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Binary state space mixed models with flexible link
functions: a case study on deep brain stimulation
on attention reaction time∗

Carlos A. Abanto-Valle, Dipak K. Dey
†
, and Xun Jiang

State space models (SSM) for binary time series data us-
ing a flexible skewed link functions are introduced in this
paper. Commonly used logit, cloglog and loglog links are
prone to link misspecification because of their fixed skew-
ness. Here we introduce two flexible links as alternatives,
they are the generalized extreme value (GEV) and the sym-
metric power logit (SPLOGIT) links. Markov chain Monte
Carlo (MCMC) methods for Bayesian analysis of SSM with
these links are implemented using the JAGS package, a
freely available software. Model comparison relies on the
deviance information criterion (DIC). The flexibility of the
proposed model is illustrated to measure effects of deep
brain stimulation (DBS) on attention of a macaque mon-
key performing a reaction-time task [19]. Empirical results
showed that the flexible links fit better over the usual logit
and cloglog links.

Keywords and phrases: Binary time series, GEV link,
Logit link, Markov chain Monte Carlo, Probit link, State
space models.

1. INTRODUCTION

Binary response data with two possible outcomes are of-
ten encountered in statistical modeling. Generalized linear
models [17] can be used to model time series of binary re-
sponse. However, it might not be adequate if the observa-
tions are correlated over time. To address the serial corre-
lation that might be presenting, West et al. [25] used Gen-
eralized linear state space models in a conjugate Bayesian
setup. Further researches on this topic have been followed
by Fahrmeir [12], Song [20], Carlin and Polson [7] and Czado
and Song [11] among others.

A critical issue in modeling binary response data is the
choice of the links. In the context of binary regression, logit
and probit links are two widely used symmetric link func-
tions in the literature [2, 4, 5]. However, as Chen et al. [8]
have argued, when the latent probability of a given binary
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response approaches 0 with different rate as it approaches 1,
symmetric link functions may not be adequate to fit binary
data and result in substantial bias in the mean response
estimates [10]. To deal with this problem some asymmet-
ric links are considered in the literature. Two of the com-
monly adopted asymmetric link functions are complemen-
tary loglog (cloglog) and loglog. However, these two links
have fixed skewness and lack the flexibility to let the data
tell how much skewness should be incorporated.

There are lots of research done to introduce flexibility
of skewness as well as tail behavior into the link functions.
For example, Stukel [22] proposed a two-parameter class of
generalized logistic models, Kim et al. [15] used the skewed
generalized t-link, and Bazán et al. [6] adopted the skewed
probit links and some variants with different parameteriza-
tions. Wang and Dey [23], Wang and Dey [24] and Jiang
et al. [14] introduced the flexible class of link functions as
an appropriate model for the binary cross sectional data.
Among them the GEV and SPLOGIT class of links are not
only very flexible but they also include many standard sym-
metric links as special cases. Specifically, with a free shape
parameter, the GEV distribution provides great flexibility
in fitting a wide range of skewness in the response curve.
Alternatively by introducing a power parameter on a base-
line logit link and its mirror reflection, the SPLOGIT link
achieves great flexibility in both positive and negative direc-
tions in a symmetric fashion. In terms of tail behavior, scale
mixture of normal link (Choy and Chan 9) is a rich class of
symmetric link functions that contain many standard links
(e.g., probit, Student-t) as special cases.

State space model for binary responses have been used
by Carlin and Polson [7] and Song [20] without including
covariates. Czado and Song [11] introduced covariates for
binary state space models with probit link and called the
resulting class as binary state space mixed models (BSSM).
More recently, Abanto-Valle and Dey [1] extended it to scale
mixture of normal (SMN) links, which produces a general
class of symmetric links.

In this paper, we compare the BSSM by assuming three
standard link functions and two flexible link functions. The
three standard links we consider here are logit, cloglog and
loglog and we call the corresponding state space model
BSSM-LOGIT, BSSM-CLOGLOG and BSSM-LOGLOG.
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The two flexible links are the SPLOGIT link and the
GEV link with corresponding models BSSM–SPLOGIT and
BSSM–GEV. We then fit the models and the inferences are
done under a Bayesian paradigm via MCMCmethods, which
permits to obtain the posterior distribution of parameters
based on reasonable prior assumptions. Despite the grow-
ing number of advanced sampling schemes developed with
various degree of sophistication and complexity, the idea
to trade off the easy-to-use techniques with more efficient
but complicated techniques may be unattractive to general
practitioners. Therefore, we adopt the JAGS software [18]
running inside the R package to implement the three models
although the JAGS software uses a single-move algorithm to
draw a sample from the joint posterior distribution. Com-
pared with a multi-move sampler, the single-move sampler
produces higher correlated posterior samples. Such depen-
dency can be compensated by running a longer Markov
chain. On the other hand, the gain in efficiency in using
complex sampling schemes to some extent is outweighed by
the ease of implementation in JAGS.

The remainder of this paper is organized as follows. Sec-
tion 2 gives a brief review about the GEV distribution. Sec-
tion 3 introduces the symmetric power logit models. Sec-
tion 4 outlines the setup of the BSSM models for the three
flexible link functions as well as the corresponding Bayesian
estimation procedure using MCMC methods. Section 5 con-
ducts a simulation study about the robustness of the flexible
link functions. Section 6 is devoted to the application and
model comparison of all the six models using a real data set.
Finally, some concluding remarks and suggestions for future
developments are given in Section 7.

2. GENERALIZED EXTREME VALUE LINK

The GEV link models are based on the Generalized Ex-
treme Value (GEV) distribution, which is given by

G(x) = exp

[
−

{
1 + ξ

x− μ

σ

}− 1
ξ

+

]
,(1)

where μ ∈ R is the location parameter, σ ∈ R+ is the
scale parameter, ξ ∈ R is the shape parameter and x+ =
max(x, 0). The distribution in Model (1) is called the GEV
distribution. Its importance as a link function arises from
the fact that the shape parameter ξ purely controls the tail
behavior of the distribution [23, 24]. Figure 1 provides a
comparison of pdf and cdf plots of the GEV class with differ-
ent ξ to show the flexibility of such distributions. By looking
at the cdf plot it is obvious that as the values of the shape
parameter change, so does the approaching rate to 1 and 0.

Since the usual definition of skewness μ3 = {E(X −
μ)3}{E(X − μ)}− 3

2 does not exist for large positive values
of X’s for the GEV model, Wang and Dey [23] and Wang
and Dey [24] extended the skewness measure of Arnold and
Groeneveld [3] for the GEV distribution in terms of its
mode. Wang and Dey [23] and Wang and Dey [24] showed

Figure 1. Left: pdf plot of GEV distribution. Right: cdf plot
of GEV distribution. Solid line (ξ = 0), dashed line (ξ = 0.6),

and dotted line (ξ = −0.6).

that, based on this skewness definition, the GEV distribu-
tion is negatively skewed for ξ < −0.307 and positively
skewed for ξ > −0.307.

3. SYMMETRIC POWER LOGIT MODELS

Jiang et al. [14] propose a general class of flexible link
functions based on a symmetric baseline link function and
its mirror reflection. Suppose F0 is a baseline link function
for which the pdf is symmetric about zero, the symmetric
power distribution (as link function as well) based on F0 is
defined as

(2) F (x, r) = F r
0 (

x

r
)I(0,1](r) +

(
1− F

1
r
0 (−rx)

)
I(1,+∞)(r),

where I is the indicator function. Considering F0 as the cdf
of a logistic distribution which will lead us to SPLOGIT
link adopted in this paper. By combining the power of the
baseline link and its reflection in one single family great
flexibility of skewness can be achieved in both positive and
negative directions. Also, scaling x by the same parameter
r in the formulation can prevent the mode of the pdf to be
too far away from zero. Clearly, by introducing an additional
parameter r in logit baseline in the form of (2), the skewness
of SPLOGIT distribution can be adjusted from its baseline
to achieve more flexibility in modeling asymmetric data..
However, the construction of (2) ensures that the flexibility
is achieved symmetrically with respect to r = 1 and thus
can accomondate greater skewnewss for both directions by
choosing appropriate tail.

Under Arnold and Groeneveld [3]’s measure, the skewness
of SPLOGIT distribution can be found analytically as γM =
1 − 2( r

r+1 )
r for 0 < r < 1, and γM = 2( 1

r+1 )
1/r − 1 for

r > 1. As a result, it is negatively skewed when 0 < r < 1,
positively skewed when r > 1, and reduces to the symmetric
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Figure 2. Left: pdf plot of SPLOGIT distribution. Right: cdf
plot of SPLOGIT distribution. Solid line (r = 1), dashed line

(r = 0.2), and dotted line (r = 5).

logit link when r = 1. The range of skewness provided by
splogit family is unlimited, reaching −1 and 1 respectively,
as r tends to 0 and +∞. Figure 2 compares the pdf and cdf
plots of SPLOGIT distribution with different r values. It is
clear that the pdf associated with r = 0 is just the standard
logistic distribution, and the pdf asscociated with r = 0.2 is
the mirror reflection of the pdf asscociated with r = 5 since
0.2 is the reciprocal of 5.

4. BINARY RESPONSES STATE SPACE
MIXED MODELS WITH GEV AND

SPLOGIT LINKS

4.1 Model setup

Let Y1:T = (Y1, . . . , YT )
′, where Yt, t = 1, . . . , T , denote

T independent binary random variables. Suppose xt is a
k × 1 vector of covariates. We assume that

Yt ∼ Ber(πt) t = 1, . . . , T(3)

πt = P (Yt = 1 | θt,xt,β) = F (x′
tβ + θt)(4)

θt = δθt−1 + τηt.(5)

In the GEV case, F (x) = 1−G(−x), where G(x) represents
the cdf at x for the GEV distribution with μ = 0 and σ = 1
and unknown shape parameter ξ. Notice that the GEV link
specified here is the mirror reflection of GEV distribution
discribed in Section 2, thus is positively skewed for ξ <
−0.307 and negatively skewed for ξ > −0.307. Also, when
ξ = 0, the GEV model reduces to CLOGLOG model. In
the case of SPLOGIT, F (x) = F (x, r) defined in (2). It is
negatively skewed when r < 1 and positively skewed when
r > 0. As stated before, we name the two odels BSSM-
GEV and BSSM-SPLOGIT, respectively. We assume that ηt
are independent and normally distributed with mean zero

and unit variance, | δ | < 1, i.e., the latent state process

is stationary and θ0 ∼ N (0, τ2

1−δ2 ). Clearly θt represents a
time-specific effect on the observed process. Only for the
objective of comparison, we include the BSSM with slash
link [see 1, for details about the BSSM with slash link] and
denote it as BSSM-SLASH. Under a Bayesian paradigm, we
use MCMC methods to conduct the posterior analysis in the
next subsection.

4.2 Inference procedure

Here we develop a Markov Chain Monte Carlo (MCMC)
procedure to make inference about the model defined by
(3)–(5) under the Bayesian paradigm. It is obvious that
the model depends on a parameter vector Ψ, where Ψ =
(β′, δ, τ2, ξ)′ in GEV case, Ψ = (β′, δ, τ2, r)′ in SPLOGIT
case and Ψ = (β′, δ, τ2, ν)′ in SLASH model. Let θ0:T =
(θ0, θ1, . . . , θT )

′ be the latent states. The Bayesian approach
for estimating model parameters treats θ0:T as latent param-
eters themselves and updates them in each step of MCMC.
The joint posterior density of parameters and latent vari-
ables can be written as

p(θ0:T ,Ψ | y1:T ) ∝ p(Y1:T | θ0:T ,Ψ,y1:T )

× p(θ0:T | Ψ)p(Ψ),(6)

where

p(Y1:T | θ0:T ,Ψ) =

T∏
t=1

{πYt
t (1− πt)

1−Yt}(7)

p(θ0:T | Ψ) = φ(θ0 | 0, τ2

1− δ2
)

×
T∏

t=1

φ(θt | δθt−1, τ
2),(8)

and πt is given by equation (4) and φ(x | μ, σ2) denotes
the normal density with mean μ and variance σ2 evalu-
ated at x and p(Ψ) indicates the prior distribution. In GEV,
SPLOGIT and SLASH models the three prior distributions
of Ψ can be written as

pGEV (Ψ) = p(β)p(δ)p(τ2)p(ξ),

pSPLOGIT (Ψ) = p(β)p(δ)p(τ2)p(r),

pSLASH(Ψ) = p(β)p(δ)p(τ2)

T∏
t=1

p(λt|ν)p(ν).

The prior distributions for individual parameters are set as:
β ∼ Nk(β0,Σ0), δ ∼ N(−1,1)(δ0, σ

2
δ ), τ

2 ∼ IG(n0

2 , T0

2 ), ξ ∼
U(−u0, u0), r ∼ G(r0, r0), λt ∼ Be(ν, 1), t = 1, . . . , t and
ν ∼ G(u0, v0), where Nk(., .), N(a,b)(., .), U(a, b), IG(., .),
G(., .) denote the k-variate normal, the truncated normal
on interval (a, b), the uniform distribution on interval (a, b),
the inverse gamma distribution and the gamma distribution
respectively.
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Table 1. Simulation results based on 200 replicates. Mean is the average of posterior mean. SD is the average of posterior
standard deviation. Bold numbers indicate the fit under the true model

True model: BSSMM-LOGIT

Fitted model
LOGIT CLOGLOG LOGLOG GEV SPLOGIT SLASH

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
β0 0.036 0.174 -0.475 0.122 0.432 0.120 -0.415 0.144 -0.040 0.406 0.024 0.131
β1 1.036 0.109 0.703 0.076 0.703 0.080 0.672 0.091 0.822 0.155 0.733 0.115
δ 0.902 0.078 0.878 0.088 0.874 0.099 0.878 0.089 0.889 0.092 0.891 0.083
τ2 0.132 0.159 0.090 0.121 0.107 0.157 0.079 0.098 0.074 0.075 0.101 0.083

ξ/r/ν -0.141 0.204 1.045 0.511 4.313 2.044

True model: BSSMM-CLOGLOG

Fitted model
LOGIT CLOGLOG LOGLOG GEV SPLOGIT SLASH

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
β0 0.819 0.262 0.046 0.168 1.043 0.191 -0.014 0.180 0.023 0.402 0.516 0.183
β1 1.626 0.149 1.041 0.099 1.157 0.136 1.068 0.124 1.108 0.243 1.109 0.133
δ 0.929 0.036 0.929 0.035 0.894 0.060 0.926 0.036 0.926 0.036 0.927 0.039
τ2 0.194 0.140 0.089 0.074 0.219 0.248 0.072 0.074 0.095 0.077 0.093 0.078

ξ/r/ν 0.073 0.193 0.560 0.291 4.815 2.108

True model: BSSMM-LOGLOG

Fitted model
LOGIT CLOGLOG LOGLOG GEV SPLOGIT SLASH

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
β0 -0.664 0.258 -1.082 0.189 -0.052 0.167 -0.750 0.178 -0.107 0.414 -0.470 0.184
β1 1.590 0.145 1.126 0.129 1.023 0.094 0.872 0.099 1.160 0.230 1.072 0.125
δ 0.931 0.037 0.902 0.058 0.931 0.036 0.933 0.034 0.931 0.036 0.931 0.037
τ2 0.171 0.124 0.210 0.247 0.071 0.052 0.052 0.038 0.097 0.076 0.079 0.056

ξ/r/ν -0.413 0.107 1.956 0.874 4.680 2.049

We can evaluate Equation (6) using standard MCMC
methods in JAGS [18]. Implementation in this software
merely requires specifying the model setup in equations (3)–
(5), as well as priors for the unknown parameters p(Ψ).

5. SIMULATION STUDY

Here we conduct a simulation study to investigate the ro-
bustness of the BSSM-GEV, BSSM-SPLOGIT and BSSM-
SLASH models against link misspecification when the data
are generated from different standard models. We gener-
ate our data from (3)–(5) with F set to be the cdf corre-
sponding to LOGIT, CLOGLOG and LOGLOG links. Un-
der Arnold and Groeneveld [3]’s measure, the skewness asso-
ciated with the three links are 0, -0.264 and 0.264. For each
of the true model we independently generate 200 datasets
of sample sizes T = 800. For each dateset, we generate one
covariates xt, t = 1, . . . , T from independent standard nor-
mal distributions. The true values of regression coefficients
are set to be β = (β0, β1)

′ = (0, 1)′. We set other parame-
ters δ = 0.95 and τ = 0.2. Then we fit the BSSM-LOGIT,
BSSM-CLOGLOG, BSSM-LOGLOG, BSSM-GEV, BSSM-
SPLOGIT and BSSM-SLASH models to each set of the
generated data and compare the outcomes. The prior dis-
tributions of parameters are set as: δ ∼ N−1,1(0.95, 100),
τ2 ∼ IG(0.25, 0.01) and β = (β0, β1)

′ ∼ N2(β0,Σ0), where

β0 = 0 and Σ0 = 5002I2, 0 indicates a 2× 1 vector os zeros
and I2 the identity matrix of order 2. The prior for shape pa-
rameter ξ in BSSM-GEV model is set to follow U(−0.6, 0.6).
The prior for power parameter r in BSSM-SPLOGIT model
is set to follow G(1, 1). The prior for shape parameter ν in
BSSM-SLASH model is set to follow G(5.0, 0.8).

Table 1 summarizes the average posterior mean and pos-
terior standard deviation of the parameters under differ-
ent combination of true and fitted models. Notice the true
value of β0 = 0 and β1 = 1, it is clear that the fit
under the true model (bold numbers) recovers the origi-
nal value of the parameters very nicely in all three cases.
Since BSSM-GEV and BSSM-SPLOGIT models are the
two flexible models account for skewed data, we pay spe-
cial attention to shape parameter ξ in BSSM-GEV and
power parameter r in BSSM-SPLOGIT. When the true
models are BSSM-LOGIT, BSSM-CLOGLOG and BSSM-
LOGLOG respectively, ξ = −0.141, 0.073,−0.413, and r =
1.045, 0.560, 1.956. It is clear from Section 2 and 3 that the
values of ξ and r reflect the skewness of BSSM-LOGIT
(symmetric), BSSM-CLOGLOG (left skewed) and BSSM-
LOGLOG (right-skewed). Also, from Section 4 we see that
BSSM-CLOGLOG is a special case of BSSM-GEV when
ξ = 0, this is clearly confirmed in the BSSM-GEV fitting
by an average fitted value of ξ = 0.073, β0 = −0.014 and
β1 = 1.068, all extremely close to the parameter setup of

190 C. A. Abanto-Valle, D. K. Dey, and X. Jiang



Table 2. Percentage of best performance and average DIC under different model fitting among 200 replicates. The best
performance is determined as the lowest DIC

True model: BSSMM-LOGIT
Fitted model

CLOGLOG LOGLOG GEV SPLOGIT SLASH
% best 16.0% 20.5% 24.0% 1.5% 38.0%
avg DIC 934.9 935.0 933.4 937.1 933.5

True model: BSSMM-CLOGLOG
Fitted model

LOGIT LOGLOG GEV SPLOGIT SLASH
% best 0.0% 14.5% 68.5% 3.5% 13.5%
avg DIC 770.8 768.9 755.5 762.7 765.5

True model: BSSMM-LOGLOG
Fitted model

LOGIT CLOGLOG GEV SPLOGIT SLASH
% best 0.5% 14.5% 70.5% 1.0% 13.5%
agv DIC 778.6 778.1 768.5 774.4 773.8

the true model. Similarly, it is also clear from Section 3 that
BSSM-LOGIT is a special case of BSSM-SPLOGIT when
r = 1, which is also confirmed by the fact that r = 1.045,
β0 = −0.040 and β1 = 0.822 under the BSSM-SPLOGIT
fit. Since the BSSM-SLASH model does not accommodate
skewed data, it behaves similarly as BSSM-LOGIT model
when the true model is symmetric (BSSM-LOGIT).

Model comparison results have been summarized in Ta-
ble 2. We exclude fitting the true model so that only the
misspecified models are compared. By looking at the per-
centage of best performers, we can clearly see that the
BSSM-GEV model is extremely robust against link misspec-
ifications with 24.0% best performance in BSSM-LOGIT
case, 68.5% in BSSM-CLOGLOG case and 70.5% in BSSM-
LOGLOG case. SLASH model performs the best in BSSM-
LOGIT case with 38.0% best performance, and 13.5% each
in other two cases. For BSSM-SPLOGIT case, if we only
look at the percentage of best performance, it would be
tempting to conclude that it performs even worse than
some standard link function. However, closer examination
of the average DIC value shows that in BSSM-CLOGLOG
and BSSM-LOGLOG case, BSSM-SPLOGIT model per-
forms much better than other standard links. It is clear that
BSSM-GEV model always outperforms BSSM-SPLOGIT a
little, therefore making the percentage of best performance
of BSSM-SPLOGIT look bad. In conclusion, our three flex-
ible link models performs well against link misspecification
with BSSM-GEV model definitely stands out as the best
model.

6. CASE STUDY: DEEP BRAIN
STIMULATION ON ATTENTION

REACTION TIME

To illustrate the technique applied to binary responses,
we consider responses from a monkey performing the at-
tention paradigm described in Smith et al. [19]. The task

consisted of making a saccade to a visual target followed by
a variable period of fixation on the target and detection of a
change in target color followed by a bar release. This stan-
dard task requires sustained attention because in order to
receive a reward, the animal must release the bar within a
brief time window cued by the change in target color [see 19,
for a more detailed description of the experiment]. Thus our
behavioral data set for this experiment are composed of a
time series of binary observations with a 1 corresponding to
reward being delivered and a 0 corresponding to reward not
being delivered at each trial, respectively. The goal of the ex-
periment is to determine whether, once performance has di-
minished as a result of spontaneous fatigue, deep brain stim-
ulation (DBS) allows the animal to recover its pre-fatigue
level of performance. In this experiment, the monkey per-
formed 1250 trials. Stimulation was applied during 4 periods
across trials 300-364, 498-598, 700-799 and 1000-1099, indi-
cated by shaded gray regions in Figures 3 and 4. Dividing the
results into periods when stimulation is applied (“ON”) and
not applied (“OFF”), there are 240 correct responses out of
367 trials during the ON periods and 501 correct responses
from 883 trials during the “OFF” periods. Out of 1250 ob-
servations, 741 (or 59.28%) are correct responses1. For this
data set we fit the Binary state space model with three stan-
dard link functions (LOGIT, CLOGLOG and LOGLOG), as
well as three flexible link functions (SLASH, SPLOGIT and
GEV) defined in previous sections, where πt is modeled by

πt = P (Yt = 1 | θt) = F (θt).

As before, F (.) represents the cdf associated with the cor-
responding standard link functions in LOGIT, CLOGLOG
and LOGLOG models. For SLASH and SPLOGIT case,
F (x) represents the cumulative distribution function at

1We thank Anne C. Smith for making the data set available on her web-
site: http://www.ucdmc.ucdavis.edu/anesthesiology/research/smith
Bayesian.html.

Binary state space mixed models with flexible link functions 191



Table 3. Estimation results for monkey performance data set. First row: Posterior mean. Second row: Posterior 95% HPD
interval in parentheses

Model
LOGIT CLOGLOG LOGLOG SLASH SPLOGIT GEV

0.9954 0.9968 0.9959 0.9873 0.9969 0.9939
δ (0.9895,0.9999) (0.9921,0.9999) (0.9909,0.9999) (0.9889,0.9999) (0.9931,0.9999) (0.9864,0.9999)

0.0233 0.0110 0.0117 0.0118 0.0087 0.0083
τ2 (0.0085,0.0411) (0.0046,0.0191) (0.0041,0.0217) (0.0043,0.0215) (0.0029,0.0165) (0.0029,0.0146)

– – – 5.1536 4.0230 -0.5396
ν/r/ξ – – – (1.3417, 9.1360) (1.3568,7.1885) (-0.5998, -0.4229)

Figure 3. Estimation results for the monkey performance data
set. Posterior smoothed mean of θt.

Figure 4. Estimation results for the monkey performance data
set. Posterior smoothed mean of πt.

x for the SLASH and SPLOGIT distributions. In GEV
case, let G(x) be the cumulative distribution function at

x for the GEV distribution with μ = 0 and σ = 1,
then F (θt) = 1 − G(−θt). θt is the arousal state of the
macaque monkey at time t. We set the priors as δ ∼
N(−1,1)(0.95, 1000), τ2 ∼ IG(0.1, 0.01), ν ∼ G(5, 1) for
SLASH model, ξ ∼ U(−0.6, 0.6) for GEV model and
r ∼ G(1, 1) for SPLOGIT model. We fit these six mod-
els denoted by BSSM-LOGIT, BSSM-CLOGLOG, BSSM-
LOGLOG, BSSM-SLASH, BSSM-SPLOGIT and BSSM-
GEV, using the software package JAGS, because of its user-
friendly model declaration language2. JAGS is not designed
to handle extremely large models and data sets (e.g., >2000
trials). Other software may be preferable in these situa-
tions. For each case, we conducted the MCMC simulation
for 550000 iterations. In all the cases, the first 50000 draws
were discarded as a burn-in period. In order to reduce the
autocorrelation between successive values of the simulated
chain, only every 100th values of the chain were stored. With
the resulting 5000 values, we calculated the posterior means,
the 95% HPD intervals. The MCMC output of all the pa-
rameters passed the convergence test of Heidelberger and
Welch [13], available for free with the CODA package with
the R software.

From Table 3, we found that for all the models considered
here, the posterior means of δ are close to 1, showing higher
persistence of the autoregressive parameter for states vari-
ables and thus in binary time series. The posterior means of
τ2 are between 0.0085 and 0.0233. For GEV model we found
that the posterior mean and 95% HPD interval for ξ are
−0.5396 and (−0.5998, −0.4229), while for SPLOGIT model
the posterior mean and 95% HPD interval for r are 4.0230
and (1.3568, 7.1885). Notice that from Section 4 we see that
both values indicate the data favors positively skewed link
functions, which corresponds to LOGLOG among the stan-
dard link functions we consider here. The posterior mean
and 95% HPD interval for ν in SLASH model are 5.1536
and (1.3417, 9.1360).

To assess the goodness of the estimated models, we calcu-
late the deviance information criterion, DIC [21] to compare
models using different link functions. The deviance function
is defined as:

2The JAGS codes for the BSSM-SLASH, BSSM-SPLOGIT and BSSM-
GEV models are available upon request to the first author.
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Table 4. Monkey performance data set. DIC: deviance
information criterion

Model DIC Rank

BSSM-LOGIT 1423.9 5
BSSM-CLOGLOG 1433.1 6
BSSM-LOGLOG 1414.7 1
BSSM-SLASH 1420.6 4
BSSM-SPLOGIT 1415.7 2
BSSM-GEV 1417.6 3

D(Ψ,θ0:T ) = −2 log[p(y1:T | Ψ,θ0:T )]

= −2

T∑
t=1

[yt log(πt) + (1− yt) log(1− πt)].(9)

The deviance information criterion (DIC) is defined by

DIC = −2EΨ,θ0:T |y1:T
[D(Ψ,θ0:T )] + pD

= D̄(Ψ,θ0:T ) + pD,(10)

where EΨ,θ0:T |y1:T
denotes the expectation taken with re-

spect to the posterior distribution of Ψ and θ0:T given the
data y1:T . The second term pD in (10) is the effective num-
ber of parameters, which measures the complexity of the
model. Specifically, pD is defined as the difference between
the deviance evaluated at the posterior mean of the param-
eters and the posterior mean of the deviance:

pD = D̄(Ψ,θ0:T )−D(Ψ̄, θ̄0:T ).(11)

Computing the DIC is straightforward in an MCMC im-
plementation. Monitoring both (Ψ,θ0:T ) and D(Ψ,θ0:T ) in
MCMC updates, at the end one can estimate the D by
the sample mean of the simulated values of D and the
D(Ψ̄, θ̄0:T ) by plugging in the sample means of the sim-
ulated posterior values of Ψ and θ0:T . A lower values of
DIC indicates a better-fitting model. The DIC is easily cal-
culated using JAGS. Table 4 summarizes the DIC for our
six models. The DIC selects the BSSM-LOGLOG as the
best model for the monkey performance data set, although
BSSM-SPLOGIT and BSSM-GEV are close as well. This
confirms our observation that the data supports positively
skewed link function, namely the BSSM-LOGLOG standard
link, as well as BSSM-GEV and BSSM-SPLOGIT with pos-
itive skewed parameters.

Additionally, we use another measure of global fit, by
considering the posterior mean of unstandardized residuals
ei = yi−E(Yi), that is the sum of absolute residuals (SAR)
defined as SAR =

∑n
i=1 |ei|. As before, lower values of SAR

indicate a better fit. Table 5 shows the comparing time for
the competing models. The BSSM-GEV minimizes the SAR.
According to the SAR criterion, skewed link models give
better fit than the logit link.

Figure 3 shows the posterior smoothed mean for the
states θt for each one of the models fitted. Different line
types and colors indicate the posterior smoothed mean for

Table 5. Monkey performance data set. Sum of absolute
residuals (SAR) and computing time (in minutes) for 50000

swaps for the competing models

Model SAR Rank Computing time

BSSM-LOGIT 470.32 6 3.17
BSSM-CLOGLOG 472.28 5 2.79
BSSM-LOGLOG 469.75 4 3.50
BSSM-SLASH 469.28 3 9.55
BSSM-SPLOGIT 468.84 2 15.63
BSSM-GEV 467.35 1 3.20

the six fitted models respectively. All the estimates follow a
similar pattern, but there are expressive differences between
the estimates, specially in the last OFF period.

In Figure 4, we plot the posterior smoothed mean for the
probability of a correct response computed using the six fit-
ted models. In this case the estimated probability is less con-
strained and tracks the data independent of the stimulation-
ON/OFF information. In all the cases, on average the re-
sponse curve lies around the 0.75 level but decreases are ob-
served at the end of the first stimulation-ON period around
trial 375, at the end of the 4th OFF period around trial
950 and for the remainder of the experiment from trial 1100
onwards, with some slight differences starting around 1150.
All the models are able to account for stimulation effect.
The results indicate that stimulation has a positive influence
on the performance. However, they show that the perfor-
mance does not improve during the first stimulation period.
Overall, however, all the models result highlight an abrupt
step-like decline in performance towards the end of the ex-
periment, around trial 950, which undergoes a significant
increase during the final stimulation period before a final
significant drop to zero. All the results are consistent with
Smith et al. [19].

7. CONCLUSIONS

In this paper we have proposed three flexible classes of
state space mixed models for longitudinal binary data us-
ing GEV, SPLOGIT and SMN distributions as extensions
of Czado and Song [11] and Abanto-Valle and Dey [1]. In
this setup, the parameters controling the skewness and tail
behavior are estimated along with model fitting. The flex-
ibility in links is important to avoid link misspecification.
An attractive aspect of the model is that it can be easily
implemented, under a Bayesian perspective, via MCMC by
using JAGS. We illustrated the methods through a simu-
lation study and an empirical application with the monkey
performance data set. DIC measure is used it for model com-
parison. Empirical findings show that the BSSM-GEV and
BSSM-SPLOGIT model are extremely robust in model fit-
ting no matter the data favors left skewed, symmetric or
right skewed links.

This article makes certain contributions, but several ex-
tensions are still possible. First, we focus on binary obser-
vations, but the setup can be extended to binomial and or-
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dinal data. Second, if the rate of zeros or ones are not the
same, we can compare the performance of our flexible links
with other skewed links as the skew normal or the skew
Student-t. In such case, it is necessary to develop efficient
sampler for the states variables. Langrock [16] has shown
that methods which are well-known for hidden Markov mod-
els (HMMs) can be applied in order to perform a fast and
accurate numerical integration for the likelihood function
in general state space models in order to get maximum
likelihood-based estimators. Nevertheless, a deeper investi-
gation of those modifications in the context of BSSM models
is beyond the scope of the present paper, but provides stim-
ulating topics for future research.

Received 13 October 2013
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