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Bayesian multivariate mixed-scale density

estimation

ANTONIO CANALE*" AND DAvID B. DUNSON?

Although continuous density estimation has received
abundant attention in the Bayesian nonparametrics liter-
ature, there is limited theory on multivariate mixed scale
density estimation. In this note, we consider a general frame-
work to jointly model continuous, count and categorical vari-
ables under a nonparametric prior, which is induced through
rounding latent variables having an unknown density with
respect to Lebesgue measure. For the proposed class of pri-
ors, we provide sufficient conditions for large support, strong
consistency and rates of posterior contraction. These condi-
tions allow one to convert sufficient conditions obtained in
the setting of multivariate continuous density estimation to
the mixed scale case. To illustrate the procedure, a rounded
multivariate nonparametric mixture of Gaussians is intro-
duced and applied to a crime and communities dataset.

KEYWORDS AND PHRASES: Large support, Mixed discrete
and continuous, Nonparametric Bayes, Rate of posterior
contraction, Strong posterior consistency.

1. INTRODUCTION

In this paper we focus on nonparametric models for es-
timating unknown joint distributions for mixed scale data
consisting of binary, ordered categorical, continuous and
count measurements. Somewhat surprisingly given the con-
siderable applied interest, the literature on nonparametric
estimation for mixed scale data is very small. From a fre-
quentist kernel smoothing perspective, Li, Racine and co-
authors [11, 10, 18, 12] proposed mixed kernel methodology
and considered properties under somewhat restrictive condi-
tions. These conditions are relaxed by [4] and a data-driven
estimator designed to combat the curse of dimensionality is
proposed. His work assumed compact support for continu-
ous variables and bounded support for discrete variables. A
recent collection of frequentist contributions to the topic can
be found in [3]. From a Bayesian semiparametric perspec-
tive, [17] show posterior consistency for a finite mixture of
latent multivariate normals, assuming bounded support for
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the discrete variables. Similar models have been applied for
mixed scale data, but without theory support [6, 14, 21].

In the parametric literature on mixed scale modeling, it is
common to model the joint distribution of underlying vari-
ables as Gaussian, with the categorical variables then ob-
tained via thresholding. A number of authors have consid-
ered variations on this theme in the nonparametric case, via
modeling one or more components as non-Gaussian using
mixtures and other approaches. We apply a related strategy
here to obtain a broad framework, with our focus then on
studying the theory related to large support, posterior con-
sistency and rates of convergence. This is the first contribu-
tion (to our knowledge) to Bayesian posterior consistency
and posterior rates of contraction for a large class of mixed
scale models. In particular, a minimax rate for this class of
problems is not known. However it is potentially faster than
usual rates for estimating smooth continuous densities. Our
goal is to provide theorems that allow leveraging on results
obtained for multivariate continuous densities. We consider
a multivariate mixed scale generalization of the rounding
framework of [2]. This extension is intuitive both from a
practical and theoretical point of view.

Section 2 introduces preliminaries, Section 3 proposes the
class of priors under consideration, and Section 4 presents
theorems on the KL support of the prior, strong posterior
consistency and rates of posterior contraction. Section 5 dis-
cusses an application to US communities and crime dataset,
using a particular prior specification.

2. PRELIMINARIES AND NOTATION

Our focus is on modeling of joint probability distri-
butions of mixed scale data y = (y{,y2)?, where y; =
(Y115, Y1) € Y C RP' is a p; x 1 vector of contin-
uous observations and y2 = (Y2p,+1,---,Y2,p) € @ with
Q= Q2,{0,1,...,q; — 1} is a pp x 1 vector of discrete
variables having ¢ = (g1,...,qp,)" as the respective num-
ber of levels and py = p — p;. Clearly ys can include binary
variables (g; = 2), categorical variables (g; > 2) or counts
(gj = o0). Hence, y is a p x 1 vector of variables having
mixed measurement scales. We let y ~ f, with f denoting
the joint density with respect to an appropriate dominating
measure p to be defined below. The set of all possible such
joint densities is denoted F. Following a Bayesian nonpara-
metric approach, we propose to specify a prior f ~ II for
the joint density having large support over F.
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For the continuous variables, we let (1,81, 1) denote
the o-finite measure space having €, = ), &1 the Borel
o-algebra of subsets of €21, and p; the Lebesgue measure.
Similarly for the discrete variables we let (2, Ss, u2) de-
note the o-finite measure space having Qo C NP2, a subset
of the ps-dimensional set of natural numbers, Sy containing
all non-empty subsets of s, and po the counting measure.
Then, we let u = p1 X ps be the product measure on the
product space (2, S) = (21,81) X (Q2,S2). To formally de-
fine the joint density f, first let v denote a o-finite measure
on (2,8) that is absolutely continuous with respect to .
Then, by the Radon-Nikodym theorem, there exists a func-
tion f such that v(A) = [, fdpu.

In studying properties of a prior II for the unknown den-
sity f, such as large support and posterior consistency, it is
necessary to define notions of distance and neighborhoods
within the space of densities F. Letting fo € F denote an
arbitrary density, such as the true density that generated
the data, the Kullback-Leibler divergence of f from fj is

/ folog(fo/ f)du= / / folog(fo/ f)dpn dysz
fo(y1,yz))
SN

Y Y2€Q

drr(fo, f)

with the integrals taken in any order from Fubini’s theo-
rem. Another topology is induced by the L;-metric. If f and
fo are probability distributions with respect to the product
measure 4, their Li-distance is

||fo—f||:/Q\fo—f\dM:/Q /Q \fo — Fldpus dp
/ Z |f0 y17y2

yzGQ

3. ROUNDING PRIOR

In order to induce a prior f ~ II for the density of the
mixed scale variables, we let

(1) y="hy"), y ~f",

where h: RP — Q, y* = (yf,...,y;)T eRP f*e F* F*is
the set of densities with respect to Lebesgue measure over
RP, and II* is a prior over F*. To introduce an appropriate
mapping h, we let

) = {h ()T ha(y3) T}

where hi(y7) = {h1a(¥i1), - hip (U7 ,,)} Py 0 R —
Y; € R is a monotone one-to-one differentiable mapping,
with Y; the support of y; ;, and hy are thresholding func-
tions that replace the real-valued inputs with non-negative
integer outputs by thresholding the different inputs sepa-
rately. Let AY) = {Agj),...,A,%)} denote a prespecified
partition of R into g; mutually exclusive subsets, for j =
1,...,p2, with the subsets ordered so that AELJ) is placed

fy1,y2)|dyr.

VAR

(2) h(y
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before A(j) for all h < I. Then, letting A,, = {y3 : Y3 €

A(zj,j =1,...,pa2}, the mixed scale density f is defined as

B0 =o") = [ P07 009 s

where J, - Lyr) is the Jacobian matrix of the inverse function

hit A typlcal choice for h; ; when ); = R is the identity
link which has the benefit to greatly simplify the formula-
tion. The function g : F* — F defined in (3) is a bijec-
tive mapping from the space of densities with respect to
Lebesgue measure on R? to the space of mixed-scale den-
sities F. It is clear that there are infinitely many f* that
map into a single g(f*) = fo. This framework generalizes
[2], which focused only on count variables. The theory is
substantially more challenging in the mixed scale case when
there are continuous variables involved.

4. THEORETICAL PROPERTIES

Clearly the properties of the induced prior f ~ II will
be driven largely by the properties of f* ~ IT*. Lemma 1
shows that the mapping ¢ : F* — F maintains Kullback-
Leibler (KL) neighborhoods. The proof is omitted as being
a straightforward modification of that for Lemma 1 in [2].

Lemma 1. Choose any f§ such that fo = g(f) for any
fized fo € F. Let K (fy) = {f* : dxr(f3, f*) < €} be a
Kullback-Leibler neighborhood of size € around fi. Then the
image g(KCc(f§)) contains values f € F in a Kullback-Leibler
neighborhood of fo of at most size €.

Large support of the prior plays a crucial role in posterior
consistency. Under the theory of Schwartz [19], given fj in
the KL support of the prior, strong posterior consistency can
be obtained by showing the existence of an exponentially
consistent sequence of tests for the hypothesis Hy : f = fy
versus Hy : f € U%(fo) where U(fy) is a neighborhood of
fo and U%(fo) is the complement of U(fy). Ghosal et al.
[7] show that the existence of such a sequence of tests is
guaranteed by balancing the size of a sieve and the prior
probability assigned to its complement.

‘We now provide sufficient conditions for L; posterior con-
sistency for priors in the class proposed in expression (1).
Our Theorem 1 builds on Theorem 8 of [7]. The main dif-
ferences are that we define the sieve F,, as g(F,), where F
is a sieve on F* and that we require conditions on the prior
probability in terms of the underlying II*. The proof relies
on the same steps of [7] given lemmas 3 and 4 (reported in
the Appendix) which give an upper bound for the L; metric
entropy J(4, F;,) defined as the logarithm of the minimum
number of d-sized L balls needed to cover F,.

Theorem 1. Let Il be a prior on F induced by II* as de-
scribed in expression (1). Suppose fqo is in the KL support
of Il and let U = {f € F:||f — fol| < €}. If for each € > 0,
there is a 6 < €, c1, ¢ > 0, B < €2/8 and there ewist sets
Fr C F* such that for n large



(i) I (F;) < exeme2;
(i) J(8,Fy) <nB

then IU | yq,...,¥n) = 1 a.s. Py,.

We now state a theorem on the rate of convergence (con-
traction) of the posterior distribution. The theorem gives
conditions on the prior II* similar to those directly required
by Theorem 2.1 of [8]. The proof is reported in the Ap-
pendix.

Theorem 2. Let II be the prior on F induced by II* as
described in expression (1) and U = {f : d(f, fo) < Me,}
with d the L1 or Hellinger distance. Suppose that for a se-

quence €,, with €, — 0 and ne2 — oo, a constant C' > 0,
sets Fi C F* and By = {f* : [ falog(fy/f*)dn <

e%,ffa‘(log(fg/f*))Qdu < €2} defined for a given f; €
9 (fo), we have

(i) J(€n, Fr) < Cne?;
(iv) II*(Fx9) < exp{—ne2(C +4)};
(v) II*(B}) > exp{—Cne?

then for sufficiently large M, we have that IL({UC |
Yi,.--,¥n) — 0 in Py -probability.

Remark 1. Since g is bijective there are infinitely many
13 € g7 (fo) but it is sufficient that condition (v) is satisfied
for just one of them.

The convergence rate that can be obtained using The-
orem 2 may change with respect to the particular choice
for hy. Assume the latent variables yj are drawn from an
a-Holder smooth density. Since the smoothness of the den-
sity of the observed continuous variables y; depends on the
mapping hi, the choice for hy can decrease or increase the
smoothness, impacting the optimal rate. Such complications
clearly do not arise if h; is the identity function.

The rate obtained using Theorem 2 in general does not
correspond to the minimax optimal rate in this class of prob-
lems, but represents an upper bound on the rate. If the ps
categorical variables all have finite support, the minimax
rate is shown in Lemma 2 below.

Lemma 2. Letq; < oo forallj =1,...,p2 and assume that
the p1 continuous variables have marginal a-Hélder smooth
density. Then, the minimax optimal rate for the mized-scale
density is n—/(otp1),

Example 1. Conditions (iii)—(v) are satisfied, for exam-
ple, by a Dirichlet process mixture of multivariate Gaus-
sians prior as discussed in [20] for any f§ belonging to the
smoothness class of locally c-Hélder functions. This conver-
gence rate result for multivariate continuous density estima-
tion directly implies the convergence rate for the mized scale
density with conditions on the first py components. In par-
ticular if hy is the identity function, the requirements for f§
to be in the KL support of IT* induce the same requirements
for the first p1 components of fo with no condition on the
remaining p discrete components.

5. APPLICATION TO CRIME DATA

We use our proposed methodology to estimate the joint
density of per capita income, in thousands of $ (y;) and
number of murders in 1990 (y2) in the US. The dataset is
part of a bigger dataset on communities and crime from
the UCI Machine Learning Repository. The data set is from
the 1990 US Census, 1995 US FBI Uniform Crime Report
and 1990 US Law Enforcement Management and Adminis-
trative Statistics Survey. Our aim is to estimate the joint
mixed-scale density of the per capita income (continuous)
and number of murders (counts) in each state with more
than 20 observations to illustrate our method and study the
relationship between these two variables. For each state the
pair (y1,92,)7 is available where i = 1,...n; and n; is the
number of communities present in the dataset for state j.
This analysis is clearly illustrative since the FBI noted that
even the use of the complete dataset is over-simplistic if one
wants to evaluate communities, since many relevant factors
are not included.

To model these data, we define our mixed-scale prior
through a latent Dirichlet process (DP) location-scale mix-
ture of Gaussians prior [5, 15]. Let IT* be the prior induced
by the model

@ )= / N(y":0,2)dG(0,5), G ~ DP(aFy),

where Py = N,(6;0p, ko2)Inv-W(X; 19, Sp) is a normal-
inverse-Wishart base measure and a > 0 is the DP scale
parameter. This multivariate location-scale mixture is a de-
fault choice for multivariate density estimation in many
contexts [15, 13] and has been recently shown to lead to
posterior consistency [1]. The latent prior specification is
completed eliciting the prior hyperparameters, which we fix
equal to a = 1, 11 = 1w = 3, kg = 1, S = diag(6, 60),
and 0y = ¥, where, following an empirical Bayes approach,
7 is the observed sample mean. Our prior specification is
completed introducing the mapping function h. For the first
continuous component we let hy be the identity function.
For hy we define a thresholding function as in [2] which is
defined in terms of thresholds partitioning the latent space.
The partition of R can be chosen so to center the prior expec-
tation on some particular probability mass function, but we
let (suppressing the index ) for simplicity) Ay = [ak, ari1)
with ag = —o0 and ai, = k for k > 0.

5.1 Posterior computation

We compute posterior quantities by means of Markov
chain Monte Carlo (MCMC) sampling from the posterior
distribution. Conditionally on the latent y; there is a rich
variety of algorithms for posterior computation [13, 16] for
model (4). To take advantage of these approaches, we im-
plement a Gibbs sampling algorithm which makes use of a
data augmentation step which generates the latent y;. Con-
ditionally on such latent variables, we use Algorithm 8 in
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Table 1. Posterior summaries for the marginal distributions and the conditionals distribution of y|ys = 0 for the crime dataset

State Marginal fi Marginal fo Conditional f1}y,—0

qo.25 qo.5 qo.75 E(y1) pr(y2 = 0) pr(yz2 > 15) E(y2) qo.25 qo.5 qo.75 E(y1]y2 = 0)
AL 10.44 11.86 13.35 13.07 0.24 0.09 5.64 10.01 11.64 13.46 12.78
AR 9.99 11.16 12.37 11.25 0.23 0.11 6.36 9.72 11.13 12.56 11.27
A7 10.84 13.26 14.85 13.54 0.18 0.10 5.77 11.89 13.90 16.29 14.33
CA 12.21 15.67 20.21 17.13 0.12 0.11 6.82 11.13 14.86 19.91 16.12
CO 11.99 13.92 15.62 13.82 0.32 0.12 6.44 11.34 13.37 15.50 13.58
CT 17.20 19.71 23.40 20.96 0.46 0.06 3.33 16.86 19.25 23.31 20.35
FL 12.57 14.72 17.54 15.78 0.16 0.05 4.30 11.80 14.05 16.72 14.64
GA 10.42 11.69 14.85 12.88 0.19 0.14 6.26 10.85 12.43 15.40 13.26
TIA 11.85 12.64 13.87 13.51 0.42 0.01 2.32 11.89 12.75 14.05 13.52
IL 15.01 19.43 23.49 19.72 0.35 0.11 3.78 16.05 19.88 23.96 20.14
IN 11.19 12.83 15.03 13.39 0.40 0.08 5.33 10.95 12.47 14.70 12.86
KY 10.59 11.51 12.59 11.81 0.39 0.04 3.27 10.52 11.54 12.69 11.80
LA 8.62 10.19 11.71 10.21 0.19 0.26 12.38 8.71 10.32 12.21 10.36
MA 15.23 17.44 20.85 18.69 0.57 0.03 1.70 14.95 17.12 20.34 18.18
MI 11.85 14.42 17.05 15.18 0.37 0.05 3.04 11.10 13.70 16.50 14.31
MN 13.03 15.17 17.62 15.59 0.65 0.02 1.77 130 15.20 17.68 15.58
MO 11.28 13.65 16.70 14.98 0.33 0.00 1.82 10.96 13.28 16.44 14.59
MS 9.70 10.80 12.99 11.45 0.06 0.11 8.81 9.01 10.50 12.79 10.88
NC 11.14 12.14 13.54 12.57 0.12 0.15 6.75 10.63 11.78 13.40 12.33
NH 14.33 15.91 17.81 16.22 0.64 0.00 1.04 14.29 15.92 17.83 16.22
NJ 15.70 190 23.65 20.05 0.50 0.04 2.71 14.86 18.14 22.69 18.92
NY 11.24 12.91 15.09 14.47 0.55 0.11 5.85 11.49 13.27 15.58 14.42
OH 11.51 13.43 16.25 14.56 0.48 0.05 3.53 11.21 13.07 15.73 13.80
OK 10.55 11.73 13.08 11.94 0.35 0.07 5.47 10.18 11.38 12.71 11.53
OR 11.17 12.37 13.83 13.15 0.29 0.03 3.58 10.94 12.23 13.82 13.02
PA 12.53 15.64 18.97 15.94 0.64 0.02 1.88 11.51 14.71 180 14.72
RI 14.04 15.57 16.90 15.88 0.63 0.04 1.74 13.74 15.33 16.67 15.43
SC 10.98 12.74 14.44 12.81 0.20 0.07 4.44 10.97 12.93 14.76 12.92
TN 11.20 12.50 14.41 13.46 0.18 0.08 3.95 10.83 12.40 14.60 13.24
X 9.87 11.86 14.58 12.62 0.17 0.06 4.41 9.94 12.16 15.18 12.83
uT 9.21 10.32 12.14 10.74 0.43 0.04 2.03 9.15 10.28 12.13 10.79
VA 11.83 13.26 15.60 14.17 0.25 0.21 8.56 12.05 13.91 17.09 14.62
WA 11.52 13.40 16.11 14.32 0.26 0.07 4.80 11.88 13.99 16.80 14.91
WI 12.22 14.11 16.31 14.68 0.46 0.00 1.32 12.48 14.43 16.65 14.90

[16] and, at each step of the sampler, compute the poste-
rior quantities of interest. This approach follows the idea
proposed in [2] and it is suitable for any discrete variables
induced via thresholding functions hs. In particular, for our
crime data and a particular state, it consists in the following
steps:

o Generate u; ~ U(®(ay, ,;0;,67), ®(ay, ,11;0;,57)) for
i=1,...,n;, where

0; = 05,2+ Esi,212§i{11(y1,i —0s,1)

~2 —1
0; = Xs;22 — Ns; 212, 11248;,12

are the usual conditional expectation and conditional
variance of the multivariate normal.
o Let y5; = @ (us;0;,67) and yi ; = 1.

K2

For each state, we run our sampler for 4,000 iterations and
discard the first 1,000 as burn in. The traceplots of the
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marginal and joint distributions, computed for some points
of the domain, suggest convergence and adequate mixing.

5.2 Results

In Table 1 we report some posterior summaries, namely
the posterior mean of the quartiles of the marginal dis-
tributions of y; and of the conditional distributions of
y1ly2 = 0 and the marginal mean posterior pr(ya = 0)
and pr(ys > 15). Most of the communities report zero mur-
ders. Such zero-inflation is automatically accommodated by
our method through kernels located at negative values. This
zero-inflation is a typical feature of many count data.

For sake of discussion, consider four states of the east
coast, namely Connecticut, New Jersey, New York and
Pennsylvania, whose posterior mean joint densities are plot-
ted in Figure 1. The estimated joint densities are very dif-
ferent across states. For example, Connecticut presents a
posterior mean density which is strongly multimodal for y,



Figure 1. Mean posterior mixed-scale densities for Connecticut (CT), New Jersey (NJ), New York (NY), and Pennsylvania
(PA) for 0 < y1 <50 and yo, = 0,...,4.

and particularly if we consider the conditional distribution
of y; given yo = 0. Indeed, the nonparametric mixtures al-
low us to estimate conditional densities with different shapes
for each of the infinite levels of the count variable. This is
also clear from the estimated density for New York which is
bimodal for y3 = 0 and symmetric and unimodal for yo > 0.
New Jersey and Pennsylvania have unimodal conditional
densities of y; for each level of yo with New Jersey also show-
ing a mild skew-to-the right marginal density of ys. Different
modes in the marginal densities of y; may indicate different
sub-populations with different economical status across the
state.

APPENDIX A. PROOFS

Proof of Theorem 1. The next two lemmas are useful to de-
termine the size of the parameter space of F, measured in
terms of L; metric entropy. The first shows that the L;
topology is maintained under the mapping g and the second
bounds the L; metric entropy of a sieve.

Lemma 3. Assume that the true data generating density is
fo € F. Choose any f§ such that fo = g(f). Let U(f§) =
{f*Ifs — F*ll < €} be a Ly neighborhood of size € around
f&- Then the image g(U(f})) contains values f € F in a Ly
neighborhood of fo of at most size €.

The proof is omitted since it follows directly from the
definition of L; neighborhood and from Fubini’s theorem.

Lemma 4. Let F} C F* denote a compact subset of F*,
with J (6, F) the L1 metric entropy corresponding to the log-
arithm of the minimum number of §-sized L1 balls needed to
cover F. Letting Fp, = g(Fy), we have J(0, Fpn) < J (0, F}).

Proof of Lemma 4. Let k = exp{J(d, F;)} be the number
of 9 balls needed to cover F, with ff,..., fi denoting the

centers of these balls so that F;; C Ule Fo.i» where FJ . =
{f* :|lf*=fF|| <6} From Lemma 3, it is clear we can define
Fp € UL, Fui where F,,; = g(F7,) is an Ly neighborhood
around f; = g(f) of size at most 0. This defines a covering

Bayesian multivariate mized-scale density estimation 199



of F,, using k d-sized L; balls, but this is not necessarily
the minimal covering possible and hence J(d, F;) provides
an upper bound on J(4, Fy,). O

The rest of the proof follows along almost the same lines
of [7] in showing that the sets F, N {f : ||f — fo|| < €} and
FC satisfy the conditions of an unpublished result of Barron
(see Theorem 4.4.3 of [9]). O

Proof of Theorem 2. Let F,, = g(F;). From Lemma 4 we
have J(8, F,) < J(6,Fy). Let D(e, F) the e-packing number
of F, i.e. is the maximal number of points in F such that the
distance between every pair is at least €. For every € > ¢,,
using (4i7) we have

log D(e/2,F) < log D(en, F*) < Cne.

Therefore applying Theorem 7.1 of [8] with j = 1, D(e) =
exp(ne2) and € = Me, with M > 2 there exist a sequence
of tests {®,,} that, for a universal constant K, satisfies

exp{—(KM? — 1)ne2}
Ef{®n} < .
so{®n} < 1 —exp{—KnMZ2e2}

sup  E{1-®,} <exp{—KnM?e}.
FeEUCNF,

The posterior probability assigned to U can be written as

H{Uc |y1,...,yn}
fUcﬂ]-‘ Hl 1 fo(y7) dII(f +fUCﬂfC Hl 1 ffo(&))d
T Ao
H(f)

1I(f)

fUcﬂ]-' HZ 1_f y

IHZ 1 ;:)(yl) dH( )

fUWo [Ti, FEar(s)

ST fo(?i;} dII(f)

Taking KM? —1 > K the first summand Ef,{®,} <
2exp{—Kne2} by (5). The rest of the proof consists in
proving that the remaining equation goes to zero in Pj,-
probability. By Fubini’s theorem and (5) we have

<o+

B o (i)
s {(1 ®n) /Ucﬂ]-'n g fo(yi)dH(f)}

< sup E{1-9,}
feuenr,

< exp{—KnM?e2},

while by (iv) we have

. f(yi)

g {/UCnfC H fo(yi)

n ¢=1

— I(F;C) < exp{—ne2 (C + 4)}.

dH(f)} < I(FY)
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The numerator of the second summand is hence exponen-
tially small for M > /(C +4)/K. Finally we need to lower
bound the denominator. Clearly g(B;;) C B,, with

By = { £+ ototfo/ N < &, [ fotogro/ 1) < 2}

and then II(B,,) > I(g(B}))
(v) on II*(B}) we have

= II*(B}) and using condition

/B n [ fotostfo/ pyduar(s) < /B 2dIL(f)

n

/ / fo (og(fo/ 1) dudI1(f) < / dII(f),
B,

n

and hence

n

/ Hfoyz

Bn =1
> exp(—2ne2)II(B,,)
> exp(—2ne2)IT*(B;)
> exp{—ne2(C +2)}

1

Then using Lemma 8.1 of [8] we obtain

o f)
Epo/i]:[lfo(yi)dn(f)—n

that concludes the proof. O

Proof of Lemma 2. If g; < oo for all j = 1,...,ps, the po
categorical variables can be combined into a single categor-
ical variable, say ¢., with ¢ = ?2:1 g;j levels. To estimate
the probability mass function of a categorical variable with
finite number of levels, the minimax rate is n='/2, i.e, for
n — oo

[poj — Bj| = O(n™""?),

where p; and pg; are the point estimate and true marginal
probability masses for level j, respectively. Since also ¢ is
finite, the density of the p; continuous variables can be esti-
mated conditionally on each level of y5. The minimax opti-
mal rate for each conditional density is clearly n—¢/(2a+r1)

ie., for n — oo
/y Folwalde = 5) — Funlgz = )ldyn = O(n~ %77,

where f (y1|92 = j) is a point estimate of the conditional
density for y; given yo = j and fo(y1]|g2 = Jj) is the true
conditional density. For fixed 3 = j, we have

/ | fo(y1,92)
b

— fy1,82)|dmn

foyr,92) — flyr, 92) £ fo(y1,y2)p dy,

0j



S/ Folyr,dia) = folyr, 5o) 2L | dys
y Poj
_\ Dj i
+/ folyr,92) == — f(y1,92) | dya
y 07

dy

bj — Poj .
=/ : 'Ojfo(yhyz)
y

Doy

+ [ [ Fanlae) = solonl72)|
Yy
= O(n™'?) + O(n™7) = O(n” ).

Hence the minimax optimal rate for the joint density is
n—/(2a+p1) Ol
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