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Objective Bayesian analysis for masked data
under symmetric assumption
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In this paper, we consider an exponential model with
masked data. We show that the parameters are nonidenti-
fiable under a general masking probability assumption, and
under symmetric assumption find a prior based on which the
posterior means of parameters coincide with their MLEs.
The Jeffreys prior and the reference prior are also derived
under symmetric assumption. Propriety of the posteriors un-
der the Jeffreys prior and the reference prior is assessed.
When the hazard function of the series system is of inter-
est, a reparametrization is considered, and we derive Jef-
freys prior and the reference prior under the reparametriza-
tion. Then the frequentist coverage probabilities of the α-
quantiles of the marginal posterior distributions of the pa-
rameters are obtained. The simulation study shows that the
reference prior performs better than the Jeffreys prior in
meeting the target coverage probabilities.
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1. INTRODUCTION

Masked data, a complex variant of competing risk data,
is becoming more prominent in reliability studies, medical
diagnostic studies and biological systems. With a competing
risk data, each failure time is associated to a known cause of
failure, whereas for masked data, the causes for a failure may
be unknown (masked) for a group of subjects. In this paper,
we assume that these masked failure times are known up
to a subset of all causes of failures, the so-called Minimum
Random Subset (MRS) ([10]). Denote MRS as M . When M
is a singleton, the masked data reduces to a competing risk
data. When M is the set of all causes of failures, the data is
known to be completely masked ([3]). Note that the set M
varies from subject to subject. There are many reasons that
lead to masking in the data. The most common reasons are:
(i) the lack of proper diagnostic equipments, (ii) the cost
and time constraints associated to the data collection, (iii)
recording errors, and (iv) the destructive nature of certain
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failed components that prevents an exact diagnostic to take
place.

Consider n identical series systems, each with J compo-
nents. Let the random variable Xij be the lifetime of the j-
th component of the i-th series system. Then the lifetime of
the i-th series system is given by Zi = min{Xi1, · · · , XiJ}.
Due to censoring, the observed data from the i-th series
system reduces to (ti; Mi; Ci), i = 1, . . . , n, where ti is the
failure time of the i-th series system, Mi denote the MRS
corresponding to the i-th system, and the binary variable
Ci captures whether the observed failure time of the i-th
system is censored (Ci = 0) or not (Ci = 1). The setting of
the censoring scheme is very general, including type-II cen-
soring and progressively type-II censoring. We denote the
observed data as (t,M ,C). Then the likelihood function
is

L((t,M ,C)|θ)(1)

=

n∏
i=1

{[∑
j∈Mi

Pr(M = Mi|T = ti,K = j)

× fj(ti|θj)
∏
k �=j

Rk(ti|θk)
]Ci
}

n∏
i=1

[
J∏

k=1

Rk(ti|θk)
]1−Ci

=
n∏

i=1

{[∑
j∈Mi

Pr(M = Mi|T = ti,K = j)hj(ti|θj)
]Ci

×
J∏

k=1

Rk(ti|θk)
}
,

where hj(ti|θj) = fj(ti|θj)/Rj(ti|θj) is the hazard rate
function of Xij , K is a latent variable describing the true
cause of failure of the system, and we assume the observed
MRS always includes the true cause of failure. Thus, when
Mi is a singleton, K = Mi. P (M = Mi|T = ti,K = j) in
(1) is the masking probability. The most used assumption
of the masking probability is symmetric assumption (also
called equiprobable assumption by some authors), that is,
∀j ∈ Mi,

P (M = Mi|T = ti,K = j) = p(Mi), i = 1, . . . , n.(2)

In other words, under the symmetric assumption, the mask-
ing probability does not depend on the failure time and the
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true cause of failure. And the likelihood (1) reduces to

L1((t,M ,C)|θ,P1)(3)

=

n∏
i=1

p(Mi)

{[∑
j∈Mi

hj(ti|θj)
]Ci J∏

k=1

Rk(ti|θk)
}
,

where P1 is a vector with distinct p(Mi), i = 1, 2, . . . , n.
Most of the earlier works in masked data analysis subject the
masking probability to this symmetric assumption. [15] was
the first one who considered the problem of a two-component
series system when the lifetime of the system’s components
followed exponential distributions and the maximum like-
lihood estimators for the parameters were obtained based
on the masked data. [20] extended Miyakawa’s results to a
three-component series system under the same assumption.
[10], Lin et al. (1993, 1996) further extended these results
when Weibull distribution was assumed. Reiser et al. (1995)
provided a Bayesian analysis for the case of [20]. [3] dis-
cussed Bayesian inference with Weibull distributions for the
system’s components under complete masking and an ex-
tension to partial masking cases was studied by [17], Basu
et al. (1999) and Basu et al. (2003). [23] utilized a nonpara-
metric Bayesian method to estimate the survival function of
the series system when the data was masked.

A generalization of symmetric assumption is to assume
that the masking probability is independent of failure time,
but depends on the cause of failure, that is

P (M = Mi|T = ti,K = j) = pj(Mi),(4)

j ∈ Mi, i = 1, 2, . . . , n.

Thus (1) can be written as

L2((t,M ,C)|θ,P2)(5)

=

n∏
i=1

{[∑
j∈Mi

pj(Mi)hj(ti|θj)
]Ci J∏

k=1

Rk(ti|θk)
}
,

where P2 is a vector with distinct pj(Mi), j ∈ Mi, i =
1, 2, . . . , n. Under this assumption, [12] developed a Bayesian
analysis for two-component systems with both indepen-
dent exponential and Weibull component lifetimes. [16] used
the maximum likelihood method to estimate both the life-
time parameters and masking probabilities via an EM al-
gorithm, and constructed approximate confidence intervals,
further corrected them by bootstrap method. [22] proposed
a Bayesian analysis for two-component systems with Pareto
distribution lifetime. Xu et al. (2014b) considered Bayesian
analysis of masked data in step-stress accelerated life test-
ing. Xu et al. (2014a) proposed a full Bayesian method for
analyzing masked data in step-stress accelerated life testing.

All the literature referenced so far can be split into
two broad methodologies: the classical approach and the
Bayesian approach, each having its advantages and draw-
backs. In the classical approach, large-sample asymptotic
methods are heavily relied upon to construct confidence in-

tervals for the parameters of interest. Subjective Bayesian
methods do not rely on the normal approximation and are
known to work very well. However, the process of eliciting
the prior distribution may not be easy to determine even
in presence of historical data or the experience of experts.
With limited time and little knowledge about the hyperpa-
rameters, the obtained priors could be quite bad. See [4].
Instead, the objective Bayesian approach is an alternative.
The main spirit of the objective Bayesian approaches is the
use of the noninformative prior distributions, and the Jef-
freys prior and the reference prior are the two most used of-
ten noninformative priors. For more details, see [11], [6], [5]
and [9]. To the best of our knowledge, all the literature about
masked data is not devoted to objective Bayesian method.
Thus, we will consider objective Bayesian method to analyze
masked data in this paper, and the lifetime of each compo-
nent is assumed to be an exponential distribution. In Section
2, we prove that the parameters of the likelihood function
in (5) are nonidentifiable. Under the symmetry property, we
present an improper prior under which the posterior means
of the model parameters coincide with the MLEs. However,
this prior can lead a posterior that is not proper. Thus, in
Section 3, we derive the Jeffreys and the reference priors
and show that their corresponding posterior distributions
are always proper. Then we derive the frequentist coverage
probabilities of the α posterior quantiles of parameters in
the model. Small sample comparison of the noninformative
priors is performed in Section 4. Finally, some concluding
remarks and discussions are made in Section 5.

2. MAXIMUM LIKELIHOOD ESTIMATORS

2.1 Model

Suppose that a series system has two exponential compo-
nents, that is, X1 ∼ Exp(λ1), X2 ∼ Exp(λ2). This model is
considered by [15] and [12]. [15] derived maximum likelihood
estimates of λ1 and λ2 under the symmetric assumption,
while [12] proposed Bayesian method to obtain estimation
of model parameters under the assumption (4). The likeli-
hood function under (4) simplifies to

L = (1− p1)
r1(1− p2)

r2λr1
1 λr2

2 (p1λ1 + p2λ2)
r3(6)

× exp{−(λ1 + λ2)T},

where p1 = P (M = {1, 2} | K = 1), p2 = P (M = {1, 2} |
K = 2), T =

∑n
i=1 ti, r1 and r2 are the number of sys-

tem failures due to component one and two, respectively, r3
denotes the number of failures masked and r1 + r2+ r3 = r.

Theorem 2.1. Under the assumption (4), the parameters
in the L are nonidentifiable.

See the proof in the Appendix. Thus, the frequentist
method cannot provide a viable solution to this problem.
For the Bayesian approach, it will work well if there is pre-
cise prior information of the parameters available. However,
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the precise prior information of the parameters are hard
to collect. Thus, under the general assumption (4), both
the frequentist and Bayesian methods fail to deal with the
problem well. Flehinger et al. (2002) added second stage
information (providing definitive diagnosis for part of the
masked causes), and successfully estimated all the param-
eters in the model by maximum likelihood method. Sen et
al. (2010) used covariates as additional information, and as-
sumed a logistic structure between masking probability and
covariates, then obtained the estimates of the parameters
in the model. However, additional information is not always
available. Another way to estimate these parameters is un-
der symmetric assumption. Under symmetric assumption,
the likelihood function (6) is reduced to

L1 = pr3(1− p)r1+r2λr1
1 λr2

2 (λ1 + λ2)
r3(7)

× exp{−(λ1 + λ2)T},

where p = P (M = {1, 2}). (7) is the model we consider in
this paper. Without loss of generality, we assume a type-II
censoring mechanism for the failure times and that r3 > 0,
since r3 = 0 means that there is no data masked.

2.2 Connections between MLEs and
Bayesian estimators

The MLEs of the parameters in (7) are

p̂ =
r3
r
, λ̂1 =

r

T

r1
r1 + r2

, λ̂2 =
r

T

r2
r1 + r2

.(8)

The MLEs are very intuitive and can be obtained when the
population means are replaced by the sample means, and
they also have some nice properties.

Proposition 2.1. 1.

(r1, r2, r3) ∼ Multinomial

(
r,
(1− p)λ1

λ1 + λ2
,
(1− p)λ2

λ1 + λ2
, p

)
.

2. T follows the gamma distribution with mean r/(λ1+λ2)
and variance r/(λ1 + λ2)

2.
3. (r1, r2, r3) is independent of T .

Thus 1/T follows the inverse gamma distribution with
mean (λ1+λ2)/(r−1) and variance (λ1+λ2)

2/[(r−1)2(r−2)]
(r > 2), and rr1/(r1+r2) follows Binomial(r, λ1/(λ1+λ2)).

Proposition 2.2. p̂ is unbiased, and λ̂1 and λ̂2 are asymp-
totically unbiased.

See the proof in the Appendix.
From Proposition 2.2, we can obtain that the unbiased

estimates (UEs) of λ1 and λ2 are

λ̃1 =
r − 1

T

r1
r1 + r2

and λ̃2 =
r − 1

T

r2
r1 + r2

,

respectively. And

Var(λ̃1) =
λ1[(r − 1)λ2 + rλ1]

r(r − 2)
,

Var(λ̃2) =
λ2[(r − 1)λ1 + rλ2]

r(r − 2)
.

There are two drawback of the frequentist method: (i) the
constraint of the number of failure (r > 2), (ii) r1, r2 > 0.
When r1 = 0 or r2 = 0, the MLEs and UEs of λ1 or λ2

will be 0, which always underestimates the parameter. As
an alternative, Bayesian method can be used in this prob-
lem. To perform Bayesian analysis, we should assign prior
for (p, λ1, λ2). A natural prior for p is U(0, 1). Besides, we
choose 1/(λ1λ2) as the prior of λ1 and λ2. Thus the prior of
(p, λ1, λ2) is

π1(p, λ1, λ2) ∝ 1/(λ1λ2).

π1(p, λ1, λ2) is an improper prior. Thus, the posterior pro-
priety needs to be justified. See the following results.

Theorem 2.2. Under the prior π1(p, λ1, λ2), if r1 > 0 and
r2 > 0,

1. Then the posterior distribution of (p, λ1, λ2) is proper.
2. The posterior of p is B(r3 + 1, r1 + r2 + 1).
3. The posterior means of λ1 and λ2 are exact the same

as their MLEs.

See the proof in the Appendix. In Theorem 2.2, a con-
dition is needed to make the posterior distribution proper.
However, the condition is not always guaranteed, especially
in the case of small sample size. Thus the prior π1(p, λ1, λ2)
is not recommended, though the posterior means coincide
with MLEs. Also, if r1 = 0 or r2 = 0, the MLEs will fail,
since λ̂1 = 0 or λ̂2 = 0, which significantly underestimate
λ1 or λ2. In the next section, two noninformative priors will
be derived to overcome this problem.

3. NONINFORMATIVE PRIORS AND
POSTERIOR ANALYSIS

It is not difficult to show that the Fisher information
matrix of (p, λ1, λ2) is

(9)

I(p, λ1, λ2)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

r

p(1− p)
0 0

0
r(λ1 + λ2)− rpλ2

λ1(λ1 + λ2)2
rp

(λ1 + λ2)2

0
rp

(λ1 + λ2)2
r(λ1 + λ2)− rpλ1

λ2(λ1 + λ2)2

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Then we have

|I(p, λ1, λ2)| =
r3

pλ1λ2(λ1 + λ2)2
.

Thus the Jeffreys prior is

πJ (p, λ1, λ2) ∝ p−1/2λ
−1/2
1 λ

−1/2
2 (λ1 + λ2)

−1.
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Theorem 3.1. (i) When the group order is {(λ1, λ2), p},
the reference prior is

πR(p, λ1, λ2) ∝ p−1/2(1− p)−1/2λ
−1/2
1 λ

−1/2
2 (λ1 + λ2)

−1.

(ii) When the group order is {p, (λ1, λ2)}, the reference
prior is identical to the Jeffreys prior.

See the proof in the Appendix. Since the Jeffreys prior
and the reference prior are improper, we should justify the
posterior propriety of the parameters.

Theorem 3.2. The posterior distributions of (p, λ1, λ2)
based on πR(p, λ1, λ2) or πJ (p, λ1, λ2) are always proper.

See the proof in the Appendix. The results of Theorem
3.2 are very interesting, since no matter how small the num-
ber of the failures, we can always use the two noninforma-
tive priors to do statistical inference. Based on πR(p, λ1, λ2)
or πJ (p, λ1, λ2), the joint posterior density functions of
(p, λ1, λ2) are

πR(p, λ1, λ2|t) ∝ (1− p)r1+r2−1/2pr3−1/2λ
r1−1/2
1 λ

r2−1/2
2

× (λ1 + λ2)
r3−1 exp{−(λ1 + λ2)T},

πJ (p, λ1, λ2|t) ∝ (1− p)r1+r2−1pr3−1/2λ
r1−1/2
1 λ

r2−1/2
2

× (λ1 + λ2)
r3−1 exp{−(λ1 + λ2)T}.

Theorem 3.3. Under the priors πR(p, λ1, λ2) and
πJ (p, λ1, λ2), both the marginal posterior cumulative distri-
bution of λ1 are

F1(λ1|t)

(10)

=

∫ λ1

0

∫∞
0

xr1−1/2λ
r2−1/2
2 (x+ λ2)

r3−1 exp{−(x+ λ2)T}dλ2dx∫∞
0

∫∞
0

xr1−1/2λ
r2−1/2
2 (x+ λ2)r3−1 exp{−(x+ λ2)T}dλ2dx

=

∫ 1
0
yr1−1/2(1− y)r2−1/2Γ(λ1/y; r, T )dy

beta(r1 + 1/2, r2 + 1/2)
,

where Γ(λ1/y; r, T ) is the cumulative distribution function of
the gamma distribution with mean r/T evaluated at λ1/y.
Both the marginal posterior cumulative distribution of λ2

are

F2(λ2|t)

(11)

=

∫ λ2

0

∫∞
0

xr2−1/2λ
r1−1/2
1 (x+ λ1)

r3−1 exp{−(x+ λ1)T}dλ1dx∫∞
0

∫∞
0

xr2−1/2λ
r1−1/2
1 (x+ λ1)r3−1 exp{−(x+ λ1)T}dλ1dx

=

∫ 1
0
yr2−1/2(1− y)r1−1/2Γ(λ2/y; r, T )dy

beta(r2 + 1/2, r1 + 1/2)
.

Proof. The second equality of (10) is due to the transfor-
mation y = x/(x + λ2), z = x + λ2, and (11) is because of
the transformation y = x/(x+ λ1), z = x+ λ1.

Sometimes, the hazard rate of the series system λ1 + λ2

may be of the most interest. We reparametrize p, λ1 and λ2

as

p = p, ν =
λ1

λ1 + λ2
, μ = λ1 + λ2.

In this setting, ν is the probability that the failure of series
system is due to the first component. Then the likelihood
function becomes

L(p, ν, μ|t) = pr3(1− p)r1+r2νr1(1− ν)r2μr exp{−Tμ},

and the Fisher information matrix of p, ν and μ is

I(p, ν, μ) =

⎡
⎢⎢⎢⎢⎢⎣

r

p(1− p)
0 0

0
r(1− p)

ν(1− ν)
0

0 0
r

μ2

⎤
⎥⎥⎥⎥⎥⎦ .

Then the Jeffreys prior is πJ (p, ν, μ) ∝ p−1/2ν−1/2(1 −
ν)−1/2μ−1. The reference priors of the different orders are

πR(p, ν, μ) ∝ p−1/2(1− p)−1/2ν−1/2(1− ν)−1/2μ−1

or

πJ (p, ν, μ) ∝ p−1/2ν−1/2(1− ν)−1/2μ−1.

Theorem 3.4. Under the priors πR(p, ν, μ) or πJ (p, ν, μ),
(a) Both the marginal posterior distributions of ν are

B(r1 + 1/2, r2 + 1/2).
(b) Both the marginal posterior distributions of μ are

G(r, T ), where G(r, T ) denotes the gamma distribution with
mean r/T and variance r/T 2.

(c) The marginal posterior distributions of p are B(r3 +
1/2, r1 + r2 + 1/2) based on πR(p, ν, μ), and the marginal
posterior distributions of p are B(r3+1/2, r1+r2+1) based
on πJ (p, ν, μ).

From Theorem 3.4, we can easily obtain the posterior
means and interval estimates of p, ν and μ. The estimates
of the original parameters λ1 and λ2 can also be obtained
using the results of Theorem 3.4. The procedure is as follows:

1. Generate ν(i) from B(r1 + 1/2, r2 + 1/2), μ(i) from
G(r, T ), i = 1, 2, . . . ,m.

2. Let λ
(i)
1 = ν(i)μ(i) and λ

(i)
2 = (1 − ν(i))μ(i). Then we

can obtain that the posterior means of λ1 and λ2 are

1

m

m∑
i=1

λ
(i)
1 and

1

m

m∑
i=1

λ
(i)
2 ,

respectively. The 100(1 − α)% credible intervals of

λ1 and λ2 are [λ
(α/2)
1 , λ

(1−α/2)
1 ] and [λ

(α/2)
2 , λ

(1−α/2)
2 ],

where λ
(α/2)
1 and λ

(α/2)
2 are the α/2-quantile of λ

(i)
1 ,

i = 1, 2, . . . ,m and λ
(i)
2 , i = 1, 2, . . . ,m, respectively.
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Figure 1. 5% frequentist coverage probability of F−1
p (α) under different sample sizes.

Denote qb(α, i, j) as the α-quantile of B(i, j). Let F−1
φ (α)

be the α-quantile of the marginal posterior distribution of
φ, F−1

Rp (α) be the α-quantile of the marginal posterior distri-

bution of p based on the reference prior, and F−1
Jp (α) be the

α-quantile of the marginal posterior distribution of p based
on the Jeffreys prior.

Theorem 3.5. (a) The frequentist coverage probability of
F−1
μ (α) is α.
(b) The frequentist coverage probability of F−1

ν (α) is∑
kij

r!
i!j!(r−i−j)!p

r−i−j(1 − p)i+jνi(1 − ν)j , where Sij =

{(i, j) : qb(α, i + 1/2, j + 1/2) ≥ ν, i + j ≤ r}. If the set
Sij is empty, then the frequentist coverage probability is 0.

(c) The frequentist coverage probability of F−1
Rp (α) is∑r

j=k1

(
r
j

)
pj(1−p)r−j , where S1 = min{i : qb(α, i+1/2, r−

i+ 1/2) ≥ p}. If S1 does not exist, then the frequentist cov-
erage probability is 0.

(d) The frequentist coverage probability of F−1
Jp (α) is∑r

j=k2

(
r
j

)
pj(1−p)r−j , where S2 = min{i : qb(α, i+1/2, r−

i+1) ≥ p}. If S2 does not exist, then the frequentist coverage
probability is 0.

See the proof in the Appendix. From Theorem 3.5, we
know that the frequentist coverage probabilities of the α-
quantile of the marginal posterior distributions of p under
both the Jeffreys prior and the reference prior are related to
p. Under the reference prior, the frequentist coverage prob-
ability has a symmetric property in the sense of Corollary

1 below. However, it does not hold under the Jeffreys prior.
Besides, given p, the frequentist coverage probabilities of the
α-quantile of the marginal posterior distributions of ν also
has the symmetric property.

Corollary 3.1. (a) If p /∈ {qb(α, j + 1/2, r − j + 1/2), j =
0, . . . , r}, then P (F−1

Rp (α) ≥ p)+P (F−1
Rp (1−α) ≥ 1−p) = 1.

(b) If p /∈ {qb(α, i+ 1/2, j + 1/2), i+ j ≤ r}, then given
p, P (F−1

ν (α) ≥ v) + P (F−1
ν (1− α) ≥ 1− v) = 1.

See the proof in the Appendix.

4. SMALL SAMPLE COMPARISON

In this section simulation studies are performed to see
the frequentist coverage of the α-quantiles of the marginal
posterior distributions of p, ν, μ, λ1 and λ2. We take
λ1 = 0.001, λ2 = 0.002, and p = 0.1(0.2, ..., 0.9). The sam-
ple size n = 5(10, 15) and α = 0.05(0.95). Since the cover-
age probability of the F−1

μ (α) is exact, we do not list here.
The relationships between p and the frequentist coverages
of F−1

Rp (α) and F−1
Jp (α) are drawn in Figures 1 and 2. We

see that the reference prior performs much better than the
Jeffreys prior, and the coverage probabilities based on the
reference prior have symmetric property, just as Corollary
1 indicated. Besides, from Theorem 3.5, we know that the
frequentist coverage probability of F−1

ν (α) is related to ν
and p, and we do not list the result because the resolution
of the figures are not high. The R codes are available from
the authors, upon request.
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Figure 2. 95% frequentist coverage probability of F−1
p (α) under different sample sizes.

Table 1. 5% frequentist coverage probability of F−1
λ1

(α) and F−1
λ2

(α)

n = 5 p = .1 p = .2 p = .3 p = .4 p = .5 p = .6 p = .7 p = .8 p = .9

λ1 0.0370 0.0378 0.0359 0.0355 0.0395 0.0368 0.0351 0.0264 0.0154
λ2 0.0339 0.0310 0.0312 0.0249 0.0214 0.0162 0.0126 0.0096 0.0038

n = 10 p = .1 p = .2 p = .3 p = .4 p = .5 p = .6 p = .7 p = .8 p = .9

λ1 0.0409 0.0424 0.0401 0.0405 0.0444 0.0461 0.0465 0.0418 0.0281
λ2 0.0349 0.0339 0.0331 0.0325 0.0303 0.0284 0.0203 0.0139 0.0046

n = 15 p = .1 p = .2 p = .3 p = .4 p = .5 p = .6 p = .7 p = .8 p = .9

λ1 0.0463 0.0452 0.0443 0.0454 0.0440 0.0438 0.0496 0.0495 0.0394
λ2 0.0392 0.0359 0.0351 0.0352 0.0326 0.0337 0.0277 0.0188 0.0072

Table 2. 95% frequentist coverage probability of F−1
λ1

(α) and F−1
λ2

(α)

n = 5 p = .1 p = .2 p = .3 p = .4 p = .5 p = .6 p = .7 p = .8 p = .9

λ1 0.9344 0.9424 0.9483 0.9586 0.9665 0.9758 0.9855 0.9921 0.9964
λ2 0.9239 0.9261 0.9226 0.9241 0.9226 0.9232 0.9280 0.9346 0.9538

n = 10 p = .1 p = .2 p = .3 p = .4 p = .5 p = .6 p = .7 p = .8 p = .9

λ1 0.9331 0.9304 0.9300 0.9326 0.9358 0.9479 0.9629 0.9807 0.9961
λ2 0.9342 0.9318 0.9319 0.9276 0.9250 0.9218 0.9248 0.9281 0.9431

n = 15 p = .1 p = .2 p = .3 p = .4 p = .5 p = .6 p = .7 p = .8 p = .9

λ1 0.9392 0.9406 0.9392 0.9368 0.9367 0.9357 0.9470 0.9688 0.9913
λ2 0.9381 0.9351 0.9363 0.9349 0.9313 0.9301 0.9306 0.9248 0.9364

Tables 1 and 2 give the numerical values of the frequen-
tist coverage probabilities of F−1

λ1
(α) and F−1

λ2
(α). We can

not obtain the explicit form of the coverage probabilities of
F−1
λ1

(α) and F−1
λ2

(α), but they are related to p, λ1 and λ2,

and have some jump points. That is why the coverage proba-
bilities are close to α in some areas of p, while in other areas,
the coverage probabilities are much different from α. To as-
sess the effects of λ1 and λ2 on the coverage probabilities, we
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Table 3. 5% frequentist coverage probability of F−1
λ1

(α) and F−1
λ2

(α) when λ1 = 0.0010, λ2 = 0.0011

n = 5 p = .1 p = .2 p = .3 p = .4 p = .5 p = .6 p = .7 p = .8 p = .9

λ1 0.0350 0.0340 0.0346 0.0318 0.0336 0.0277 0.0195 0.0185 0.0095
λ2 0.0321 0.0340 0.0303 0.0290 0.0277 0.0237 0.0160 0.0111 0.0049

n = 10 p = .1 p = .2 p = .3 p = .4 p = .5 p = .6 p = .7 p = .8 p = .9

λ1 0.0397 0.0366 0.0391 0.0390 0.0394 0.0396 0.0354 0.0285 0.0146
λ2 0.0387 0.0417 0.0408 0.0369 0.0354 0.0359 0.0317 0.0239 0.0094

n = 15 p = .1 p = .2 p = .3 p = .4 p = .5 p = .6 p = .7 p = .8 p = .9

λ1 0.0454 0.0450 0.0455 0.0450 0.0415 0.0443 0.0467 0.0462 0.0258
λ2 0.0414 0.0426 0.0429 0.0416 0.0420 0.0410 0.0395 0.0338 0.0180

Table 4. 95% frequentist coverage probability of F−1
λ1

(α) and F−1
λ2

(α) when λ1 = 0.0010, λ2 = 0.0011

n = 5 p = .1 p = .2 p = .3 p = .4 p = .5 p = .6 p = .7 p = .8 p = .9

λ1 0.9228 0.9250 0.9259 0.9326 0.9381 0.9471 0.9627 0.9738 0.9867
λ2 0.9284 0.9239 0.9258 0.9230 0.9285 0.9322 0.9427 0.9580 0.9737

n = 10 p = .1 p = .2 p = .3 p = .4 p = .5 p = .6 p = .7 p = .8 p = .9

λ1 0.9370 0.9361 0.9347 0.9317 0.9317 0.9321 0.9414 0.9605 0.9825
λ2 0.9369 0.9358 0.9346 0.9311 0.9343 0.9325 0.9321 0.9427 0.9687

n = 15 p = .1 p = .2 p = .3 p = .4 p = .5 p = .6 p = .7 p = .8 p = .9

λ1 0.9326 0.9359 0.9352 0.9334 0.9304 0.9353 0.9337 0.9435 0.9722
λ2 0.9433 0.9409 0.9400 0.9385 0.9341 0.9337 0.9351 0.9394 0.9590

Table 5. NRVD data for 58 female mice

Disease Status Mi Time to death

incidental {1} 231,444,468,473,527,550,559,593,595,596,600,603,610,650,655,660,715,720,752,765,783,785,794,811,832,
838,856,859,870,883,891,896,897,904,931,952,975,978,991,998,1005,1023,1026,1053

fatal {2} 500,591,713,751,778,784,786,796

unknown {1, 2} 593,735,816,848,850,1046

also compute these frequentist coverage probabilities when
λ1 = 0.0010, λ2 = 0.0011. The results are listed in Tables
3 and 4. We find that the coverage probabilities are a little
better than before, but not significantly.

5. REAL DATA STUDY

[7] gave the data that reported the death time and non-
renal vascular disease (NRVD) status at death for 58 female
mice. The disease status is classified as “absent”, “inciden-
tal”, “unknown” or “fatal”, according to whether the ani-
mal died without disease, with the disease present but not
responsible for the death, with the disease present but its
role in causing death unknown, or as a result of the disease.
Therefore, the status “unknown” is referred to as masking
of “incidental” and “fatal”. To assess the role of the disease,
we combine both the absent and the incidental status into
one called the incidental status, which is also done by [12].
Let Mi indicate the disease status. We denote Mi = {1} if
the disease status is “incidental” and Mi = {2} if the dis-
ease status is “fatal”. Thus Mi = {1, 2} if the disease status
is “unknown”. The data is listed in Table 5.

Based on πJ(p, λ1, λ2) and πR(p, λ1, λ2), we compute the
posterior means and 95% credible intervals (CIs) of p, λ1, λ2,
ν and μ. The results are listed in Table 6. As a comparison,
we also list the results of [12]. They utilized the uniform prior
for p and G(1, 0.000001) for λ1 and λ2. The result based on
the three priors are very close to each other, because the
sample size is large enough, so that the prior information
can be ignored. From Table 6, we see that λ1 is significantly
greater than λ2, because their 95% CIs are not overlapped.
This means the probability of “incidental” status is greater
than that of “fatal” status. Such a result can also be reflected
by the 95% CI of ν.

6. DISCUSSION

In this paper, we indicate that the parameters may be
nonidentifiable in the masked data model, and take the ex-
ponential distribution as an example to avoid the nonidenti-
fiable problem by the symmetric assumption. Following the
results of this paper, it can be shown that the unidentified
problem also exists when the lifetimes of components are
Weibull distribution with common shape parameter. Thus,
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Table 6. Posterior means and 95% CI of the parameters

Parameters Estimates πJ(p, λ1, λ2) πR(p, λ1, λ2) Kuo and Yang’s

p mean 0.1092 0.1102 0.1170
95%CI (0.0439, 0.1992) (0.0443, 0.2008) (0.0491, 0.208)

λ1 mean 1.09× 10−3 1.09× 10−3 1.13× 10−3

95%CI (8.09× 10−4, 1.43× 10−3) (8.09× 10−4, 1.43× 10−3) (8.24× 10−4, 1.45× 10−3)

λ2 mean 2.10× 10−4 2.10× 10−4 2.25× 10−4

95%CI (9.26× 10−5, 3.74× 10−4) (9.26× 10−5, 3.74× 10−4) (1.02× 10−4, 3.85× 10−4)

ν mean 0.8395 0.8395 0.8328
95%CI ( 0.7288, 0.9247) ( 0.7288, 0.9247) (0.7251, 0.9203)

μ mean 1.31× 10−3 1.31× 10−3 1.33× 10−3

95%CI (9.95× 10−4, 1.67× 10−3) (9.95× 10−4, 1.67× 10−3) (1.01× 10−3, 1.69× 10−3)

our results can be extended to the Weibull case. Besides, for
the case of the number of the components J > 2, the deriva-
tion of the noninformative priors will be more complicated.
However, it can be easily proved that the result of item (a)
of the theorem 7 still holds.

APPENDIX

Proof of Theorem 2.1. We make the following transforma-
tion ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

u1 = λ1 − λ1p1,

u2 = λ2 − λ2p2,

u3 = λ1p1 + λ2p2,

u4 = g(p1, p2, λ1, λ2),

where g() is an any function, such that the transformation
from (p1, p2, λ1, λ2) to (u1, . . . , u4) is one-to-one. For exam-
ple, g(p1, p2, λ1, λ2) = λ1. Thus, the result is equivalent to
show that (u1, . . . , u4) is nonidentifiable. Based on the above
transformation, the likelihood function (6) becomes

L = ur1
1 ur2

2 ur12
3 exp [−(u1 + u2 + u3)Tr] .

For any two different points (u1, u2, u3, u
′
4) and

(u1, u2, u3, u
′′
4) in the support of the parameters, where u′

4 �=
u′′
4 , the values of L are the same. Thus, the result holds.

Proof of Proposition 2.2. From the first result of Proposi-
tion 2.1, we have

E(p̂) = E
(r3
r

)
=

rp

r
= p, Var(p̂) =

p(1− p)

r
.

Thus, the first result holds. Furthermore,

E(λ̂1) = E

(
1

T

)
· E
(

rr1
r1 + r2

)

=
(λ1 + λ2)

r − 1
· rλ1

λ1 + λ2
=

r

r − 1
λ1,

Var(λ̂1) = E

[(
1

T

)2

·
(

rr1
r1 + r2

)2
]

−
[
E
( r
T

)
· E
(

r1
r1 + r2

)]2

= Var

(
1

T

)
·Var

(
rr1

r1 + r2

)
+Var

(
1

T

)

×
(
E

(
rr1

r1 + r2

))2

+Var

(
rr1

r1 + r2

)
·
(
E

(
1

T

))2

=
rλ1[(r − 1)λ2 + rλ1]

(r − 1)2(r − 2)
.

Similarly, E(λ̂2) = r
r−1λ2 and Var(λ̂2) = rλ2[(r−1)λ1+rλ2]

(r−1)2(r−2) .

Thus, the second result holds.

Proof of Theorem 2.2. Let t = (T, r1, r2, r3). Then the pos-
terior density function of (p, λ1, λ2) is

π(p, λ1, λ2|t) =
L1/(λ1λ2)

m(t)

(12)

= pr3(1− p)r1+r2λr1−1
1 λr2−1

2

× (λ1 + λ2)
r3 exp{−(λ1 + λ2)T}/m(t),

where

m(t) =

∫ ∫ ∫
L1/(λ1λ2)dpdλ1dλ2

=
beta(r1 + r2 + 1, r3 + 1)

T r

×
r3∑
i=0

(
r3
i

)
Γ(r1 + i)Γ(r2 + r3 − i),

where Γ(·) denotes the gamma function, and beta(·, ·) is the
beta function. The third equality holds only if r1 > 0 and
r2 > 0; otherwise, the integration would be infinity for the
cases i = 0 and i = r3. Thus the posterior distribution of
(p, λ1, λ2) is proper only if r1 > 0 and r2 > 0. Thus, the
first result holds. The second result can be easily obtained
from (12).
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To obtain a more simpler expression of m(t), we make
the following transformation

p = p, ν =
λ1

λ1 + λ2
, μ = λ1 + λ2.(13)

Then

m(t) =

∫ ∫ ∫
pr3(1− p)r1+r2λr1−1

1 λr2−1
2 (λ1 + λ2)

r3

× exp{−(λ1 + λ2)T}dpdλ1dλ2

=

∫ ∫ ∫
pr3(1− p)r1+r2νr1−1(1− ν)r2−1μr−1

× exp{−μT}dpdνdμ

=
beta(r1 + r2 + 1, r3 + 1)beta(r1, r2)Γ(r)

T r

=
r3!(r1 − 1)!(r2 − 1)!(r1 + r2)

r(r + 1)T r
.

Similarly, we have

m1(t) =

∫ ∫ ∫
L1/λ2dpdλ1dλ2 =

r3!r1!(r2 − 1)!

(r + 1)T r+1
,

m2(t) =

∫ ∫ ∫
L1λ1/λ2dpdλ1dλ2 =

r3!r1!(r2 − 1)!

(r1 + r2 + 1)T r+2
.

Thus, the posterior mean and variance of λ1 are

E(λ1|t) =
m1(t)

m(t)
=

r

T

r1
r1 + r2

and

Var(λ1|t) =
m2(t)

m(t)
− [E(λ1|t)]2

=
r

T 2

r1(1 + r1)(r1 + r2) + r1r2r

(r1 + r2)2(r1 + r2 + 1)
,

respectively. Similarly, the posterior mean and variance of
λ2 are

E(λ2|t) =
m1(t)

m(t)
=

r

T

r2
r1 + r2

and

Var(λ2|t) =
r

T 2

r2(1 + r2)(r1 + r2) + r1r2r

(r1 + r2)2(r1 + r2 + 1)
.

Thus the results hold.

Proof of Theorem 3.1. (i) According to [5], we need to find
h1 and h2. From (9), we have the fisher information matrix
for (λ1, λ2, p) has the following form

I((λ1, λ2), p) =

(
I11 0
0 I22

)
,

where

I11 =

⎛
⎝ r(λ1+λ2)−rpλ2

λ1(λ1+λ2)2
rp

(λ1+λ2)2

rp
(λ1+λ2)2

r(λ1+λ2)−rpλ1

λ2(λ1+λ2)2

⎞
⎠ , I22 =

r

p(1− p)
.

It is not difficult to calculate that

h1 = |I11| =
r2(1− p)

λ1λ2(λ1 + λ2)2
,

h2 =
|I((λ1, λ2), p)|

|I11|
=

r

p(1− p)
.

Choose Ωk = Ω12k × Ω3k = {(λ1, λ2)|a1k < λ1 < b1k,
a2k < λ2 < b2k} × {p|a3k < p < b13k}, such that a1k, a2k,
a3k → 0, b1k, b2k → ∞ and b3k → 1. Then the conditional
prior of p given (λ1, λ2) is

ξk2 (p|λ1, λ2) =

√
h2AΩ3k

(p)∫
Ω3k

√
h2dp

,

where AΩ3k
(p) is the indicator function of p. The marginal

prior of (λ1, λ2) is

ξk1 (λ1, λ2) ∝ exp

{
1

2

∫
Ω3k

ξk2 (p|λ1, λ2) log(h1)dp

}
×AΩ12k

(λ1, λ2)

∝ 1√
λ1λ2(λ1 + λ2)2

AΩ12k
.

Taking any point in the support of (λ1, λ2, p), say
(0.3,0.3,0.2), then the reference prior of {(λ1, λ2), p} is

πR(p, λ1, λ2) = lim
k→∞

ξk1 (λ1, λ2)ξ
k
2 (p|λ1, λ2)

ξk1 (0.3, 0.3)ξ
k
2 (0.2|0.3, 0.3)

= p−1/2(1− p)−1/2λ
−1/2
1 λ

−1/2
2 (λ1 + λ2)

−1.

(ii) The proof is similar, and is omitted.

Proof of Theorem 3.2. We just prove the result for
πR(p, λ1, λ2), since the result for πJ(p, λ1, λ2) is similar. It
suffices to show that the marginal distribution of t is

mR(t) =

∫
L1πR(p, λ1, λ2)dpdλ1dλ2 < ∞.

First, we have

mR(t) =

∫
(1− p)r1+r2−1/2pr3−1/2λ

r1−1/2
1 λ

r2−1/2
2

× (λ1 + λ2)
r3−1 exp{−(λ1 + λ2)T}dpdλ1dλ2.

Using the transformation (13), we have

mR(t) =

∫
(1− p)r1+r2−1/2pr3−1/2νr1−1/2(1− ν)r2−1/2

× μr−1 exp{−μT}dpdνdμ
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= beta(r1 + r2 + 1/2, r3 + 1/2)

× beta(r1 + 1/2, r2 + 1/2)Γ(r)/T r < ∞.

Proof of Theorem 3.5. (a) From Theorem 4, we know that
μ|t ∼ G(r, T ). Then

P
(
μ ≤ F−1

μ (α)
)

= P(Γ(μ, r, T ) ≤ α)

= P

(∫ μ

0

T r

Γ(r)
xr−1 exp{−Tx}dx ≤ α

)

= P

(∫ Tμ

0

1

Γ(r)
yr−1 exp{−y}dy ≤ α

)

= P

(∫ T

0

μr

Γ(r)
zr−1 exp{−zμ}dz ≤ α

)

= P (Γ(T ; r, μ) ≤ α).

The third equality and the fourth equality hold due to
transformations y = Tx and z = y/μ, respectively. Notice
that the statistics T follows G(r, μ), hence Γ(T ; r, μ) follows
U(0, 1). Thus P (Γ(T ; r, μ) ≤ α) = α.

(b) Notice that

(r1, r2, r3) ∼ Multinomial

(
r,
(1− p)λ1

λ1 + λ2
,
(1− p)λ2

λ1 + λ2
, p

)
.

Then F−1
ν (α) follows a discrete distribution, taking values

in the set {qb(α, i+ 1/2, j + 1/2), i+ j ≤ r}, and the corre-
sponding probabilities are r!

i!j!(r−i−j)!p
r−i−j(1− p)i+jνi(1−

ν)j , i + j ≤ r. If all the values of F−1
ν (α) are less than ν,

the frequentist coverage probability is 0. Otherwise,

P (F−1
ν (α) ≥ ν)

=
∑
kij

r!

i!j!(r − i− j)!
pr−i−j(1− p)i+jvi(1− v)j ,

where Sij = {(i, j) : qb(α, i+ 1/2, j + 1/2) ≥ ν, i+ j ≤ r}.
(c) Notice that r3 ∼ Binomial(r, p). Then F−1

Rp (α) follows
a discrete distribution, taking values in the set {qb(α, j +
1/2, r − j + 1/2), j = 0, . . . , r}, and the corresponding
probabilities are

(
r
j

)
pj(1 − p)r−j , j = 0, . . . , r. If all the

values of qb(α, r3 + 1/2, r1 + r2 + 1/2) are less than p,
P (F−1

Rp (α) ≥ p) = 0. Otherwise,

P (F−1
Rp (α) ≥ p) = P (qb(α, r3 + 1/2, r1 + r2 + 1/2) ≤ p)

=

r∑
j=k1

(
r

j

)
pj(1− p)r−j ,

where S1 = min{i : qb(α, i+ 1/2, r − i+ 1/2) ≥ p}.
(d) The proof is similar to (c).

Proof of Corollary 3.1. (a) From Theorem 5,we have

P (F−1
Rp (α) ≥ p) =

r∑
j=k1

(
r

j

)
pj(1− p)r−j ,

P (F−1
Rp (1− α) ≥ 1− p) =

r∑
j=k0

(
r

j

)
(1− p)jpr−j ,

where k1 is the same as in Theorem 5, k0 = min{i : qb(1−
α, i+ 1/2, r − i+ 1/2) ≥ 1− p}.

Notice that qb(α, a, b)+ qb(1−α, b, a) = 1, for any a, b >
0, thus we know that the set {1− qb(1− α, i+ 1/2, r − i+
1/2), i = r, r−1, . . . , 0} has the same elements as that in the
set {qb(α, j+1/2, r−j+1/2), j = 0, . . . , r}. Hence, from the
definition of k0 and k1, and p /∈ {qb(α, j+1/2, r−j+1/2), j =
0, . . . , r}, we have k0 = r + 1− k1. Thus we obtain

r∑
j=k0

(
r

j

)
(1− p)jpr−j =

r∑
j=r−k1+1

(
r

j

)
pr−j(1− p)j

=

k1−1∑
j=0

(
r

j

)
pj(1− p)r−j .

Then the result follows immediately.

(b) The proof is similar to (a).
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