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models with applications to HIV studies∗
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HIV RNA viral load measures are often subjected to some
upper and lower detection limits depending on the quantifi-
cation assays. Hence, the responses are either left or right
censored. Linear/nonlinear mixed-effects models, with slight
modifications to accommodate censoring, are routinely used
to analyze this type of data. Usually, the inference proce-
dures are based on normality (or elliptical distribution) as-
sumptions for the random terms. However, those analyses
might not provide robust inference when the distribution as-
sumptions are questionable. In this paper, we discuss a fully
Bayesian quantile regression inference using Markov Chain
Monte Carlo (MCMC) methods for longitudinal data mod-
els with random effects and censored responses. Compared
to the conventional mean regression approach, quantile re-
gression can characterize the entire conditional distribution
of the outcome variable, and is more robust to outliers and
misspecification of the error distribution. Under the assump-
tion that the error term follows an asymmetric Laplace dis-
tribution, we develop a hierarchical Bayesian model and ob-
tain the posterior distribution of unknown parameters at
the pth level, with the median regression (p = 0.5) as a
special case. The proposed procedures are illustrated with
two HIV AIDS studies on viral loads that were initially an-
alyzed using the typical normal (censored) mean regression
mixed-effects models, as well as a simulation study.

Keywords and phrases: Censored regression model, HIV
viral load, Quantile regression, Asymmetric Laplace distri-
bution, Gibbs sampling.

1. INTRODUCTION

Studies of HIV viral dynamics are the centerpiece of AIDS
research. Such studies often consider repeated/longitudinal
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measures over the period of treatment, which are rou-
tinely analyzed using linear/nonlinear mixed effects mod-
els (LME/NLME) to assess rates of changes in HIV-1 RNA
level or viral load [17, 18]. Viral load measures the amount of
an actively replicating virus and its reduction is frequently
used as a primary endpoint in clinical trials of anti-retroviral
(ARV) therapy. However, depending upon the diagnostic as-
says used, its measurement may be subjected to some upper
and lower detection limits (hence, left or right censored), be-
low or above which they are not quantifiable. The proportion
of censored data in these studies may not be trivial [4]. The
crude/ad hoc methods viz. substituting threshold value or
some arbitrary point such as mid-point between zero and
cut-off for detection [16] might lead to biased estimates of
fixed effects and variance components [18].

Our motivating datasets in this study consist of (i) the
HIV-1 viral load after unstructured treatment interruption
or UTI [14] and (ii) the setpoint for acutely infected sub-
jects from the AIEDRP program [16]. The former has about
7% observations below the detection-limits (left-censored),
whereas the latter has about 22% lying above the lim-
its of assay quantifications (right-censored). As alterna-
tives to crude imputation methods in the context of mean
regression, [4] proposed a likelihood-based Monte Carlo
EM algorithm (MCEM) for LME with censored responses
(LMEC). [15] proposed a hybrid EM using a more efficient
Hughes’ algorithm, extending it to NLME with censored
data (NLMEC). Recently, [16] proposed an exact EM algo-
rithm for LMEC/NLMEC, which uses closed-form expres-
sions at the E-step, as opposed to Monte Carlo simulations.
In the framework of LMEC/NLMEC, the random effects
and the within-subject errors are routinely assumed to fol-
low a normal distribution for mathematical convenience.
However, such assumption may not be always reasonable
since they are vulnerable to the presence of atypical obser-
vations. To deal with the problem of atypical observations
in the context of heavy–tailed LMEC/NLMEC, [9] advo-
cated the use of the normal/independent (NI) class of dis-
tributions [11] and adopted a Bayesian framework to carry
out posterior inference. More recently, [13] proposed a ro-
bust parametric modeling of LMEC/NLMEC based on the
multivariate-t distribution so that the t-LMEC/t-NLMEC
is defined and a fully likelihood based approach is carried
out, including the implementation of an exact conditional
EM (ECM) algorithm for maximum likelihood (ML) esti-
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Figure 1. UTI data: density histogram and corresponding
Q–Q plots for raw HIV viral load measures (in log10 scale;
Panels a and b), and model residuals (Panels c and d),

respectively, after fitting an Normal LMEC model using R
package lmec.

mation. Note however that the majority of these methods
focus on mean regression which is not a good measure of
centrality when the conditional distribution of the response
variable is skewed or multimodal, and therefore the mean
regression estimator may be inadequate to make inferences
about the shapes of these distributions. In contrast to the
mean regression model, quantile regression (QR) belongs to
a robust model family, which can provide an overall assess-
ment of the covariate effects at different quantiles of the out-
come [5]. Unlike conventional models, which address solely
the conditional mean or the central effects of the covariates,
QR models quantify the entire conditional distribution of
the outcome variable. In addition, QR does not impose any
distribution assumption on the error, except requiring that
the error has a zero conditional quantile.

An additional complication in the analysis of the HIV
data is that viral-load measurements are often highly right-
skewed with heavy right (or left) tail, and even log-
transformations on the responses do not render normal-
ity or symmetry. These characteristics further complicate
analysis of mixed-effects models, since both the random er-
ror (within-subject) and random effects (between-subject)
might contribute to the “shift from symmetry”. For exam-
ple, panels (a) and (b) in Figure 1 display the density his-
togram and associated Q–Q plots for (repeated and noncen-
sored) viral-load measurements (in the log10 scale) from the
above study, which reveals some degree of left skewness in
the response and panels ((c) and (d)) show the residuals,
which all were obtained after fitting a NLMEC model to
the UTI data using the R package lmec() [16]. These plots
reveal left-skewed nature of the responses and the slightly
symmetric behavior for the random errors. To the best of

our knowledge, there are no studies on QR from a Bayesian
perspective for LMEC/NLMEC. Thus, in this paper, we pro-
pose a QR model for LMEC/NLMEC based on the asym-
metric Laplace distribution (ALD). The hierarchical repre-
sentation of the ALD facilitates the convenient implementa-
tion of an efficient Gibbs algorithm with known generating
distributions. In the Bayesian paradigm, the estimation and
inference based on the proposed model can be easily im-
plemented using the Markov chain Monte Carlo (MCMC)
procedure.

The rest of the paper proceeds as follows. Section 2 in-
troduces the connection between QR and ALD as well as
outlines the main results related to ALD. In Section 3, the
QR-LMEC model and related Gibbs sampling algorithm to
estimate all of the model parameters is presented. In Sec-
tion 4, the extension to the QR-NLMEC model is discussed.
The advantage of the proposed methodology is illustrated
through the analysis of two case studies of HIV viral load in
Section 5. Section 6 presents a simulation study to compare
the performance of our methods with mean regression-based
methods. Section 7 concludes with a short discussion of is-
sues that arise in our study and some possible directions for
the future research.

2. PRELIMINARIES

Let yi, be a response variable and xi a k × 1 vector of
covariates for the ith subject for i = 1, . . . , n. Let Qp(xi)
denote the pth (0 < p < 1) quantile regression function of
yi given xi. Suppose that the relationship between Qp(xi)
and xi can be modeled as Qp(xi) = x�

i βp, where βp is a
vector of unknown parameters of interest. Then, we consider
the quantile regression model given by

yi = x�
i βp + εi, i = 1, . . . , n,

where εi is the error term whose distribution (with density,
say, fp(.)) is restricted to have the pth quantile equal to zero,

that is,
∫ 0

−∞ fp(εi)dεi = p.
The error density fp(.) is often left unspecified in the

classical literature. Thus, quantile regression estimation for
βp proceeds by minimizing

(1) β̂p = arg min
β∈Rk

n∑
i=1

ρp(yi − x�
i βp),

where ρp(.) is the so called check (or loss) function defined
by ρp(u) = u(p − I{u < 0}) and I{.} denotes the usual

indicator function. Then β̂p is called the pth quantile re-
gression estimate. Note that the case where p = 0.5, corre-
sponds to median regression. As the check function is not
differentiable at zero, we cannot derive explicit solutions to
the minimization problem. Therefore, linear programming
methods are commonly used to obtain quantile regression
estimates for βp. A connection between the minimization of
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Figure 2. Standard asymmetric Laplace density (ALD).

the sum in Equation (1) and the maximum-likelihood the-
ory is provided by the ALD. This skewed distribution was
discussed in [6] and [9] among others. A random variable Y
is distributed as an ALD with location parameter μ, scale
parameter σ > 0 and skewness parameter p ∈ (0, 1), denoted
by ALD(μ, σ, p), if its probability density function (pdf) is
given by

(2) f(y|μ, σ, p) = p(1− p)

σ
exp{−ρp(

y − μ

σ
)}.

Set μ = μi = x�
i β and write y = (y1, . . . , yn)

�. Assuming
that yi ∼ ALD(μi, σ, p), then the likelihood for n indepen-
dent observations is

(3) L(β, σ|y) = pn(1− p)n

σn
exp{−

n∑
i=1

ρp(
yi − x�

i βp

σ
)}.

Note that if we consider σ as a nuisance parameter, then
the maximization of the likelihood in (3) with respect to
the parameter βp is equivalent to the minimization of the
objective function in Equation (1).

In quantile regression, it is often of interest to compare
slope coefficients for different quantiles. Then ALD can deal
with the case when slope coefficients might be different for
different quantile levels. In the Bayesian model using ALD,
we impose the assumption y ∼ ALD(μ, σ, p), which implies
that the different quantiles of y conditional on x has the
same slope. However, we only compute the pth quantile of
y if y ∼ AL(μ, σ, p) and for different p, we actually use a
different model. Thus as long as Qp(xi) = x�

i βp, the likeli-
hood is consistent in the sense that the maximum likelihood
estimator (MLE) will converge to the true βp in Equation
(1). Thus, when using ALD in Bayesian analysis, we still can
obtain consistent estimation of the quantile function and the
slope coefficients that might be different for different p.

Figure 2 shows how the skewness of the ALD changes
with altering the value of p. For example, when p = 0.1,

almost all the mass of the ALD is situated in the right tail.
In the case where p = 0.5, both tails of the ALD have equal
mass and the distribution then reduces to a standard double
exponential distribution. In contrast to the normal distribu-
tion with a quadratic term in the exponent, the ALD is
linear in the exponent. This results in a more peaked mode
for the ALD together with thicker tails. On the other hand,
the normal distribution has heavier shoulders compared to
the ALD.

To develop the Gibbs sampling algorithm in our devel-
opment, we utilize a mixture representation based on expo-
nential and normal distributions, which is found in [7] and
is summarized as follows:

Lemma 1. Let Y ∼ AL(μ, σ, p), Z ∼ N(0, 1) independent
of V ∼ exp(σ). Then

Y
d
= μ+ ϑpV + τp

√
σV Z,

where ϑp = 1−2p
p(1−p) and τ2p = 2

p(1−p) , exp(σ) represents the

exponential distribution with mean 1/σ and
d
= denotes the

equality in distribution.

The result given in Lemma 1 yields a further hierarchical
representation of Y in the following:

Y |V = v ∼ N(μ+ ϑpv, τ
2
pσv),(4)

V ∼ exp(σ).(5)

It follows that the conditional distribution of V given Y is
given by

(6) V |Y ∼ GIG(
1

2
, δ, γ),

where δ = |y−μ|
τp

√
σ

and γ =

√
1
σ (2 +

ϑ2
p

τ2
p
). In (6), GIG(ν, a, b)

is a generalized inverse Gaussian distribution with pdf and
moments, respectively, given by

f(x|ν, a, b) =
(b/a)ν

2Kν(ab)
xν−1 exp(−1

2
(a2x−1 + b2x))

E[Xk] =
(a
b

)k Kν+k(ab)

Kν(ab)
, k ∈ R,

where x > 0, ν ∈ R a, b > 0 and Kν(.) is a modified Bessel
function of the third kind. See [1] for details.

3. QR LINEAR MIXED EFFECTS WITH
CENSORED RESPONSES

We consider the following general LME model

(7) yij = x�
ijβ + zijbi + εij , i = 1, . . . , n, j = 1, . . . , ni,

where yij is the jth measurement of a continuous random
variable on the ith subject, the x�

ij ’s are row vectors of a
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know design matrix of dimension ni × k corresponding to
the fixed effects, β is a k × 1 vector of population-averaged
regression coefficients called fixed effects, and zij is a q × 1
design matrix corresponding to the q × 1 vector of random
effects bi.

We define the LME quantile function of the response yij
as

(8) Qp(yij |xij ,bi) = x�
ijβp + zijbi.

We assume that yij , conditionally on bi, for i = 1, . . . , n,
j = 1, . . . , ni are independently distributed according to the
ALD:

f(yij |βp,bi, σ) =
p(1− p)

σ

× exp

{
−ρp

(
yij − x�

ijβp − zijbi

σ

)}
.(9)

In addition, we assume that the bi’s are distributed as

bi
iid∼ Nq(0,D), where the dispersion matrix D = D(α) de-

pends on unknown and reduced parametersα. In the present
formulation, we consider the case where the response Yij is
not fully observed for all i, j [16]. The observed data for the
i-th subject is (Qi,Ci), where Qi represents the vector of
uncensored reading or censoring level, and Ci the vector of
censoring indicators, such that

yij ≤ Qij if Cij = 1,

yij = Qij if Cij = 0.(10)

For simplicity, we assume that the data are left-censored
and thus the quantile regression censored linear mixed ef-
fect model (QR-LMEC) is defined. The extensions to arbi-
trary censoring are immediate. For normal LMEC, an EM
algorithm was proposed by [4], with computational improve-
ments considered in [15] and [16].

3.1 Prior and posterior distributions

Let yi = (yi1, . . . , yini)
�, Xi = (xi1, . . . , xini)

�, Zi =
(zi1, . . . , zini), Vi = (Vi1, . . . , Vini)

�, i = 1, . . . , n and
θ = (β�,α�, σ)�. A key feature of this model is that, from
Lemma 1, it can be formulated in a flexible hierarchical rep-
resentation as follows:

yi|bi,Ci,Qi,Vi = vi,θ(11)
ind∼ TNni(Xiβp + Zibi + ϑpvi, τ

2σΩi;Ai),

Vij |σ iid∼ exp (σ), i = 1, . . . , n, j = 1, . . . , ni,(12)

bi|α ind∼ N(0,D),(13)

where the observed data for the i-th subject is (Qi,Ci),
for i = 1, . . . , n; ϑp and τ2 are as in Lemma 1; Ωi =
Diag(vi) = Diag(vi1, . . . , vini), TNni(.;A) denotes the
truncated normal distribution on the interval Ai = Ai1 ×

. . . ,×Aini , with Aij as the interval (−∞,∞) if Cij = 0
and (−∞, Qij ] if Cij = 1. Specifically, a k-dimensional
vector X ∼ TNk(μ,Σ;A) if its density is given by

TNk(x|μ,Σ;A) =
φk(x;μ,Σ)∏k

r=1

∫ ar
−∞ φk(x;μ,Σ)dx

I{A}(x), where the

notation
∏k

r=1

∫ ar

−∞ =
∫ a1

−∞ . . .
∫ ar

−∞ stand for the abbrevia-
tion of multiple integrals and φk(.;μ,Σ) denotes the pdf of
the k-variate normal distribution with mean vector μ and
covariate matrix Σ (Nk(μ,Σ)).

Let y = (y�
1 , . . . ,y

�
n )

�, b = (b�
1 , . . . ,b

�
n )

�, u =
(u1, . . . , un)

�, t = (t1, . . . , tn)
�, Q = vec(Q1, . . . ,Qn) and

C = vec(C1, . . . ,Cn). It follows that the complete likelihood
function associated with (y,b,Q,C,v) is given by

L(θ|y,b,Q,C,v)

∝
n∏

i=1

[
TNni(yi|Xiβp + Zibi + ϑpvi, τ

2σΩi;Ai)

× φq(bi;0,D)× 1

σni

ni∏
i=1

exp(−vij
σ

)

]
.(14)

In order to carry out Bayesian inference, we need to
specify prior distributions for all the unknown parameters
θ = (β�

p , σ
2,α�)�. A popular choice to ensure posterior

propriety in a LME is to specify proper (but diffuse) condi-
tionally conjugate priors [3, 20]. Following [10], we take

βp ∼ Np(β0,Sβ),

σ ∼ IGamma(q0, λ0),

D ∼ IWishq(Λ
−1
0 , ν0),

where IGamma(a, b) denotes an inverse gamma distribution
with mean b/(a− 1), a > 1, and IWishq(M

−1, ν0) denotes
an inverse Wishart distribution with meanM−1/(ν0−q−1),
ν0 > q + 1, where M is a q × q known positive definite
matrix. Assuming the elements of the parameter vector to be
independent, the joint prior distribution of all the unknown
parameters is given by

π(θ) = π(βp)π(σ)π(D).(15)

Combining the likelihood function (14) and the prior distri-
bution, the joint posterior distribution of all model param-
eters is then given by

π(βp, σ
2,D,v,y|Q,C)

∝
n∏

i=1

[
TNni(yi|Xiβp + Zibi + ϑpvi, τ

2σΩi;Ai)

× φq(bi;0,D)× 1

σni

ni∏
j=1

exp(−vij
σ

)

]
π(θ).(16)

Our Bayesian model allows for a straightforward implemen-
tation of a Gibbs sampler via the hierarchical representation
given in (12)–(14). To proceed, it is necessary to obtain the
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full conditional distribution of one variable given the values
of all the other variables – (Ci,Qi) included. We have the
following expressions:

1. yi|bi,vi,Ci,Qi,θ ∼ f(yi|bi,vi,Ci,Qi,θ). Thus, con-
ditional on (bi,vi), yi is a vector of independent ob-
servations, whose distributions are truncated normal,
each with untruncated variance τ2σvij and untruncated
mean x�

ijβp + zijbi + ϑpvij on the interval yij ≤ Qij ,

i.e. TN1(x
�
ijβp + zijbi + ϑpvij , τ

2σvij ; (−∞, Qij)).
2. bi|yi,vi,Ci,Qi,θ ≡ bi|yi,vi,θ ∼ f(bi|yi,vi,θ). This

distribution is multivariate normal with mean b̂i =
Λi(Z

�
i Σ

−1
vi (yi − Xiβp − ϑpvi)) and variance Λi, with

Λi = (D−1 + Z�
i Σ

−1
vi Zi)

−1 and Σvi = τ2σΩi. Note
that the entire vector yi is used for sampling from bi.

3. Vij |yij ,bi, Cij , Qij ,θ≡π(vij |yij ,bi,θ)∝ v
1/2
ij exp{−1

2×
(
A2

ij

τ2σv
−1
ij +(

ϑ2
p

τ2σ+
2
σ )vij), where Aij = yij−x�

ijβp−zijbi,

i.e., Vij |yij ,bi, Cij , Qij ,θ ∼ GIG( 12 ,

√
A2

ij

τ2σ ,

√
ϑ2
p

τ2σ + 1
σ ),

i = 1, . . . , n, j = 1, . . . , ni, where GIG(ν, a, b) is the
generalized inverse Gaussian defined in Section 2.

4. Now, by observing that θ1|y,C,Q,bi,vi,θ(−θ1)
and

θ1|y,bi,vi,θ(−θ1)
are identical, we have

βp|y,v,b,θ(−βp)
∼ N

(
Aβμβ , Aβ

)
,

σ|y,v,b,θ(−σ2) ∼ IGamma(q0 +
3N

2
, λ0 + s),

D|y,v,b,θ(−α) ∼ IWishq(Λ
−1, ν0 + n),

where μβ = (S−1
β β0+

∑n
i=1 X

�
i Σ

−1
vi (yi−Zibi−ϑpvi)),

Aβ = (S−1
β +

∑n
i=1 X

�
i Σ

−1
vi Xi)

−1, N =
∑n

i=1 ni, s =∑n
i=1[

1
2τ2 (yi−Xiβp−Zibi)

�Ω−1
i (yi−Xiβp−Zibi)+∑ni

i=1 vij ], Λ = Λ0 +
∑n

i=1 bib
�
i .

Note that all the full conditional distributions have closed
forms and hence can be easily implemented, particularly us-
ing the popular Bayesian software WinBUGS.

4. THE NONLINEAR CASE

4.1 Model specification

Extending the notation defines in the previous section
and ignoring censoring, we first propose the following gen-
eral mixed-effects model. Let yi = (yi1, . . . , yini)

� denote
the (continuous) response vector for subject i and also let
η = (η(xi1,φi), . . . , η(xini ,φi))

� be a nonlinear vector-
valued differentiable function of the random parameter φi

of dimension r and a vector (or matrix) of covariates xi. The
NLME can then be expressed as

(17) yi = η(φi,xi) + εi, φi = Aiβ +Bibi,

where Ai and Bi are known design matrices of dimensions
r × k and r × q, respectively, possibly depending on some

covariates, β is the (k × 1) vector of fixed effects, and bi

is the (q × 1) vector of random effects. In mean regression,

it is common to assume that, bi
ind∼ Nq(0,D) and εi =

(εi1, . . . , εini)
� ind.∼ Nni(0, σ

2Ini) [see, 9]. Here, we define
the NLME quantile function of the response yij as

(18) Qp(yij |xij ,bi) = η(φi,xij) = η(Aiβp +Bibi,xij).

We assume that, given bi, yij , i = 1, . . . , n, j = 1, . . . , ni are
independent distributed according to the ALD, i.e.,

f(yij |βp,bi, σ) =
p(1− p)

σ

× e
−ρp

⎛
⎝yij − η(Aiβp +Bibi,xij)

σ

⎞
⎠
,(19)

and in addition, we assume that bi is distributed as bi
iid∼

Nq(0,D), where the dispersion matrix D = D(α) depends
on unknown and reduced parameters α and hence the quan-
tile regression nonlinear mixed effects model is defined (QR-
NLME).

For QR-NLME with complete responses, the marginal
distribution is given by

f(y|θ) =
n∏

i=1

∫
Rq

⎡⎣ ni∏
j=1

f(yij |βp,bi, σ)

⎤⎦φq(bi; 0,D)dbi,

which generally does not have a closed form expression be-
cause the model function is not linear in the random effects.

Now assuming left-censoring, such that the observed data
for the i-th subject are (Qi,Ci), the individual observations
within cluster i follows (10), the QR-NLMEC is defined.
Using the same notation as in Section 3.1 and Lemma 1, we
have the following hierarchical representation for the QR-
NLMEC:

yi|bi,Ci,Qi,Vi,= vi,θ(20)

ind∼ TNni(η(Aiβp +Bibi,xi) + ϑpvi, τ
2σΩi;Ai),

Vij |σ iid∼ exp (σ), i = 1, . . . , n, j = 1, . . . , ni,(21)

bi|α ind∼ Nq(0,D).(22)

4.2 Prior and posterior specifications

Under the same prior specifications as discussed in
Subsection 3.1, the full conditional distributions for QR-
NLMEC models are as follows:

yij |bi,vi,Ci,Qi,θ

∼ TN1(η(Aiβp +Bibi,xij) + ϑpvij , τ
2σvij ; (−∞, Qij))
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Table 1. Posterior parameter estimates for the UTI data

mean regression p = 0.5 (median regression)

Parameter Mean SD 95% CI Mean sd 95% CI

β1 3.6501 0.1308 [3.3983; 3.9095] 3.8749 0.1225 [3.6305; 4.1088]
β2 4.1765 0.1336 [3.9142; 4.4417] 4.2105 0.1158 [3.9750; 4.4310]
β3 4.2464 0.1357 [3.9768; 4.5051] 4.2621 0.1136 [4.0332; 4.4799]
β4 4.3637 0.1365 [4.1043; 4.6268] 4.4238 0.1181 [4.1831; 4.6478]
β5 4.5697 0.1429 [4.2903; 4.8450] 4.5465 0.1189 [4.3063; 4.7703]
β6 4.5881 0.1517 [4.2927; 4.8822] 4.5417 0.1222 [4.2949; 4.7764]
β7 4.6957 0.1709 [4.35951; 5.0321] 4.7042 0.1382 [4.4280; 4.9723]
β8 4.8079 0.2065 [4.4086; 5.2108] 4.7793 0.1636 [4.4582; 5.1007]
σ 0.3339 0.0304 [0.2798; 0.3969] 0.1851 0.0110 [0.1646; 0.2081]
α 0.7864 0.1526 [0.5375; 1.1534] 0.8070 0.1530 [0.5546; 1.1491]

bi|yi,vi,θ ∝ φni

(
yi; η(Aiβp +Bibi,xi), σ

2Ini

)
× φq (bi;0,D) ;

Vij |yij ,bi, Cij , Qij ,θ ∼ GIG(
1

2
,

√
A2

ij

τ2σ
,

√
ϑ2
p

τ2σ
+

1

σ
),

i = 1, . . . , n, j = 1, . . . , ni;

D|y,b,v,θ(−α) ∼ IWishq

(
Λ−1, ν0 + n

)
;

βp|y,b,v,θ(−β)
∼ Np

(
Aβμβ , Aβ

)
;

σ2|y,b,u,θ(−σ2) ∼ IGamma

(
3N

2
+ q0, λ0 + s

)
,

where Aβ = (S−1
β +

∑n
i=1 A

�
i (BiDB�

i )
−1Ai)

−1, μβ =

(S−1
β β0 +

∑n
i=1 A

�
i (BiDB�

i )
−1φi), N =

∑n
i=1 ni, s =∑n

i=1[
1

2τ2 (yi − η(φi,xi))
�Ω−1

i (yi − η(φi,xi)) +
∑ni

i=1 vij ],

Λ = Λ−1
0 +

∑n
i=1 bib

�
i , and Aij = yij−η(Aiβp+Bibi,xij).

Note that sampling from the full conditional distribution for
bi requires the using of some auxiliary algorihtm, for exam-
ple Metropolis-Hastings steps.

5. APPLICATIONS

We apply the proposed methods to the two HIV data
sets previously analyzed using mean regression LMEC mod-
els.

5.1 UTI data

The HIV UTI data were from a study of 72 perinatally
HIV-infected children [14, 16]. The dataset is available in the
R package lmec. Primarily due to treatment fatigue, an un-
structure treatment interruption (UTI) is common in this
population. Suboptimal adherence can lead to ARV resis-
tance and diminished treatment options in the future. The
subjects in the study had taken ARV therapy for at least
6 months before UTI, and the medication was discontinued
for more than 3 months. The HIV viral load from the closest
time points at 0, 1, 3, 6, 9, 12, 18, 24 months after UTI were
studied. The numbers of observations from baseline (month
0) to month 24 are 71, 62, 58, 57, 43, 34, 24, and 13, respec-
tively. Out of 362 observations, 26 (7%) observations were

below the detection limits (50 or 400 copies/mL) and were
left-censored at these values. The individual profiles of vi-
ral load at different followup times after UTI are plotted in
Figure 2. Following [16], we consider a profile LME model
with random intercepts bi’s as

(23) yij = bi + βj + εij ,

where yij is the log10 HIV RNA for subject i at time tj ,
t1 = 0, t2 = 1, t3 = 3, t4 = 6, t5 = 9, t6 = 12, t7 =
18, t8 = 24. [16] analyzed the same dataset by fitting a
N-LMEC from a frequentist perspective, but from Figure 1,
it is clear that inference under the normality assumption
can be questionable. In our analysis, we assume a QR-
LMEC as defined in (8)–(10). The priors are specified as
βj ∼ N1(0, 10

3), j = 1, . . . , 8, σ ∼ IGamma(0.1, 0.1),
and σ2

b = α ∼ IGamma(0.1, 0.1). We generated two par-
allel independent MCMC runs of size 100,000 with widely
dispersed initial values, where the first 20,000 iterations
(burn-in samples) were discarded, for computing posterior
estimates. To eliminate potential problems due to auto-
correlations, we considered a spacing of size 40. The con-
vergence of the MCMC chains was monitored using trace
plots, auto-correlation (ACF) plots and Gelman-Rubin R̂
diagnostics. Following [2], we carried out sensitivity anal-
ysis on the specification of the inverse-gamma priors on
the variance components and found that the results are
fairly robust under different choices of the priors. The pos-
terior summaries of the parameters do not present a no-
ticeable difference and do not impair the results given in
Table 1.

In Table 1, we report the posterior means, standard
deviations (SDs) and 95% credible intervals (CI) of the
model parameters from the popular mean regression (N-
LMEC) and the QR-LMEC for p = 0.5 (i.e., median re-
gression). Note that the posterior estimates of β1 − β8

(the slope parameters corresponding to the time points)
for the QR-LMEC models are quite close (to first dec-
imal place) to those from N-LMEC. The 95% posterior
CIs to β are tighter (and also the standard deviations)
than those in the mean regression model, indicating that
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Figure 3. Individual profiles and overall mean (in log10 scale)
at different quantiles for HIV viral load at different follow-up
times for (left panel) UTI Data and (right panel) AIEDRP

data.

the median regression seems to produce more precise esti-
mates.

As in [16], our dropout (censored) model does not bias the
inference regarding the mean of βj . The median and mean
viral load βj ’s increase gradually throughout 24 months for
all the models. For the N-LMEC, it increases from 3.65 at
the time of UTI to 4.80 at 24 months whereas in the median
regression it increases from 3.87 to 4.77.

To obtain a more complete picture of the effects, series
of QR models over the grid p = {0.1, 0.15, . . . , 0.9} are esti-
mated. Figure 4 gives a graphical summary of this analysis.
The solid lines are the Q0.025 percentile and the Q0.975 per-
centile obtained from the marginal posterior distribution of
the different parameters. Thus, the shaded area depicted
the 95% credible band from the marginal posterior distri-

Figure 4. UTI data: Posterior means and 95% credible
intervals for various values of p.

bution. From Figure 4, we can observe some interesting ev-
idences which cannot be detected by mean regression. For
example, the effects of most variables become stronger for
the higher conditional quantiles, indicating that the viral
load at different time points are positively correlated with
the quantiles. This finding can be also appreciated in Fig-
ure 3, where the overall mean (in log10 scale) at different
quantiles for HIV viral load at different follow-up times are
depicted.

5.2 AIEDRP data

The second AIDS case study is from the AIEDRP pro-
gram, a large multi-center observational study of subjects
with acute and early HIV infection. We consider 320 un-
treated individuals with acute HIV infection; for more de-
tails see [16]. Of the 830 recorded observations, 185 (22%)
were above the limit of assay quantification, hence right-
censored. So, we consider a right-censored version of (10)
and accommodate it within our NLME. Following [16], we
choose a five-parameter NLME model (inverted S-shaped
curve) as follows:
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Table 2. AIEDRP data: Posterior estimates from censored N-LMEC (mean regression) and QR–NLMEC with p = 0.5

mean regression p = 0.5 (median regression)

Parameter Mean sd 95% CI Mean sd 95% CI

β1 1.5612 0.0191 [1.5209; 1.5971] 1.5709 0.0145 [1.5430; 1.5993]
β2 0.4983 0.1840 [0.2088; 0.9263] 0.4016 0.1284 [0.1824; 0.6848]
β3 3.5184 0.0650 [3.3548; 3.5926] 3.5294 0.0306 [3.4568; 3.5805]
β4 1.6468 0.3066 [1.0379; 2.2489] 1.4200 0.2716 [0.8970; 1.9150]
β5 -0.0018 0.0027 [-0.0072; 0.0036] -0.0024 0.0023 [-0.0070; 0.0020]
σ 0.2324 0.0184 [0.1996; 0.2720] 0.1732 0.0085 [0.1571; 0.1906]

D11 0.0188 0.0028 [0.0141; 0.0249] 0.0186 0.0026 [0.0140; 0.0245]
D12 0.0004 0.0003 [-0.0001; 0.0011] 0.0004 0.0003 [-0.0001; 0.0011]
D22 0.0003 0.0001 [0.0002; 0.0005] 0.0003 0.0001 [0.0002; 0.0004]

yij = α1i +
α2

(1 + exp((tij − α3)/α4))
+ α5i(tij − 50) + εij ,

where yij is the log10 HIV RNA for subject i at time tij .
The choice of an appropriate non-linear model is difficult
to assess for any HIV data, but the above model was con-
sidered in [16] primarily because the residual plots did not
exhibit any serial auto-correlations, and the model fit seems
adequate. The parameters α1i and α2 are the setpoint value
and the decrease from the maximum HIV RNA. In the ab-
sence of treatment (following acute infection), the HIV RNA
varies around a set-point which may differ among individu-
als, hence the setpoint is chosen to be subject-specific. The
location parameter α3 indicates the time point at which
half of the change in HIV RNA is attained, α4 is a scale
parameter modeling the rate of decline, and α5i allows for
increasing HIV RNA trajectory after day 50. The smooth
(mean) curve for the observed data in Figure 3 (right Panel)
agrees with the postulated shape of the HIV RNA trajec-
tory for this study. To force the parameters to be positive,
we re-parameterize as follows: β1i = log(α1i) = β1 + b1i;
βk = log(αk), k = 2, 3, 4 and α5i = β5 + b2i. Within the
Bayesian framework, we use the Normal mean regression
(N-NLMEC) considered by [16] and the QR-NLMEC with
p = 0.5, where (b1i, b2i) are assumed to be an i.i.d. multivari-
ate Normal distribution with the unrestricted scale matrix
D. The MCMC scheme was similar to the previous applica-
tion for the UTI data, as well as the procedures described in
Section 3. We further consider D ∼ IWish2(T

−1, 2) with
T = Diag(0.01, 0.01).

Table 2 gives the estimates for the different parameters
in the QR-NLMEC for p = 0.5 (median case) and the N-
NLMEC (mean regression). From Table 2, we observe that
the estimates of the slope parameters β2 and β4 for the
median regression model are somewhat different than the
mean regression model and the standard errors of the QR–
NLMEC are smaller, indicating that the median regression
seem to produce more precise estimates. Residual plots in
our analysis (omitted for brevity) revealed no serial correla-
tions.

As in the linear case, to obtain a more complete pic-
ture of the effects, a series of QR models over the grid

Figure 5. AIEDRP data: Posterior means and 95% credible
intervals for various values of p.

p = {0.1, 0.15, . . . , 0.9} are estimated. Figure 5 gives a
graphical summary of this analysis. The solid lines are the
Q0.025 percentile and the Q0.975 percentile obtained from the
marginal posterior distributions of the different parameters.
Thus, the shaded area depicted the 95% credible band from
the marginal posterior distribution. From Figure 5, we can
see that the effect β1 and β2 become stronger as the value of
the conditional quantile p increases, and on the other hand,
β3, β4 and β5 have constat effects on the HIV viral load (in
log10 scale).

6. SIMULATION STUDY

In this section, we conduct a simulation study to exam-
ine the performance of our proposed methodology concern-
ing parameter recovery. Similarly to [8] and [12] and differ-
ently from [21], our goal is to measure the accuracy of the
proposed algorithm and model, in terms of parameter re-
covery, under unfavourable scenarios. That is, we simulate
the observations using error distributions and quantile levels

210 V. H. Lachos et al.



Table 3. SE, Bias and RMSE for (β0, β1) based on R = 100 Monte Carlo replicas

Distr. Perc. (%) Quantile (%) β0 β1

SE Bias RMSE SE Bias RMSE

Normal 5 25 0.164 -0.283 0.327 0.021 -0.01 0.023
50 0.162 0.025 0.164 0.021 -0.006 0.022
75 0.167 0.343 0.381 0.02 -0.005 0.021

10 25 0.161 -0.287 0.329 0.021 -0.008 0.022
50 0.154 0.031 0.158 0.021 -0.006 0.022
75 0.159 0.351 0.385 0.022 -0.003 0.022

15 25 0.156 -0.268 0.310 0.023 -0.014 0.027
50 0.156 0.049 0.163 0.024 -0.012 0.027
75 0.17 0.371 0.408 0.023 -0.009 0.025

Student t 5 25 0.190 -0.291 0.347 0.020 -0.009 0.022
50 0.188 0.027 0.190 0.020 -0.007 0.021
75 0.188 0.349 0.396 0.020 -0.005 0.020

10 25 0.179 -0.267 0.322 0.023 -0.012 0.026
50 0.178 0.048 0.184 0.022 -0.01 0.024
75 0.18 0.365 0.407 0.024 -0.008 0.025

15 25 0.166 -0.274 0.320 0.025 -0.017 0.030
50 0.164 0.047 0.171 0.022 -0.015 0.027
75 0.171 0.369 0.406 0.023 -0.013 0.027

χ2 5 25 0.169 -0.280 0.327 0.02 -0.007 0.022
50 0.163 0.030 0.165 0.02 -0.005 0.021
75 0.159 0.339 0.375 0.02 -0.004 0.021

10 25 0.166 -0.299 0.342 0.023 -0.016 0.028
50 0.157 0.018 0.158 0.021 -0.013 0.025
75 0.169 0.331 0.372 0.021 -0.011 0.023

15 25 0.168 -0.244 0.296 0.021 -0.014 0.025
50 0.162 0.084 0.183 0.02 -0.012 0.023
75 0.167 0.417 0.449 0.021 -0.010 0.023

Mixture 5 25 0.156 -0.309 0.346 0.022 -0.009 0.024
50 0.151 0.008 0.151 0.021 -0.007 0.022
75 0.161 0.326 0.364 0.022 -0.004 0.023

10 25 0.164 -0.297 0.339 0.024 -0.007 0.025
50 0.158 0.018 0.159 0.023 -0.005 0.024
75 0.164 0.340 0.377 0.023 -0.002 0.024

15 25 0.141 -0.277 0.310 0.021 -0.008 0.023
50 0.138 0.035 0.143 0.021 -0.006 0.022
75 0.146 0.354 0.382 0.022 -0.005 0.023

different from the ones that we consider in the model esti-
mation. Since the estimates under these adverse scenarios
are shown to be relatively accurate, we expect to observe
even more accurate results when the simulated and esti-
mated model are the same. Also, for the sake of simplicity,
we decided not to perform a simulation study for a nonlinear
model.

We considered the following regression model:

yij = −2.83− 0.18x1ij + 0.50x2ij + b1iz1ij + b2iz2ij + εij

i = 1, 2, ..., 50, j = 1, ..., 6.

where (b1i, b2i)
i.i.d.∼ N2[( 00 ), (

0.49 0.01
0.01 0.02 )] and ξ

i.i.d.∼ 0.15D(ν),
with D(ν) being a suitable distribution (as we will
explain ahead). We examined different scenarios pro-
duced by crossing the levels of two factors: the per-

centual of censored response (PCR) and the error dis-
tribution (ED), which corresponds to the term D(ν)).
For PCR we considered (5%, 10%, 15%) and for ED we
considered N(0, 1), t(4), χ

2
(4), 0.5N(2, 0.36) + 0.5N(−2, 0.36)

namely, henceforth, Normal, Student t, χ2 and mixture.
Therefore, we have a total of 12 scenarios. For each of these
scenarios, we generated R = 100 replicas (responses) accord-
ing to model (24) and we estimated the model parameters,
considering the quantiles 0.25, 0.50 and 0.75, by using the
MCMC algorithm presented in Subsection 3.1. The follow-

ing priors were specified: βi
i.i.d∼ N(0,100), σ−1 ∼ U(0,100)

and D ∼ Wishart(Ω, 2), where Ω = ( 1 0
0 1 ). For the four

scenarios, we computed the standard error (SE), the bias
and the square root of the mean square error (RMSE),
for each parameter over the 100 replicas. They are defined
as:
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Table 4. SE, Bias and RMSE for (β2, σ) based on R = 100 Monte Carlo replicas

Distr. Perc. (%) Quantile (%) β2 σ
SE Bias RMSE SE Bias RMSE

Normal 5 25 0.210 0.006 0.21 0.015 -0.009 0.017
50 0.216 0.013 0.216 0.019 0.035 0.039
75 0.224 0.008 0.224 0.015 -0.008 0.017

10 25 0.231 0.005 0.231 0.014 -0.010 0.017
50 0.235 0.002 0.235 0.018 0.035 0.040
75 0.243 0.005 0.243 0.015 -0.007 0.017

15 25 0.227 0.004 0.227 0.014 -0.012 0.018
50 0.236 -0.001 0.236 0.018 0.034 0.039
75 0.246 -0.017 0.246 0.014 -0.008 0.016

Student t 5 250 0.246 -0.011 0.247 0.014 -0.009 0.016
50 0.247 -0.009 0.247 0.017 0.036 0.040
75 0.250 -0.017 0.251 0.013 -0.008 0.015

10 25 0.258 -0.012 0.259 0.013 -0.012 0.018
50 0.260 -0.012 0.260 0.017 0.032 0.036
75 0.272 -0.016 0.273 0.014 -0.01 0.017

15 25 0.245 -0.013 0.246 0.016 -0.011 0.019
50 0.235 -0.014 0.235 0.022 0.036 0.042
75 0.240 -0.018 0.241 0.019 -0.007 0.020

χ2 5 25 0.226 -0.005 0.226 0.013 -0.012 0.018
50 0.228 -0.003 0.228 0.017 0.031 0.036
75 0.236 0.004 0.236 0.013 -0.011 0.017

10 25 0.221 -0.001 0.221 0.013 -0.009 0.016
50 0.211 0.008 0.211 0.018 0.037 0.042
75 0.229 0.026 0.23 0.015 -0.006 0.016

15 25 0.237 -0.030 0.239 0.014 -0.011 0.018
50 0.223 -0.045 0.227 0.019 0.036 0.041
75 0.235 -0.06 0.243 0.015 -0.006 0.017

Mixture 5 25 0.203 -0.004 0.203 0.014 -0.009 0.017
50 0.201 -0.004 0.201 0.019 0.036 0.041
75 0.218 -0.009 0.218 0.016 -0.007 0.018

10 25 0.219 0.010 0.219 0.012 -0.009 0.015
50 0.218 0.019 0.219 0.015 0.036 0.039
75 0.225 0.017 0.226 0.013 -0.007 0.014

15 25 0.213 -0.027 0.215 0.012 -0.011 0.016
50 0.205 -0.010 0.205 0.016 0.036 0.039
75 0.218 ¡0.001 0.218 0.013 -0.006 0.015

SE(γ) =

√√√√ 1

99

100∑
i=1

(
γ̂i − γ̂

)2

; Bias(γ) = (γ̂ − γ) ;

RMSE(γ) =
√
SE(γ)2 +Bias(γ)2 ; γ̂ =

1

100

100∑
i=1

γ̂i

γ denotes each of (β0, β1, β2, σ2, D11, D12, and D22),
D = (D11 D12

D12 D22
), γ̂i is the estimate (the posterior ex-

pectation) obtained in replica i and γ is the respec-
tive true value. The results are summarized in Tables 3
to 6. It can be seen that the most accurate results
are obtained when the error distribution used to simu-
late the responses matches the distribution used to ob-
tain the Bayesian estimates. Also, the higher the PCR
is the less precise the estimates are. In addition, the re-

sults when the median is the quantile of interest are
more accurate compared to the results related to the
other quantiles. All these results agree with our expecta-
tions.

Figure 6 presents the box-plots of the estimates ob-
tained in each one of the 100 replicas related to β0. The
horizontal line corresponds to the true value. The labels
along the x-axis indicate the distribution and percentual
of censored response. For example, N10, indicates that the
normal distribution was considered for simulating the er-
ror distribution with 10% of censored response, and so
on. Again, we can see that the more accurate results
are obtained for the normal distribution with 5% of cen-
sored response when the median is the quantile of inter-
est. Also, we can see that the estimates, when the me-
dian is the quantile of interest, are approximately unbi-
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Table 5. SE, Bias and RMSE for (D11, D12) based on R = 100 Monte Carlo replicas

Distr. Perc. (%) Quantile (%) D11 D12

SE Bias RMSE SE Bias RMSE

50 0.149 0.062 0.161 0.016 -0.011 0.019
75 0.156 0.096 0.184 0.017 -0.013 0.021

15 25 0.166 0.109 0.198 0.019 -0.013 0.023
50 0.145 0.044 0.152 0.018 -0.010 0.021
75 0.163 0.071 0.177 0.020 -0.012 0.024

Student t 5 25 0.147 0.092 0.173 0.017 -0.012 0.021
50 0.130 0.055 0.141 0.017 -0.011 0.020
75 0.136 0.092 0.164 0.017 -0.012 0.021

10 25 0.152 0.077 0.170 0.016 -0.013 0.020
50 0.124 0.021 0.126 0.014 -0.011 0.018
75 0.155 0.058 0.166 0.016 -0.013 0.021

15 25 0.145 0.079 0.165 0.019 -0.014 0.024
50 0.120 0.025 0.122 0.017 -0.012 0.021
75 0.152 0.072 0.169 0.018 -0.015 0.023

50 0.125 0.040 0.131 0.013 -0.012 0.017
75 0.198 0.104 0.223 0.021 -0.017 0.027

15 25 0.146 0.079 0.166 0.019 -0.015 0.024
50 0.127 0.028 0.130 0.018 -0.013 0.022
75 0.134 0.074 0.153 0.019 -0.016 0.024

Mixture 5 25 0.133 0.068 0.149 0.017 -0.013 0.022
50 0.125 0.025 0.128 0.016 -0.011 0.020
75 0.159 0.072 0.175 0.018 -0.013 0.022

10 25 0.146 0.095 0.174 0.017 -0.010 0.020
50 0.134 0.045 0.141 0.016 -0.008 0.018
75 0.161 0.081 0.180 0.017 -0.011 0.020

15 25 0.139 0.087 0.164 0.016 -0.013 0.021
50 0.127 0.037 0.132 0.016 -0.010 0.019
75 0.159 0.072 0.175 0.018 -0.012 0.021

ased, whereas the parameter is underestimated and over-
estimated when the quantiles of interest are 0.25 and 0.75,
respectively. For the other parameters, in general, the re-
sults were quite similar. Therefore, those plots were not pre-
sented.

7. CONCLUSIONS

In this paper, we have considered Bayesian quantile re-
gression for censored mixed effects models with the like-
lihood function based on the asymmetric Laplace distri-
bution. The use of the asymmetric Laplace distribution
makes it easy to implement the Bayesian inference based
on the posterior distributions of parameters of interest
via Gibbs sampling. We apply our methodology to a re-
cent AIDS study (freely downloadable from R) to illus-
trate how the procedure developed can be used to ob-
tain robust parameter estimates when the distribution as-
sumptions are questionable. Depending on assay quantifi-
cations, censoring can be both left or right. Our appli-
cation is based on right-censoring, consideration for left-
censoring is immediate and follows from (10) by revers-
ing the role of yij and Qij . We believe that this paper

provides a first attempt to incorporate censoring in the
context of Quantile regression mixed-effects models (QR-
LMEC/NLMEC) and thus, our method provides an im-
provement over the one of [16], who considered analysis of
these datasets using normal LMEC/NLMEC models. The
models can be fitted using standard available software pack-
ages, such as R andWinBUGS (code available upon request)
and hence can be easily accessible to practitioners in the
field.

The models developed here do not consider skewness in
the random effects because typically in HIV-AIDS studies,
the responses (censored viral load) is log transformed to
achieve a “close to normality” shape. Recently, [10] adopted
a Markov chain Monte Carlo approach to draw Bayesian
inferences in Linear mixed models with multivariate skew-
normal (SNI) distributions for both random effects and error
terms. Therefore, it would be a worthwhile task to investi-
gate the applicability of a likelihood based treatment in the
context of QR-LMEC/NLMEC models with SNI distribu-
tions. Incorporating measurement error models [18] within
our robust framework for related HIV viral load covariates
(namely, CD4 cell counts) is also topic of our future re-
search.
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Figure 6. Box-plots of the estimates along the 100 replicas,
considering the combinations of the levels of the factors, for
the parameter β0, when the (top) median is being modeling

(middle) the quantile p = 0.25 is being modeling and
(botom) when the quantile p = 0.75 is being modeling.

Table 6. SE, Bias and RMSE for D22 based on R = 100
Monte Carlo replicas

Distr. Perc. (%) Quantile (%) D22

SE Bias RMSE

Normal 5 25 0.004 0.024 0.024
50 0.004 0.024 0.024
75 0.004 0.024 0.024

10 25 0.006 0.026 0.026
50 0.005 0.025 0.026
75 0.005 0.025 0.026

15 25 0.005 0.028 0.028
50 0.005 0.027 0.028
75 0.005 0.027 0.028

Student 5 25 0.005 0.024 0.025
50 0.005 0.024 0.024
75 0.005 0.024 0.025

10 25 0.005 0.025 0.026
50 0.005 0.025 0.025
75 0.005 0.025 0.026

15 25 0.005 0.028 0.028
50 0.005 0.027 0.028
75 0.005 0.027 0.028

χ2 5 25 0.005 0.024 0.024
50 0.005 0.024 0.024
75 0.005 0.024 0.025

10 25 0.005 0.025 0.026
50 0.004 0.025 0.025
75 0.005 0.026 0.026

15 25 0.005 0.028 0.028
50 0.005 0.027 0.028
75 0.005 0.027 0.028

Mixture 5 25 0.005 0.025 0.025
50 0.005 0.024 0.025
75 0.004 0.025 0.025

10 25 0.004 0.027 0.027
50 0.005 0.027 0.027
75 0.005 0.027 0.027

15 25 0.006 0.027 0.028
50 0.006 0.027 0.027
75 0.006 0.027 0.028
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