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A Bayesian phase /Il clinical trial design
in the presence of informative dropouts

BEIBEI GUO, YONG ZANG, AND YING YUAN*

A phase I/II trial design utilizes both toxicity and efficacy
outcomes to make the decision of dose assignment for pa-
tients. Because assessing the efficacy endpoint often requires
a relatively long follow-up time, phase I/II trials are more
susceptible to the missing data problem caused by informa-
tive dropouts that are correlated with treatment efficacy and
toxicity. In addition, patient outcomes may not be scored
quickly enough to apply decision rules that choose treat-
ments or doses for newly accrued patients. To address these
issues, we propose a Bayesian phase I/II design that jointly
models efficacy, toxicity, and dropout as time-to-event data.
Correlations among the three time-to-event outcomes are
taken into account by a shared frailty. This joint model
strategy accounts for the informative dropouts and has an
additional advantage of accommodating a high accrual rate
without suspending patient enrollment when toxicity or effi-
cacy outcomes require a long follow-up. Under the Bayesian
paradigm, we continuously update the posterior estimate
of the model and assign incoming patients to the most de-
sirable dose based on an efficacy-toxicity trade-off utility.
Simulation studies show that the proposed design has good
operating characteristics with a high probability of selecting
the target dose and assigning the most patients to the target
dose.

KEYWORDS AND PHRASES: Bayesian adaptive design, Miss-
ing data, Nonignorable dropout, Dose finding, Trade-off.

1. INTRODUCTION

Phase I clinical trials aim to identify the maximum tol-
erated dose (MTD) of an investigational drug [1, 2, 3, 4, 5,
6, 7], while phase II clinical trials aim to examine the po-
tential efficacy of a new drug based on the MTD obtained
from the phase I trials [8, 9, 10, 11, 12, 13]. Tradition-
ally, phase I and phase II trials are conducted separately
to assess toxicity and efficacy independently; however, this
conventional approach has several drawbacks. For example,
the dose-toxicity function is estimated unreliably in phase
I due to its small sample size. In addition, informal dose
adjustments often are made in phase II if excessive toxic-
ity is observed, which invalidates the assumed properties of
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any efficacy-based design. Lastly, the conventional approach
ignores the inherent trade-off between efficacy and toxicity
that characterizes the way physicians make therapeutic de-
cisions.

Recently, combined phase I/II trial designs have drawn
increasing attention. This class of designs merges two sep-
arate phases of a trial into one phase and assesses toxicity
and efficacy simultaneously. Compared to the conventional
phase-I-followed-by-phase-1T paradigm, phase I/II designs
are more efficient in using the information in the data, and
appropriately reflect the realistic trade-off between efficacy
and toxicity that physicians consider when making thera-
peutic decisions in clinical practice. Thall and Russell [14]
proposed a Bayesian phase I/II design that characterized
patient outcome using a trinary ordinal variable to account
for both efficacy and toxicity. Braun [15] generalized the
continual reassessment method [2] to accommodate efficacy
and toxicity simultaneously. Thall and Cook [16] developed
the EffTox design based on trade-offs between the proba-
bilities of treatment efficacy and toxicity. In the Eff Tox de-
sign, toxicity and efficacy are modeled jointly as a bivariate
variable and the doses are selected for successive patient co-
horts based on a set of efficacy-toxicity trade-off contours
that partition the two-dimensional outcome probability do-
main. Bekele and Shen [17] proposed a joint model between
a binary toxicity outcome and a continuous biomarker ex-
pression outcome by introducing latent Gaussian variables
in a probit model. Yin, Li and Ji [18] proposed using the
odds ratio of efficacy and toxicity as the measure of desir-
ability for phase I/II trials. Yuan and Yin [19] developed
a Bayesian phase I/II time-to-event (TTE) design to ac-
commodate delayed (or late-onset) toxicity and efficacy by
jointly modeling them as time-to-event outcomes. Yuan and
Yin [20] proposed a phase I/II design for drug combination
trials using adaptive randomization.

Because assessing the efficacy endpoint often requires a
relatively long follow-up time, the duration of phase I/II
trials is often longer than that of phase I trials. As a re-
sult, phase I/II trials are more susceptible to the missing
toxicity and efficacy outcomes caused by patient dropouts.
Such missing data pose a major logistical impediment to
implementing the trials because the decision rules of most
existing phase I/II trial designs require the availability of
the outcomes of the patients who have been enrolled in the
trial in order to apply the design rules to choose treatments
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or doses for newly accruing patients. Moreover, the missing
data caused by dropouts are often informative or nonignor-
able in the sense that the dropout probability of a patient
depends on his/her toxicity and efficacy outcomes. For ex-
ample, patients who experience higher toxicity and lower
efficacy are more likely to drop out of the trial than pa-
tients who experience lower toxicity and higher efficacy. In
this case, the simple approach of ignoring the missing data
results in biased estimates of toxicity and efficacy, thereby
causing inappropriate dose assignment and selection.

Our motivating example is an acute leukemia clinical
trial, which investigates six doses of suberoylanilide hydrox-
amic acid (SAHA), i.e., 200, 400, 600, 800, 1,000, 1,200mg,
combined with a fixed dose of fludarabine (10mg/m?).
SAHA is a histone deacetylase inhibitor that acts by in-
hibiting cell growth and inducing apoptosis of cancer cells;
and fludarabine is a chemotherapy drug that inhibits tu-
mor growth by interfering with ribonucleotide reductase and
DNA polymerase. Toxicity is evaluated during the 45 days
after the initiation of the treatment. Toxicity is defined as a
clinically significant non-hematologic adverse event or ab-
normal laboratory value assessed as unrelated to disease
progression, intercurrent illness, or concomitant medications
based on Common Terminology Criteria for Adverse Events
(CTCAE) v4.0. Efficacy requires 90 days to be scored. Ef-
ficacy is defined as complete remission (i.e., leukemic blasts
in the bone marrow < 5% and absolute neutrophil count
> 1,000/ul) or marrow complete remission (i.e., leukemic
blasts in the bone marrow < 5% and absolute neutrophil
count < 1,000/ul). The total sample size is 60 patients and
patients are treated in cohorts of size 3. Due to the rela-
tively long follow-up time, a substantial number of patients
are expected to drop out of the trial, and these dropouts
are believed to depend on the patient’s toxicity and efficacy
status. In addition, efficacy is a “delayed” outcome with re-
spect to the expected accrual rate of 3 patients per month.
One may expect to accrue 9 patients before efficacy is scored
for even the first patient, so applying any adaptive rule to
choose a dose for patients 4, 5, and 6, (cohort 2), based on
the data from patients 1, 2, and 3, (cohort 1), is not possible
without delaying the start of therapy for the second cohort.

We propose a Bayesian phase I/1I clinical trial design that
accommodates informative dropouts and delayed outcomes.
We treat toxicity, efficacy and dropout as time-to-event out-
comes and jointly model them using proportional hazards
models with a shared frailty. At each decision-making time,
patients who drop out of the trial without experiencing toxi-
city and/or efficacy are considered as informative censoring.
Based on the observed data, we adaptively assign patients to
the dose with the highest posterior mean of the utility that
trades off between toxicity and efficacy. Simulation studies
show that the proposed design has good operating charac-
teristics and selects the target dose with a high probability.

The remainder of this article is organized as follows. Sec-
tion 2 presents the joint frailty model for the times to effi-
cacy, toxicity, and dropout; and the dose-finding algorithm.

218 B. Guo, Y. Zang, and Y. Yuan

Section 3 examines the operating characteristics of our new
design through simulation studies. We provide concluding
remarks in Section 4.

2. METHOD

2.1 Probability model

Consider a phase I/II trial with J doses, d; < dy < ... <
dy, under investigation. A total of N patients are sequen-
tially enrolled and treated in the trial. Each patient will be
followed for fixed periods of T7 and Tb to evaluate efficacy
and toxicity, respectively. Conventionally, efficacy and tox-
icity are defined as binary outcomes that take a value of
1 (or 0) depending on whether the corresponding event is
(or is not) observed within the follow-up periods. The exist-
ing phase I/II designs based on binary outcomes typically
require that efficacy and toxicity outcomes be immediately
ascertainable without any dropouts.

In order to handle dropouts and potential delayed out-
comes, we treat efficacy and toxicity as time-to-event out-
comes. Because dropouts are often associated with toxic-
ity and efficacy and censor these outcomes, the dropout
problem here can also be regarded as an informative cen-
soring problem. One way to handle informative censoring is
to jointly model the times to toxicity and efficacy and the
censoring (i.e., dropout) process. Let ¢, t2 and t3 denote the
times to efficacy, toxicity and dropout, respectively, and let
h1(t112), ha(t2]Z), and hs(t3|Z) denote the corresponding
hazard functions given dosage Z € (dy,...,d ). For the ith
patient administered dosage Z;, we jointly model the times
to efficacy, toxicity and dropout using proportional hazards
models [21] as follows,

(1) hi(t1]Zi,0;) = Mi(t1)exp(aib; + i Z; +vZ7)
(2)  ha(t2|Zi,0;) = Xao(tz)exp(aeb; + B2Z;)
(3)  hs(ts|Zi,0;) = Xs(tz)exp(0; + 53Z;),

where A\ (t1), Aa(t2), and A3(t3) are baseline hazard func-
tions; and 31, B2, B3, and -y are regression parameters char-
acterizing the dose effects. In the hazard function for efficacy
hi(t1|Z;,0;), we include a quadratic term vZ? to accommo-
date possibly non-monotone dose-efficacy curves, e.g., for bi-
ological agents. The common frailty #; shared by the three
hazard functions is used to capture the potential correla-
tions among the times to efficacy, toxicity and dropout. We
assume that 6; follows a normal distribution with mean 0
and variance o2, i.e., §; ~ N(0,02). To allow for flexibility
such that the correlations between the different endpoints
can be either positive, negative, or 0, we introduce param-
eters a; and ay in equations (1) and (2). A positive (or
negative) value of «; indicates a positive (or negative) cor-
relation between efficacy and dropout, and a positive (or
negative) value of s indicates a positive (or negative) cor-
relation between toxicity and dropout. When a; = as = 0,
the three time-to-event outcomes are independent. As the
sample size of phase I/II trials is typically small, we take



a parsimonious parametric approach by assuming that the
baseline hazards follow exponential distributions with con-
stant hazards, i.e., Ag(tg) = A, for k = 1,2, and 3.

Under the proposed time-to-event model, the efficacy and
toxicity rates of dose Z (at the end of the follow-up periods)
are given by cumulative distribution functions Fy(T1|Z) =
pr(ty < Th|Z) and F»(T2|Z) = pr(ta < T»|Z), respectively.
To measure the desirability of a dose, we define the following
utility as a trade-off between toxicity and efficacy

U(Z) = F(Ti12) ~ B (T]2),

where constant w > 0 can be interpreted as the additional
percentages of toxicity that patients are willing to tolerate
in exchange for one percentage increase of efficacy. For ex-
ample, w = 1.5 means that patients are willing to tolerate
additional 1.5% of toxicity in exchange for 1% increase of
efficacy. In practice, the value of w should be elicited from
clinicians or patients. For example, we can ask clinicians
to provide two pairs of equivalently desirable efficacy and
toxicity probabilities, say (p11,p12) and (pa1, p22), based on
which we determine the value of w as

P12 — P22
w=——""".
P11 — P21

The goal of our design is to find the dose with the highest
desirability, i.e., the target dose with the highest value of
U(Z), which also satisfies certain minimal safety and efficacy
requirements.

Let t1;, to; and t3; denote the times to efficacy, toxicity
and dropout, respectively, for the ith patient, and 7; de-
note the time to administrative censoring. Define the ac-
tual observed time yi; = min(tg;,ts;,n;), for k = 1,2,
ysi = min(¢s;,7;), and censoring indicator 0p; = I(tg; <
Hlin(tg,i,ni)) for k = 1,2, 531' = I(tgi < 'f]i). Note that
dropout (i.e., t3) can censor toxicity and efficacy (i.e., t;
and t3), but not vice versa. The likelihood for the ith pa-
tient with data D; = (ygi, Ori) is

{Aexp(a1b; + 1 Z; + “YZE)}(SM
exp(—Myriexp(a16; + b1 Z; +vZ3))
{Azexp(azb; + 52&‘)}6%
exp(—Azy2iexp(azb; + B2Z;)

{Asexp(0; + ﬁsZz‘)}gsi

exp(—Asysiexp(t; + B3Zi)),

where © = (A1, 81,7, A2, B2, A3, 83,05, 02, a1, az). Let p(©)
denote the joint prior distribution for © and assume that
the parameters are mutually independent a priori, then the

joint posterior distribution of © based on n treated pa-
tients is

L(D;|©)

X

n

p(6ldata) o p(©) [T L(Ds[0).

i=1

2.2 Posterior inference

We assume that the components of © are mutually inde-
pendent a priori and follow the prior distributions:
A2 ~ Gamma(az, bs),
A3 ~ Gammal(az,b3), Bi1~ N(0,7%), B2~ N(0,73),
B3~ N(0,73), v~ N(0,7}), o2~ InvGamma(as,bs),

ay ~Unif(—ci,¢1), ags ~Unif(—ca,ca),

A1 ~ Gamma(ay, by),

where Gamma(a,b) denotes a Gamma distribution with
shape parameter a and inverse scale parameter b,
InvGamma(a,b) denotes an inverse Gamma distribution
with shape parameter a and scale parameter b, and
Unif(—c,c) denotes a uniform distribution with support
[—c¢, c]. To obtain vague priors, we set a1 = ag = a3 = a4 =
0.1,b1:b2:b3=b4:0.1,T12:7'22:7'3?:7'3:100,
and ¢; = cg = 5, such that the posterior distributions of the
parameters will be dominated by the observed data.

We sample the posterior distribution of © using Gibbs
sampler. Let 6 generically denote the parameters that
we condition upon, and let D denote the data for the
n patients who are already in the trial, ie., D =
{(Yriy Oki)st = 1,--- ,n}. We sequentially sample the el-
ements of © from the following full conditional distribu-
tions:

1. [M|D,0) ~ Gamma(a;
S yriexp(ant; + B1Z; +vZ7))

2. [51|D7 9] X eXP{ﬁl Z?zl Z;i01;i — M Z?:l yiiexp(a16; +
B1Zi +7ZE) — 1%/ (28)}

3. [YID, 0] o exp{y> 1, Z261; — M >y yriexp(aib; +
BZ; +4Z}) —v*/(217)}

4. [A2|D, 0] ~ Gamma(as
>oisy yaiexp(agbs + B2 Z;))

5. [ﬂ2|D, 9] X exp{ﬂg Z?:l Zi(SQZ — )\2 Z?:l ygiexp(agﬁi +
BaZi) — 2%/ (273)}

6. [)\3|D, 9] ~ Gamma(ag—I—Z?:l 537;, bg-’-zzl:l ygiexp(ﬂi—i—
B3Z;))

7. [53|D79] 08 exp{ﬂg Z?:l Z:03; — A3 Z?:l ygiexp(ﬁi +
B3Z;) — Ba%/(273)}

8. [91|D, 9} x eXp{(SliOqei + 9;c00; + 93;0;
Ayriexp(ai; + (1Z; + 725)2 — Aoygiexp(azl; +
B2Zi) — Azysiexp(0; + B3Z;) — 2(%}

9. [0%|D, 0] ~ InvGamma(n/2+ as,bs + > 1, 67/2)

10. [0n|D, 6] oc exp{an Yo7y 0136 — A1 Do (yriexp(aa 6 +
BrZi +7Z2)H (—c1 < oq <)

11. [a|D, 6] oc exp{ag Y7 02i8; — Ao D (y2iexp(aabi +
B2Zi)) H (—c2 < az < cg)

2.3 Dose-finding algorithm

+ Y0 b +

+ > 02iby +

A challenge for dose-finding trials is that very limited
information is available at the beginning of the trial when
only a few patients have been treated. This lack of data
becomes more severe when patients drop out of the trial. As
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a result, at the beginning of the trial, it is difficult to reliably
estimate model parameters and make correct decisions on
dose assignments. To facilitate the trial process, we propose
a two-stage dose-finding algorithm, for which stage I is rule-
based while stage II is model-based. The goal of stage I
is to collect some preliminary data for later model fitting.
We treat patients in cohorts of size 3 and start the trial by
treating the first cohort of patients at the lowest dose d;.
The dose-escalation rule for stage I is similar to that of the
traditional “3 + 3”7 design and is described as follows. At
the current dose d;,

1. If 2 out of 3 patients experience toxicity, stage I is com-
pleted and the trial moves forward to stage II with
starting dose dj_i1. If d; = di, i.e., di is the lowest
dose, the trial is terminated.

2. If 1 out of 3 patients experiences toxicity, stage I is
completed and the trial moves forward to stage II with
starting dose d;.

3. If 0 out of 3 patients experiences toxicity, the dose is
escalated to d;;,. However, if d; = dj, i.e., d; is the
highest dose, stage I is completed and the trial moves
forward to stage II with starting dose d;.

At stage I, the data are extremely sparse and we have little
knowledge on the toxicity profile of the drug. To be con-
servative and protect patients from overly toxic doses, we
impose two additional safety restrictions: (1) the toxicity
of enrolled patients must be fully assessed before we enroll
the next cohort of patients; and (2) if a patient drops out
before his/her toxicity outcome is observed, we add a new
patient to the cohort, replacing the position of the patient
who dropped out.

Stage II involves model-based dose finding. Let ¢ and
¢ be the respective lower efficacy limit and upper toxicity
limit as pre-specified by physicians, and let n denote the
number of patients who have been enrolled into the trial
at the moment of decision making for assigning a dose to
a newly enrolled cohort. To safeguard against treating pa-
tients at futile or overly toxic doses, we define the admissible
dose set A as a set of doses satisfying both the efficacy re-
quirement,

(4)

and the toxicity requirement,

(5)

where ag, bg, ar and by are non-negative tuning param-
eters that can be calibrated by simulation to achieve good
design operating characteristics. We set the posterior prob-
ability cutoffs (i.e., ag + bgn/N and ar + brn/N) to de-
pend on the sample size n such that the toxicity and effi-
cacy requirements adaptively become more stringent when
more patients are enrolled in the trial. Such a choice is made
based on the following considerations: at the beginning of

pr(Fi(T1|d) > ¢g|data) > ag + bgn/N,

pr(Fy(T2ld) < ¢r|data) > ar + brn/N,
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the trial, the estimates of toxicity and efficacy probabili-
ties are highly unreliable, so we should be lenient regard-
ing the admissible requirements; however, when data ac-
cumulate and we have more reliable estimates, we should
be more stringent regarding the safety and efficacy require-
ments.

Our model-based dose-finding algorithm can be described
as follows. Assume that [ cohorts of patients have been en-
rolled in the trial. Let dj be the current highest tried dose,
and C7 be the dose escalation cutoff based on toxicity. To
assign a dose to the incoming (I + 1)th cohort:

1. We calculate the posterior probability of toxicity of dj,
based on the data obtained from the first [ cohorts.
If pr(Fo(Ts|dn) < ¢r|data) > Cr and dj, # dj, we
escalate the dose and assign the (I + 1)th cohort to
dpy1.

2. Otherwise, we assign the (I + 1)th cohort to the dose
from A with the highest desirability, i.e., the largest
value of U(Z). At any time, if A is empty, we terminate
the trial.

3. We continue the above dose assignment process for sub-
sequent cohorts until the sample size is exhausted. We
select the dose in A with the largest value of U(Z) as
the final recommended dose.

3. SIMULATION

To assess the performance of our proposed design, we
conducted extensive simulation studies. We considered six
doses (0.2,0.4,0.6,0.8,1.0,1.2g) as in our motivating trial,
with a maximum sample size of 60 patients. The toxicity up-
per bound was ¢ = 0.3 and the efficacy lower bound was
¢op = 0.2. We used weight w = 1, which was chosen based
on the two pairs of equally desirable efficacy-toxicity proba-
bilities, (0.3,0.1) and (0.4, 0.2), elicited from the physician.
The follow-up time was 3 months for evaluating efficacy and
1.5 months for evaluating toxicity (i.e., 71 = 3; Tp = 1.5),
and patient accrual followed a Poisson process with a rate
of 3 patients per month. We set ;3 = —1 and ay = 1 such
that patients who have high/low probability of experiencing
toxicity/efficacy are most likely to drop out of the trial. We
set 02 = 3.5 to induce a moderate correlation with Kendall’s
7 of 0.5 between the three time-to-event outcomes. We took
the probability cutoffs Cr = 0.6, ar = 0.29, by = 0.16,
ag = 0.01, and bg = 0.07. We compared the proposed
design with the Bayesian TTE design proposed by Yuan
and Yin [19], which jointly models toxicity and efficacy as
time-to-event outcomes. The TTE design addresses the issue
of delayed outcomes, but does not account for informative
dropouts/censoring and thus is subject to estimation bias.
To make these two designs comparable and have the same
target dose, in the TTE design, we adopted the same util-
ity function and dose-finding algorithm as in the proposed
design.
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Figure 1. Dose-response curves for the ten scenarios in the simulation studies. The line with circles is the efficacy curve, the
line with triangles is the toxicity curve. The efficacy lower bound and toxicity upper bound are indicated by the dotted and
broken horizontal lines, respectively. The circled doses are target doses.

We simulated 10 scenarios with different numbers of tar-
get doses, locations of the target doses, and true marginal
probabilities of toxicity and efficacy (see Figure 1). We de-
signed the ten scenarios to have different levels of dropout
rates. The dropout rate is defined as the number of patients
with at least one missing outcome divided by the total num-
ber of patients. The dropout rate was about 40% for the first
five scenarios, and about 30% for the last five scenarios. Un-
der each scenario, we simulated 1,000 trials.

Table 1 summarizes the operating characteristics of our
proposed design and the TTE design. Under each scenario,
the first row is the true marginal probabilities of efficacy
and toxicity at the end of follow-up (3 months for efficacy
and 1.5 months for toxicity); the second row gives the utility
(U) of each dose; the third and fourth rows show the selec-
tion probability and the average number of patients treated
(shown in parentheses) at each dose under the two designs.
In the first four scenarios, both efficacy and toxicity increase
with dose. In scenario 1, the target dose is dose level 3 with
the highest desirability U = 0.15. The proposed design had a

target dose selection percentage that was about 10% higher
than that of the TTE design, and also allocated more pa-
tients to the target dose. The TTE design tended to be ag-
gressive and selected the overly toxic dose (i.e. dose level 4)
21.9% of the time. This is because the TTE design ignored
the fact that dropouts were informative (i.e., patients who
have high probabilities of experiencing toxicity were more
likely to drop out), and as a result, it underestimated tox-
icity probabilities and led to aggressive dose escalation. In
scenario 2, the target dose is dose level 2. The proposed de-
sign outperformed the TTE design in terms of target dose
selection percentage and patient allocation. Again, the TTE
design selected the higher dose level 3 with a larger prob-
ability than the proposed design because it assumed non-
informative dropout. In scenario 3, the proposed design and
TTE design led to similar selection percentages and patient
allocations. Scenario 4 had 2 target doses (i.e., dose levels
3 and 4). The proposed and TTE designs yielded similar
total target dose selection percentages, but the proposed
design led to more balanced selections than the TTE de-
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Table 1. Selection percentage and the number of patients (shown in parentheses) treated at each dose level under the
proposed design and TTE design. The bolded numbers are target doses

Dose level
Design 1 2 3 4 5 6
Scenario 1 (dropout rate = 40%)
(rp, 7r) (0.07, 0.01) (0.15, 0.04) (0.31, 0.16) (0.56, 0.45) (0.75, 0.74) (0.84, 0.79)
U 0.06 0.11 0.15 0.11 0.01 0.05
Proposed 3.8 (7.5) 11.6 (7.6) 77.1 (29.9) 4.8 (11.7) 0.0 (2.4) 0.0 (0.2)
TTE 2.7 (6.7) 7.1 (6.5) 66.6 (25.1) 21.9 (17.8) 0.3 (3.2) 0.0 (0.4)
Scenario 2 (dropout rate = 40%)
(g, 77) (0.21, 0.03) (0.36, 0.13) (0.56, 0.45) (0.77, 0.77) (0.87, 0.90) (0.90, 0.94)
U 0.18 0.23 0.11 0.00 -0.03 -0.04
Proposed 21.5 (15.5) 73.1 (30.3) 42 (11.2) 0.0 (2.3) 0.0 (0.2) 0.0 (0.0)
TTE 19.2 (14.1) 66.7 (28.2) 13.9 (14.6) 0.0 (2.7) 0.0 (0.3) 0.0 (0.0)
Scenario 3 (dropout rate = 40%)

(7, 77) (0.06, 0.02) (0.1, 0.03) (0.15, 0.03) (0.22, 0.04) (0.31, 0.05) (0.41, 0.06)
U 0.04 0.07 0.12 0.18 0.26 0.35
Proposed 1.1 (4.2) 0.2 (3.4) 1.7 (4.0) 4.0 (4.9) 6.4 (5.4) 85.6 (37.7)

TTE 0.8 (4.4) 0.3 (3.4) 1.9 (4.0) 3.5 (4.8) 45 (4.9) 87.4 (38.0)
Scenario 4 (dropout rate = 40%)
(np,77) (0.09, 0.01) (0.17, 0.04) (0.31, 0.13) (0.48, 0.30) (0.62, 0.54) (0.77, 0.72)
U 0.08 0.13 0.18 0.18 0.08 0.05
Proposed 6.5 (8.2) 5.9 (5.5) 40.7 (16.1) 45.1 (22.8) 0.4 (5.6) 0.1 (1.4)
TTE 6.7 (7.2) 4.6 (5.0) 21.9 (11.8) 61.4 (25.7) 4.3 (8.0) 0.1 (2.1)
Scenario 5 (dropout rate = 40%)
(7, 7r) (0.09, 0.03) (0.24, 0.06) (0.50, 0.12) (0.36, 0.23) (0.28, 0.38) (0.22, 0.55)
U 0.06 0.18 0.38 0.13 -0.10 -0.33
Proposed 4.7 (7.7) 15.5 (10.0) 66.1 (25.1) 11.7 (9.7) 1.3 (4.5) 0.1 (2.8)
TTE 4.1 (7.0) 11.9 (8.9) 64.9 (24.0) 17.0 (11.5) 1.3 (5.0) 0.4 (3.4)
Scenario 6 (dropout rate = 30%)

(g, 77) (0.02, 0.01) (0.08, 0.02) (0.25, 0.05) (0.53, 0.14) (0.53, 0.3) (0.53, 0.52)
U 0.01 0.06 0.20 0.39 0.23 0.01
Proposed 0.5 (4.1) 0.5 (3.5) 11.5 (7.8) 66.8 (24.1) 19.3 (14.7) 1.1 (5.7)
TTE 0.6 (3.9) 0.4 (3.4) 7.3 (6.3) 52.1 (20.9) 36.4 (18.0) 3.0 (7.5)
Scenario 7 (dropout rate = 30%)

(g, 77) (0.38, 0.1) (0.49, 0.21) (0.58, 0.46) (0.68, 0.65) (0.77, 0.85) (0.82, 0.92)
U 0.28 0.28 0.12 0.03 -0.08 -0.1
Proposed 47.0 (24.7) 48.3 (22.6) 2.1 (8.4) 0.2 (2.5) 0.0 (0.6) 0.0 (0.0)
TTE 40.5 (22.4) 46.9 (21.1) 11.0 (11.8) 0.2 (3.0) 0.1 (0.9) 0.0 (0.1)
Scenario 8 (dropout rate = 30%)

(p, 77) (0.31, 0.08) (0.41, 0.18) (0.53, 0.30) (0.63, 0.47) (0.72, 0.66) (0.81, 0.81)
U 0.23 0.23 0.23 0.16 0.06 0.00
Proposed 37.8 (20.6) 30.9 (14.3) 28.2 (16.5) 1.2 (5.4) 0.0 (1.8) 0.0 (0.4)
TTE 34.2 (19.6) 19.2 (11.6) 39.1 (17.7) 5.9 (7.5) 0.2 (2.3) 0.0 (0.6)
Scenario 9 (dropout rate = 30%)

(g, 77) (0.05, 0.01) (0.12, 0.02) (0.24, 0.07) (0.52, 0.21) (0.69, 0.47) (0.78, 0.65)
U 0.04 0.1 0.17 0.31 0.22 0.13
Proposed 1.3 (4.8) 2.0 (4.1) 15.2 (8.9) 75.6 (29.5) 46 (9.7) 0.0 (2.6)
TTE 0.8 (4.7) 0.8 (3.8) 8.8 (7.3) 76.2 (28.0) 11.9 (12.7) 0.3 (3.1)
Scenario 10 (dropout rate = 30%)

(g, 77) (0.33, 0.03) (0.34, 0.18) (0.34, 0.41) (0.34, 0.61) (0.35, 0.78) (0.35, 0.87)
U 0.30 0.16 -0.07 -0.27 -0.43 -0.52
Proposed 84.5 (40.4) 13.3 (10.7) 1.4 (5.6) 0.0 (2.3) 0.0 (0.6) 0.0 (0.1)
TTE 82.6 (39.3) 15.4 (11.0) 1.4 (6.2) 0.2 (2.5) 0.0 (0.7) 0.0 (0.1)
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Figure 2. Two shapes (increasing and decreasing) of hazard functions for efficacy (left) and dropout (right) in the sensitivity
analyses using a Weibull distribution.

sign (40.7% & 45.1% vs 21.9% & 61.4). Scenario 5 was de-
signed for biological agents with efficacy probabilities first
increase and then decrease. The proposed and TTE designs
gave similar target dose selection percentages and patient
allocations.

Scenarios 6-10 had dropout rates of about 30%. Sce-
nario 6 considered a non-monotonic dose-efficacy relation-
ship, where efficacy probabilities first increase and then
plateau. The proposed design had a target dose selection
percentage that was 14.7% higher than the TTE design,
and also allocated more patients to the target dose. Sce-
narios 7 and 8 had more than 1 target dose. Scenario 7
had 2 target doses (i.e., dose levels 1 and 2) and scenario
8 had 3 target doses. In both scenarios, the proposed de-
sign yielded higher total target dose selection percentages
than TTE design, and more balanced selections of the tar-
get doses than the TTE design. In scenario 9, the pro-
posed design resulted in similar target dose selection per-
centage as the TTE design, but the TTE design was more
aggressive and selected higher dose (i.e., dose level 5) with
a larger probability. In scenario 10, the proposed and TTE

designs yielded similar selection percentages and patient al-
locations.

3.1 Sensitivity analyses

We carried out sensitivity analyses to examine the robust-
ness of our design under two settings. (1) We generated the
times to efficacy, toxicity and dropout from the proportional
hazards model with Weibull distribution baselines. We as-
sumed that the hazard for the time to toxicity increased
with the dose and considered two shapes (increasing and
decreasing) of the hazard for times to efficacy and dropout,
resulting in a total of 4 simulation settings (see Figure 2).
(2) We simulated the times to efficacy, toxicity and dropout
from the accelerated failure time model with a log-logistic
error. We considered two shapes of the hazard for efficacy
(increasing and decreasing) and three increasing shapes of
the hazard for toxicity (linear, concave, and convex), result-
ing in a total of 6 combinations (see Figure 3). For the sen-
sitivity analyses, we matched the marginal probabilities of
efficacy, toxicity and dropout with the values in the original
scenarios shown in Table 1.

A Bayesian phase I/II clinical trial design in the presence of informative dropouts 223



efficacy

0.2

Hazard

0.1

I I I I I I I
00 05 10 15 20 25 3.0

Time (months)

toxicity

0.20
1

Hazard
0.05 0.10
| |

0.00
|

I I I I
0.0 0.5 1.0 1.5

Time (months)

Figure 3. Two shapes (increasing and decreasing) of hazard functions for efficacy (left) and three shapes (linear, convex,
concave) of hazard functions for toxicity (right) in the sensitivity analyses using the accelerated failure time model with a
log-logistic error.

Table 2 provides the results when the times to the events
were generated from the Weibull model or the accelerated
failure time model under two representative scenarios, sce-
nario 1 and scenario 9. We can see that, across all simula-
tion settings, our design selected the target dose with the
highest probability and assigned the largest number of pa-
tients to the target dose. The operating characteristics are
comparable to those reported in Table 1, where the time-
to-event data were generated from the exponential distribu-
tion.

4. CONCLUSIONS

We have proposed a Bayesian phase I/II trial design to
handle informative dropouts. We jointly model efficacy, tox-
icity and patient dropout as time-to-event outcomes. This
work was motivated by the practical problem of clinical tri-
als in which patient dropout induces missing data, and as a
result, the traditional trial designs, which assume binary ef-
ficacy and toxicity outcomes, are inappropriate. Our design

224 B. Guo, Y. Zang, and Y. Yuan

incorporates correlations among the three types of time-to-
event data by using a shared frailty, as the event of a patient
dropping out of the trial often correlates with the individ-
ual’s toxicity and efficacy outcomes. Our design can also
accommodate a high patient accrual rate in the case of late-
onset toxicity or efficacy and lead to a much shorter trial
duration.
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Table 2. Sensitivity analysis when baseline hazard follows Weibull distribution and when the times to efficacy, toxicity and
dropout follow an accelerated failure time model with a log-logistic error. The bolded numbers are target doses

Weibull distribution

Efficacy Dropout Scenario 1
increasing decreasing 2.5 (6.9) 6.3 (6.4) 80.4 (28.5) 1(14.4) 0.0 (2.9) 0.0 (0.4)
increasing increasing 3.5 (7.8) 10.4 (7.4) 76.1 (27.6) 9 (13.7) 0.1 (2.6) 0.0 (0.3)
decreasing decreasing 2.6 (6.6) 9.0 (6.8) 79.3 (29.0) 5 (13.9) 0.1 (2.8) 0.0 (0.3)
decreasing increasing 3.0 (6.5) 5.7 (5.8) 79.2 (28.9) 10.4 (14.9) 0.0 (3.1) 0.0 (0.4)
Scenario 9
increasing decreasing 1.6 (4.7) 0.9 (3.9) 13.0 (8.2) 79.0 (29.2) 6 (11.1) 0.2 (2.7)
increasing increasing 2.1 (5.1) 1.6 (4.1) 16.0 (9.4) 74.7 (28.6) 3 (10.0) 0.2 (2.5)
decreasing decreasing 1.0 (4.8) 1.5 (4.0) 12.6 (8.3) 77.5 (28.6) 5 9 (10.9) 0.1 (3.0)
decreasing increasing 1.4 (4.5) 1.4 (3.9) 10.6 (7.3) 79.0 (29.2) 4 (11.8) 0.1 (3.1)
Accelerated failure time model
Efficacy Toxicity Scenario 1
increasing linear 4.3 (8.9) 11.6 (8.3) 71.0 (26.0) 8 (12.9) 0 (2.4) 0.0 (0.3)
increasing concave 4.5 (10.3) 16.1 (10.0) 67.4 (25.8) 0 (10.0) 0.0 (2.0) 0.0 (0.1)
increasing convex 4.6 (9.1) 9.5 (8.0) 72.2 (25.6) 7 (13.5) 0.0 (2.3) 0.0 (0.3)
decreasing linear 2.5 (6.7) 8.5 (6.9) 75.5 (27.7) 10.5 (15.0) 0.0 (2.4) 0.0 (0.3)
decreasing concave 3.7 (7.7) 11.0 (8.1) 74.1 (28.6) 7.6 (11.9) 0.0 (2.3) 0.0 (0.2)
decreasing convex 2.5 (6.6) 8.0 (6.6) 76.3 (27.7) 11.1 (15.5) 0 (2.7) 0.0 (0.4)
Scenario 9
increasing linear 2.5 (6.0) (4.1) 15.3 (9.5) 74.2 (27.5) 4.3 (10.0) 0.0 (2.4)
increasing concave 1.1 (5.9) (4.4) 18.7 (10.7) 72.0 (27.9) 3 7 (8.6) 0.0 (2.0)
increasing convex 1.2 (6.1) 1.4 (4.2) 14.2 (8.8) 75.2 (26.6) 2 (10.6) 0.0 (2.7)
decreasing linear 0.7 (4.4) 6 (3.8) 9.8 (7.3) 79.5 (28.7) 7 4 (12.1) 0.0 (3.4)
decreasing concave 1.9 (4.9) (4.1) 13.7 (8.5) 76.7 (29.3) 0 (10.2) 0.0 (2.6)
decreasing convex 0.9 (4.3) (3.7) 8.8 (6.5) 80.7 (27.6) 7 (13.9) 0.0 (3.6)
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