovery attracts numerous research from many
fields including statistics. One of the statistical approaches is
regression models, which associate expression level of genes
with candidate motifs. Various variable selection techniques
could then be applied to pinpoint relevant motifs. For ex-
ample, Bithlmann and Hothorn (2010) use twin boosting to
select motifs. Other important studies of this type include
Bussemaker et al. (2001), Conlon et al. (2003), Tadesse et al.
(2004), and Zhang et al. (2008).

The regular regression model assumes that all the genes
are triggered by the same set of TFs. This assumption might
be challenged by the possibility of heterogeneity in the reg-
ulation process. That is, there might exist different groups
of genes, each of which is regulated by a specific set of TFs.
The mixture regression with componentwise variable selec-
tion offers a tool to accommodate heterogeneity in gene reg-
ulation.

The data we used is originally from a yeast cell cycle
experiment (Spellman et al., 1998). There were two groups
of yeast cells: the treatment and the control group, both of
which were in a glucose solution. An alpha factor was added
to the experiment group, but not to the control group.
After a certain period of time, samples were taken and their
gene expression as a function of microarry motif scores were
recorded. The response variable is the log expression ratios
(treatment vs. control). The dataset we use is available at
ftp://ftp.stat.math.ethz.ch/Manuscripts/buhlmann /motif-
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ftp://ftp.stat.math.ethz.ch/Manuscripts/buhlmann/motif-spellman.RData
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Figure 3. Transcription factor and motif in gene expression regulation (Source:
http: // stat.ethz.ch/ events/ archive/ Ascona_04/ Slides/ conlon2.pdf ).

Table 10. Criteria for finding K for Motif data

BIC AIC DIC PPMS
K=1 -3804.72 -1984.13 -4675.26 -1632.34
K =2 -3605.10 -763.90 -1341.92 -758.05
K=3 -5078.90 -817.10 -1009.18 -753.78
K=4 -6229.87 -547.48 -933.95 -752.76
K=5 -7215.11 -112.12 -749.89 -751.31
K=6 -8772.36 -248.78 -438.92 -750.40
K=7 -10798.22 -854.04 -407.77 -749.86
K =38 -12976.27 -1611.50 -500.53 -750.02
K=9 -15105.65 -2320.28 -529.75 -750.01

spellman.RData. It contains a n X p matrix, n = 4,443
genes and p = 2,155 motif matching scores from candidate
motifs. Our purpose is to cluster genes into several groups
and identify the important FTs (motifs) for gene expression
regulation within each group. This data was also analyzed
by Khalili et al. (2011).

Two treatments were conducted before componentwise
variable selection. First, because of the high dimension
(p = 2,155) in the original data, the practical infeasibility
rises due to extremely heavy computation burden and sin-
gularities in matrix calculation. To overcome this difficulty,
we ran an initial screening to select 441 variables for further
analysis. Second, the criteria were calculated for K =1to 9
in order to find an optimal number of components. The re-
sults in Table 10 show that the criteria except BIC suggest
a range K = 5 to 7. With additional reviewing of poste-
rior predictive densities we decided that K = 6 could be a
reasonable estimate. Khalili et al. (2011) chose K = 3 in-
stead, but they only tried models up to K = 4. Details of
the treatments can be found in Chen (2012).

Given the initially selected set of variables and K = 6, we
continued to perform componentwise variable selection de-
scribed by Algorithm 2. Our strong motivation is to compare
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Figure 4. Size of components.

whether the mixture regression model (K = 6) would have a
different variable selection pattern from the regular regres-
sion model (K = 1). For this purpose, we ran Algorithm
2 under K = 1 and K = 6. Table 11 reports the posterior
inclusion probabilities, that is, the posterion mean of the in-
clusion indicator . Only the first forty motifs are included
in the table to save space. It could be seen that most initially
selected motifs are significant in multiple components. For
example, “N1.12.2.1” plays a role in components 1-4. Some
motifs have an effect in only one component. For instance,
“P1.12.13.4” and “P1.10.10.2” are significant in component
2 and 4, respectively. However, a few variables selected by
the non-mixture model (K = 1) are significant in none of
the components in the mixture model (K = 6), for example,
the motif “P1.5.5.2”. Furthermore, Figure 4 shows the rel-
ative size of each component, that is, how many genes are
in each component. The results show the components are
quite balanced. Every component consists of at least 10% of


http://stat.ethz.ch/events/archive/Ascona_04/Slides/conlon2.pdf
ftp://ftp.stat.math.ethz.ch/Manuscripts/buhlmann/motif-spellman.RData

Table 11. Posterior inclusion probabilities for motif data (40 motifs out of 443 displayed)

K=1 K=6
Motif Compl Comp2 Comp3 Comp4 Comp5 Comp 6
N1.11.15 1 .38 .14 1 12 .53 A1
P1.12.11 1 .99 .66 12 .08 .08 1
P1.12.14.5 1 .18 1 .98 .27 .87 .99
N1.10.7.3 1 12 .60 1 13 1 .25
P1.5.5.2 1 12 .24 .19 37 .08 .22
N1.7.5.2 1 .23 1 .40 .10 .18 .99
N1.11.2 1 .76 18 .10 .22 1 .10
N1.7.15.3 1 .30 1 .15 .18 .10 1
N1.7.4.6 1 17 .15 .52 1 1 .61
N1.12.6.1 .99 1 A7 13 1 .10 13
P1.10.14.3 .99 .13 A1 1 1 12 18
N1.11.15.6 .99 1 18 1 1 A1 .15
N1.7.14.4 .99 31 A1 31 .14 1 18
P1.11.15.3 1 .13 .70 A7 1 12 .14
P1.6.2.8 1 .56 .86 1 .98 .22 .16
N1.12.2.1 97 1 1 1 1 .23 .10
N1.6.13.3 1 1 .27 1 A7 .10 1
N1.8.15.6 1 1 .24 .53 .95 1 .16
P1.11.11.1 97 12 .32 1 .54 .09 A1
P1.11.7.5 1 .80 .15 1 14 1 1
N1.7.11.5 97 1 .19 .84 .19 .07 .09
P1.12.13.4 .99 12 .93 .10 .27 .40 .13
P1.10.10.2 .99 .10 31 .19 1 .20 .18
P1.12.5.5 .98 27 A7 .10 .51 1 .16
N1.11.10.3 1 11 .20 12 1 12 1
N1.6.13.2 .90 12 A7 1 12 1 21
P1.9.11.3 .92 .07 1 1 1 .09 .24
N1.5.13.3 1 .09 .38 .09 1 1 12
P1.5.6.3 1 12 .22 .22 1 .08 15
P1.12.11.4 .93 11 .26 .15 1 .07 .09
P1.11.14.1 .92 .99 12 .09 1 .85 A1
P1.6.4 .99 42 31 .78 1 .08 A1
P1.11.13 .96 1 .83 A48 12 .14 A7
N1.10.9.6 .93 11 .72 .24 1 .25 21
N1.9.8 97 .28 18 .19 .86 .10 .10
P1.12.3.6 .95 .24 18 .15 91 1 .88
N1.7.15.8 .95 .30 .16 1 1 .99 .13
N1.9.2.7 .86 .46 1 .15 A7 1 A1
N1.11.13.2 .94 11 .10 .64 A1 12 1
N1.12.4.8 91 .15 .19 .35 1 1 11

the genes. The smallest component (component 5) is about
twice the size of the largest component (component 6).

In summary, our analysis on this motif data provides evi-
dence to the hypothesis that there exist different patterns of
gene regulation (K = 6 is suggestion in our analysis). Fur-
thermore the results from componentwise variable selection
suggest that there might exist different gene groups and each
group is regulated by a different set of TFs. However, ex-
pert knowledge from bioinformatics is needed to justify the
interpretation of our results and suggest additional studies
for more insightful outcomes.

5. CONCLUSIONS AND DISCUSSIONS

We propose a general approach for componentwise vari-
able selection in FMR, which is essentially a Gibbs sam-
pling scheme with data augmentation that utilizes the la-
tent membership variable. There are two iterative steps in
the approach: estimation of parameters for each compo-
nent and allocation of observations to each component. In
the step of estimating parameters, specially designed priors
(such as spike-slab prior) or processes (such as Reversible
Jump MCMC) can then be used to achieve the purpose
of variable selection. Componentwise variable selection is
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achieved since parameter estimation is carried out individ-
ually in each component. We next illustrate how specific
Bayesian variable selection techniques can be embedded in
the general approach including g-prior and SSVS. We fur-
ther choose the g-prior method as an example and proceed
with discussing prior settings and assessing performance via
a series of simulation studies.

The first part of the simulation studies is a sensitivity
study on the priors of the g-prior method. The results show
that the three common prior settings have no obvious effect
on the performance of variable selection. As the main part,
we evaluate the performance of the proposed approach for
componentwise variable selection and clustering of observa-
tions in various scenarios. The results show excellent per-
formance on variable selection even in challenging scenarios
with high-level noise and small sample size. The clustering
of observations does not seem to have been recovered very
well with correction rates dropping to 60-70% in challeng-
ing scenarios, which, however, is caused largely by noise in
the data itself. It is worth noting that the simulation stud-
ies done so far are for evaluating the g-prior method. The
performance of the proposed approach embedded with other
variable selection techniques such as RIMCMC is an open
question for future study.

As for the Gibbs sampling method, the proposed ap-
proach provides fast convergence. For example, the sampler
converged to the true state in less than 200 iterations in easy
scenarios and in about 500 iterations in challenging scenar-
ios in the simulation studies. Another advantage of the ap-
proach is that the user has the freedom to choose a specific
variable selection technique. On the other hand, the pro-
posed approach has relatively poor performance for small
components in the case of unbalanced component weights
(i.e., some components have considerably smaller size than
the others). As explained earlier, this problem is caused
by invasion of observations from large components into the
small components. We thus call it “invasion disturbance”. It
is important to note that this drawback is different from the
common problematic issue with the Gibbs sampling called
“trapping states”, that is, the Gibbs sampler is stuck in a
local maximum and needs an enormous number of iterations
to escape from it so as to converge to the true state. Rather
“invasion disturbance” could not be cured by running more
iterations as long as parameter estimation depends on allo-
cation, which is unfortunately the case in the proposed ap-
proach. The Metropolis-Hastings sampling without alloca-
tion is a possible resolution, but designing a feasible proposal
density is challenging. Solutions to “invasion disturbance” is
an interesting topic of future research.

Lastly, we compare our method to Khalili and Chen
(2007). They achieved variable selection by maximizing a pe-
nalized likelihood function using the EM algorithm. Though
apparently this method is frequentist and ours belongs to
the Bayesian class, there are some similarities between their
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method and ours: both rely on the data augmentation frame-
work (Dempster et al., 1977) which includes the latent mem-
bership variable z in the iterative process, and both are
flexible by allowing choosing from various variable selection
techniques. Both are iterative methods. But as a general dif-
ference, their method is to search for MLE or maximum a
posterior (MAP), while our method generates the entire pos-
terior distribution. Having the posterior distribution gives us
the potential to do many things beyond MAP, which might
be viewed as an advantage of our method. From our point of
view, our proposed approach has two additional advantages.
First, our method allows for the latent indicator of variable
inclusion « so that variable selection could be treated as less
independent of the value of the coefficient. This might be
beneficial when a variable has a small coefficient value but
its contribution is significant, which sometime is the case
when variables are not normalized. Second, our method is
ready to have model space search techniques embedded such
as Reversible Jump MCMC so that the sampler could moves
between mixture models with different K. We can then ac-
complish the three goals — estimating K, selecting variable,
and clustering observations — simultaneously, which is a
challenging task to Khalili and Chen (2007). On the other
hand, since finding MLE is usually faster than sampling a
distribution, their method might converge faster than our
method and thus needs less computation. We have just laid
out some theoretical comparisons between the two methods.
As for simulation studies, we generated more challenging
simulated data (4-component mixture versus 2-component
mixture in their study). Our method performed satisfactory
componentwise variable selection even in the most challeng-
ing scenarios, but we are not sure if their method would
have comparable performance in the same situation. It will
be an interesting topic of future study to look further into
theoretical differences in depth and conduct more careful
simulation studies to compare the performance between our
method and Khalili and Chen (2007) on the same simulated
data.

APPENDIX A. LABEL SWITCHING AND
RELABELING

Stephens (1997, 2000) develops relabeling techniques
based on minimizing the posterior expectation of a loss func-
tion. Let L(a, ) be the loss function with the action a and
the true parameter §. In his papers Stephens uses the over-
all classification matrix as a and the iteration-wise classi-
fication probability matrix representing 6. Specifically, let
@ = (gij) be an n x K matrix of overall classification prob-
abilities. Each row of () represents the probabilities that
each observation ¢ is assigned to the K components such
that Zszl qij = 1.

We denote the matrix of classification probabilities at
each iteration by P(v) = (p;;(v)), where

__ PUil8j)e;
S P (yil0k) wi

pij ()



As for the loss function, Stephens (1997) suggests the
Kullback-Leibler distance between the “true” distribution
corresponding to P(1)) and the distribution corresponding

to Q:

e Pij (%)
ﬁ(Q%";b):E E pij (1) log “ )
i=1 j=1 i
J
which is minimized iteratively until some tolerance is
reached as described in the following algorithm.

Algorithm 4. (Kullback-Leibler Relabeling Algo-

rithm)
Start with initial permutations of {1,..., K} for all it-
erations vq,...,1,...,vy and denote by l/t(’l,l)(t)) the rear-

rangement of the parameters at the tth iteration. Iterate the
following steps until convergence.

1. Choose Q = (g;;) to minimize the loss

2. It can be shown that this is achieved by averaging
MCMC samples of p;; (1),

R (t)
Qij—M;pij (l/t<1/’ ))

3. Fort=1,..., M, choose a label permutation v; to min-
imize

)
= i imj (v (¥")) 108 M

i=1 j=1 4ij
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