
Statistics and Its Interface Volume 8 (2015) 109–122
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Although the extremes of high-frequency financial trans-
action data have a huge economic impact, basic charac-
teristics of the data have not been addressed up to now.
To capture dependence between the tail behavior of inter-
transaction returns and the pattern of transaction times,
this paper combines marked point process (MPP) theory
with extreme value analysis. Suitable measures of interac-
tion are provided, based on second-order moments of MPPs.
Applying these measures to financial transaction data, it is
verified that the extreme value index of the return distri-
bution is indeed locally increased, i.e., on the scale of min-
utes, by the existence of surrounding transactions. A sim-
ulation study underpins the observed effects and enables
assessing the finite sample properties of the respective es-
timators. Further, asymptotic results on the estimators are
given.
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1. INTRODUCTION

The irregular spacing of financial data recorded at intra-
day frequency level has been inspiring an extensive usage
of (marked) point process methods in econometric and fi-
nancial applications. The seminal paper of Engle [15] and
the contributions of Engle and Lunde [16], Bowsher [4] and
Bauwens and Hautsch [3] are well-known examples. Yet, at
the same time, movements of asset prices are commonly
modeled via continuous-time stochastic processes—an ap-
proach that suggests to perceive transaction data as non-
evenly spaced measurements of an underlying continuous-
time process [e.g., 1, 22]. As long as the pattern of point
locations in such a model is stochastically independent
of the underlying process, global parameter estimation is
well-established in literature [e.g., 20, 42] including various
contributions on declustering and debiasing of non-evenly
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spaced measurements [e.g., 26]. Though, in the context of
financial transaction data, the observed prices clearly de-
pend on the frequency of trading events; executing a trans-
action impacts on both the instantaneous and on future
prices. Ignoring these dependencies and applying standard
tools can lead to severe biases. Here, marked point pro-
cesses (MPPs) provide a commonly used framework that
can capture arbitrary forms of dependency between point
locations and observed values, called marks in this context
[e.g., 3, 9, 11, 28, 35, 36, 40]. While the effect of single trans-
actions is relevant on a rather small scale, on larger scales,
continuous-time representations of asset prices might be ad-
vantageous; a general challenge is to model these processes
across different scales [e.g., 12].

Another main issue of financial modeling and quantita-
tive asset pricing is the assessment of financial risk. The
rapid growth and globalization of financial markets together
with the financial crises during the last decades have led to
a strong demand for risk management systems. While some
of the early models for asset returns, e.g., the capital asset
pricing model (CAPM), are solely based on variances, risk
measures that reflect the shareholders’ preferences more ad-
equately include the value at risk and the expected short-
fall. Extreme value theory (EVT) goes one step further and
considers the full tail of the distribution. It builds the theo-
retical framework for analyzing and modeling the univariate
and the joint extremal behavior of multiple assets, which is
of particular interest with regard to crashes and large port-
folio losses [e.g., 13, 14].

This paper tries to bring together the two concepts,
MPPs and EVT, in order to quantify interactions between
the tail behavior and the pattern of transaction times. The
core idea is to apply second-order moment measures of point
processes, similar to those presented in Schlather, Ribeiro,
Jr and Diggle [40]. Therein, first and second moments (i.e.,
mean and variance) of a point’s mark distribution are con-
ditioned on the existence of further points at a certain
distance. In terms of financial high-frequency data, for in-
stance, these quantities might be used to detect an increase
of the log-returns’ variance when the time distance to the
previous transaction shrinks.

To enable statements of this kind for the thickness of tails
of the return distribution, the second-order characteristics
of [40] have to be generalized twofold:
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In classic MPP theory, stationarity and ergodicity are
two basic assumptions meaning that the stochastic behav-
ior of the underlying process is constant in space or time
and constant over different realizations. Many financial and
economic processes, though, exhibit structural breaks due to
abrupt changes in the underlying economic mechanisms and
conditions, even after having corrected for seasonalities and
trends [e.g., 2]. Structural breaks are commonly captured
by means of regime-switching models [e.g., 7, 19], nowadays
applied to diverse financial and economic processes [e.g.,
21, 30, 37]. For intra-day data, also (hierarchical) non-linear
models in the spirit of the autoregressive conditional dura-
tion model (ACD, [17]) are used, [e.g., 3, 5, 34, 43]. In an
MPP framework, structural changes can easily be covered by
dropping the ergodicity assumption. It seems both reason-
able and natural to perceive financial transaction data as a
concatenation of structurally different realizations of finite
clock time length from a possibly non-ergodic MPP. This
paper will revert to Malinowski, Schlather and Zhang [33],
where (conditional) mark means and appropriate estimators
for non-ergodic MPPs are provided.

The second direction of generalization of the characteris-
tics in [40] is w.r.t. extreme values. Instead of mean and vari-
ance of the return distribution, here, the tail index will be
of interest and a suitable representation in terms of second-
order moment measures has to be found.

A further challenge is the assessment of the asymptotic
distribution of MPP point estimates, which is in general not
analytically tractable. Variance estimates and confidence in-
tervals either have to be based on rather strong mixing or in-
dependence assumptions or non-parametric techniques such
as subsampling and bootstrapping can be used. When es-
timating the tail dependence index for stationary time se-
ries, which is closely related to estimating the ordinary tail
index, Laurini and Tawn [31] and Ledford and Tawn [32]
state that confidence intervals based on iid assumptions will
be too small when the extremes are dependent. They pro-
pose a block bootstrapping method to obtain proper vari-
ance estimates for their estimators. In our MPP set-up and
in view of the massive amount of data when intra-daily fi-
nancial data are used, the subsampling approach of Politis
and Sherman [39] can be expected to yield reliable results.
Subsampling-based variance estimates will be compared to
those obtained from assuming independence between point
locations and marks of the MPP.

The rest of the paper is organized as follows: In Section 2,
some basic concepts and definitions from EVT and MPP
theory are reviewed, including the generic form of the mo-
ment measure based summary statistics. Then the definition
is tailored to the extreme value context, while the focus is
on the tail index of the mark distribution and its interaction
with point locations. An alternative to subsampling is pro-
posed in order to assess the variability of the corresponding
estimators. A central limit theorem (CLT) result for MPPs
yields their asymptotic distribution. In Sections 3 and 4,

the methods are applied to simulated data and to real high-
frequency transaction data from the German stock index
DAX, respectively. Section 5 closes with a summary and
discussion of the results. Technical details and proofs are
given in the appendix.

2. METHODS

2.1 Marked point processes

Throughout the paper, Φ = {(ti, yi) : i ∈ N} is a sta-
tionary (not necessarily ergodic) and simple marked point
process on R with real-valued marks m(ti) = yi, and
Φg = {t : (t, y) ∈ Φ} denotes its ground process of point lo-
cations. Here, the ti can simply be regarded as time points of
transactions. This section briefly reviews some of the defini-
tions of second-order moment measures for MPPs and their
estimators. For more details, the reader is referred to Mali-
nowski, Schlather and Zhang [33] and, for the general theory
of point processes, to Stoyan, Kendall and Mecke [41] and
Daley and Vere-Jones [8, 9].

For I ∈ B(R) and t ≥ 0, let

C(t, I) = {(t1, t2) ∈ R
2 : t1 ∈ [0, t], t2 ∈ I + t1},

C(I) = C(1, I).

For functions f, h : R → R and C ∈ B(R× R), let

α
(2)
f,h(C) = E

∑ �=

(t1,y1),(t2,y2)∈Φ

f(y1)h(y1)1C((t1, t2)),(1)

where “ �=” indicates that the sum runs over all pairs of
points with (t1, y1) �= (t2, y2). Throughout the paper it is
assumed that h and f · h are non-negative. If the deriva-

tive of α
(2)
f,h(C(·)) w.r.t. the Lebesgue measure exists, it is

denoted by ρ
(2)
f,h. Extending the classical second-order facto-

rial moment measure [41],

μ
(2)
f,h(I) =

α
(2)
f,h(C(I))

α
(2)
1,h(C(I))

, I ∈ B(R),

and

μ
(2)
f,h(r) =

ρ
(2)
f,h(r)

ρ
(2)
1,h(r)

, r ∈ R,(2)

provide the notion of a conditional mark mean, subject to
the conditioning that Φ has a further point at a distance
contained in I or at distance r, respectively. The choices
f(x) = x and f(x) = x2, for instance, refer to the con-
ditional mean and the non-centered second moment of the
marks, respectively. The function h allows to consider only
a certain type of marks. If h(·) = 1A(·) is an indicator func-

tion with A a Borel subset of R, μ
(2)
f,h represents the condi-

tional mean of f(y), additionally conditioned on the event

{y ∈ A}. If h ≡ 1, we simply write μ
(2)
f , α

(2)
f and ρ

(2)
f .
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If Φ is non-ergodic, its probability law P can be decom-
posed according to a mixing measure λ on the space Perg of
all ergodic MPP probability laws: P (M) =

∫
Perg

q(M)λ(dq),

M ∈ M0, where M0 is the canonical σ-algebra of counting
measures. (For more details, the reader is referred to the
appendix.) Let Q ∼ λ be the corresponding mixing random
variable, i.e., [Φ |Q = q] ∼ q. Then

μ
(2)
f,h(r) =

E
[
μ
(2)
f,h,Φ|Q(r) · ρ

(2)
1,h,Φ|Q(r)

]
ρ
(2)
1,h(r)

,

i.e., μ
(2)
f,h(r) is a weighted average of its ergodic subclasses

counterparts, with weights being proportional to the inten-
sity of pairs of points with distance r. An alternative defi-
nition of conditional mark mean, which is proposed in Ma-
linowski, Schlather and Zhang [33] and which avoids this
implicit weighting, is given by

μ̃
(2)
f,h = Eμ

(2)
f,h,Φ|Q =

∫
Perg

μ
(2)
f,h,Φ|Q=q λ(dq).(3)

While μ
(2)
f,h rather refers to a typical point out of the union

of all ergodicity classes, μ̃
(2)
f,h reflects the marks’ expectation

within a typical ergodicity class, no matter how densely the
points occur in each of the classes.

2.2 (Conditional) tail index for MPPs

The fundamental Fisher-Tippett-Gnedenko theorem
states that there exist only three possible distributions for
suitably standardized maxima of iid random variables. Out
of these, the Fréchet distribution exp(−x−α), x > 0, α > 0,
is the only heavy-tailed distribution and is therefore com-
monly applied in the context of financial data.

A standard problem is the estimation of the tail index
ξ = α−1. For a random variable Y (w.l.o.g., Y ≥ 0) in the
max-domain of attraction (MDA) of a Fréchet(α) distribu-
tion, it is well-known [e.g. 14, Sec. 6.4.2] that for the thresh-
old u tending to infinity,

ξ(u) = E(log Y − u| log Y > u) → ξ = α−1,(4)

which is also the basis for the well-known Hill estimator [24]
of the tail index.

An MPP analog of ξ(u) as in (4), is given by

E
∑

(t,y)∈Φ, t∈[0, 1](log y − u) · 1log y>u

E
∑

(t,y)∈Φ, t∈[0, 1] 1log y>u
.

Taking limits for u → ∞ gives a definition of the marks’ tail
index in an MPP setting, based on its mean excess repre-
sentation.

The conditional tail index can now be defined by includ-
ing an additional conditioning on the existence of a further
point:

Definition 2.1. Let ξ(I, u) = μ
(2)
fu, hu

(I) with fu(y) =
log y − u and hu(y) = 1log y>u for y > 0 and with
fu(y) = hu(y) = 0 for y ≤ 0. As in (2), we may de-

fine ξ(r, u) = μ
(2)
fu, hu

(r) and consider ξ as a function on

(B(R) ∪ R) × R
+. Let ξ̃(I, u) and ξ̃(r, u) denote the analog

of (3), i.e., the two-stage expectation, averaging within each
ergodicity class first, and then pooling the different classes.
Then ξ(·) = limu→∞ ξ(·, u) and ξ̃(·) = limu→∞ ξ̃(·, u) are
called conditional tail indices of a mark of Φ, conditional on
the existence of a further point at a certain distance.

2.3 Estimation

Assuming the process is observed on the interval [0, T ],

T > 0, the quantities μ
(2)
f,h(I) and μ̃

(2)
f,h(I) can naturally be

estimated through

μ̂n,wght
f,h (I,w) = μ̂n,wght

f,h (I,w, (Φ1, . . . ,Φn), T )(5)

=
(∑

wi(Φi, T )
)−1 n∑

i=1

wi(Φi, T )μ̂f,h(I,Φi, T ),

with

μ̂f,h(I,Φ, T ) =
α̂f,h(I,Φ, T )

α̂1,h(I,Φ, T )
,

α̂f,h(I,Φ, T ) =
∑�=

(t1,y1),(t2,y2)∈Φ

f(y1)h(y1)1(t1,t2)∈C(T,I).

Here, the weights wi(Φi, T ) are required to converge stochas-
tically to some constant within each ergodicity class.
For instance, with wi(Φi, T ) = T−1α̂f,h(I,Φi, T ) and

wi(Φi, T ) = 1, respectively, μ
(2)
f,h(I) and μ̃

(2)
f,h(I) can be es-

timated consistently.
Estimation of the tail behavior generally requires a trade-

off between tail relevance and the amount of data. For esti-
mation of ξ̃, a suitable threshold u has to be chosen such that
the estimator of ξ̃(I, u) can be taken as an approximation
of ξ̃(I). Plugging in fu(y) = log y − u and hu(y) = 1log y>u

into (5), the canonical estimator of ξ(I, u), based on a single
realization of Φ, is

ξ̂(I, u,Φ, T )

=

∑ �=
(t1,y1),(t2,y2)∈Φ(log y1 − u)1log y1>u1(t1,t2)∈C(T,I)∑ �=

(t1,y1),(t2,y2)∈Φ 1log y1>u1(t1,t2)∈C(T,I)

.

For n realizations of Φ, the estimator

ξ̂n,wght(I, u,w) = ξ̂n,wght(I, u,w, (Φ1, . . . ,Φn), T )(6)

= μ̂n,wght
fu, hu

(I,w)

will be considered, where the right-hand side (RHS) is
given by (5). If all weights are chosen equal to 1, the es-
timator is already consistent for ξ̃(I, u). Under some addi-
tional assumptions on the mark-location dependence, the
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estimator’s variance can be improved by choosing differ-
ent weights while retaining consistency. To this end, assume
E[ξ̂(I, u,Φi, T ) | A∗

u] to be constant a.s., where A∗
u denotes

the σ-algebra that contains all information about the point
locations of Φ1, . . . ,Φn and about the locations of points
whose log marks exceed the threshold u. A formal definition
of A∗

u is given in the appendix. Then, the optimal weights
in (6) are given by the inverse of the conditional variances,

i.e., wi = Var[ξ̂(I, u,Φi, T ) | A∗
u]

−1 [33, Prop. 2], provided
that they are stochastically independent of the mixing ran-
dom variable Q. To exemplify these conditional variances,
explicit expressions under some idealized independence and
mixing assumptions are derived in the following. The wor-
thiness of the following results for practical applications is
discussed in the adjacent Section 2.4.

Condition 2.2 (Independent-noise-marking). Let Yi, i ∈
Z, be iid variables in the MDA of a standard Fréchet dis-
tribution. We say that an MPP Φ satisfies the condition

(Independent-noise-marking), if Φ
d
= {(ti, Yi) | ti ∈ Φ̃} for

some stationary unmarked point process Φ̃ on R, for which
neighboring points have some minimum distance d0 > 0 and
which is independent of the Yi.

Condition 2.3 (GRFM-trans). Let Φ̃ be as in condition
(Independent-noise-marking), and let {Y (t) : t ∈ R} be an
independent random process which arises from a station-
ary Gaussian process Z by a monotone transformation of
the margins, i.e., Y = g(Z), such that the marginals of Y
are in the Fréchet MDA. The covariance function C of Z
is assumed to have a finite range, i.e., C(h) = 0 for all
|h| > h0 for some h0 > 0. Then, we say that an MPP Φ
is a Gaussian random field model with transformed mar-
gins, for short: Φ satisfies the condition (GRFM-trans), if

Φ
d
= {(ti, Y (ti)) | ti ∈ Φ̃}.

Theorem 2.4. For a stationary MPP as in (GRFM-trans),

Var[ξ̂(I, u, T ) | A∗
u]

= vu

⎡
⎢⎣

∑
t1∈Φg∩[0, T ] n(t1,Φg, I, u)

2[∑
t1∈Φg∩[0, T ] n(t1,Φg, I, u)

]2 + εu

⎤
⎥⎦ ,

where vu = Var[log Y (0) | log Y (0) > u], n(t1,Φg, I, u) =
1log Y (t1)>u ·

∑
t2∈Φg\{t1} 1t2−t1∈I and εu is an A∗

u-

measurable random variable with |εu| → 0 a.s. and in L1,
as u → ∞.

The proof is given in the appendix. Since condition
(Independent-noise-marking) is a special case of condition
(GRFM-trans), the following corollary is obvious from the
proof.

Corollary 2.5. For an MPP Φ satisfying the condition
(Independent-noise-marking), the assertion of Theorem 2.4
holds with εu = 0.

If u is large enough, the term εu in Theorem 2.4 can be ne-
glected and the resulting optimal weights in ξ̂n,wght(I, u,w)
are

wi(Φi, I, u) = v−1
u

[∑
t1∈Φi,g∩[0, T ] n(t1,Φi,g, I, u)

]2
∑

t1∈Φi,g∩[0, T ] n(t1,Φi,g, I, u)2
.(7)

For the continuous case ξ(r, u), the same estimators
as for ξ(I, u) can be used, while the indicator function
1(t1,t2)∈C(T,I) might be replaced by a general kernel Kh.
Then, the above formulae for the conditional variance and
the weights are still valid if n(t1,Φg, I, u) is replaced by

n(t1,Φg, r, u) = 1log Y (t1)>u

∑
t2∈Φg\{t1}

Kh(r − (t2 − t1)).

2.4 Confidence intervals

In the following, the asymptotic distribution of
ξ̂n,wght(I, u,w) under the above assumptions (Independent-
noise-marking) and (GRFM-trans) is derived. If these as-
sumptions are violated, the reliability of the resulting con-
fidence intervals (CIs) can be assessed, e.g., via the non-
parametric subsampling approach according to Politis and
Sherman [39].

2.4.1 Confidence intervals based on (Independent-noise-
marking) and (GRFM-trans)

The estimator ξ̂n,wght(I, u,w) involves two levels of ag-
gregation of independent or weakly dependent random
terms: the outer summation over different realizations and
the inner summation over all points of a particular realiza-
tion.

First consider the inner level of aggregation and as-
sume that Φ is ergodic throughout this paragraph. Then
ξ̂(I, u) = α̂fu,hu(I,Φ, T )/α̂1,hu(I,Φ, T ) is an average of a
random number of (dependent) summands and the follow-
ing CLT-type result follows from [33, Thm. 1].

Theorem 2.6. Let Φ be an MPP as in (Independent-noise-
marking) or (GRFM-trans) and let (uT )T≥0 be a family
of non-negative non-decreasing numbers such that u∞ =
limT→∞ uT ∈ [0,∞] exists and

T−1α̂1,1(I,Φ, T )− λ

Eα̂1,huT
(I,Φ, 1)

→ 0 a.s., as T → ∞,

where λ is the intensity of point locations. Let

α̂∗
fu,hu

(I,Φ, T )

=
∑�=

(t1,y1),(t2,y2)∈Φ

(
fu(y1)− μ

(2)
fu,hu

(I)
)
hu(y1)1(t1,t2)∈C(T,I)

be a centered version of α̂fu,hu(I,Φ, T ).
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Then, for I ∈ B(R) and T → ∞,

α̂∗
fuT

,huT
(I,Φ, T )√

α̂1,huT
(I,Φ, T )

⇒ N (0, su∞),

where

su∞ = lim
T→∞

vuT

⎡
⎢⎢⎢⎣
E

∑
t1∈Φg∩[0, 1]

n(t1,Φg, I, uT )
2

Eα̂1,huT
(I,Φ, 1)

+ EεuT

⎤
⎥⎥⎥⎦ ,

vu = Var
[
log Y (0) | log Y (0) > u

]
, u ∈ [0,∞),

and εu is given by Thm. 2.4 or Cor. 2.5. If the family

(uT )T≥0 is eventually constant, then uT can be replaced by

the limiting constant u∞ ∈ [0,∞). Furthermore, for u large

(and T > 0 arbitrary),

Var
α̂fu,hu(I,Φ, T )

α̂1,hu(I,Φ, T )
= Var

α̂∗
fu,hu

(I,Φ, T )

α̂1,hu(I,Φ, T )
(8)

≈ vuE

{∑
t1∈Φg∩[0, T ] n(t1,Φg, I, u)

2

α̂1,hu(I,Φ, T )
2

}
.

For a proof, the reader is referred to the appendix.

Concerning the outer level of aggregation in

ξ̂n,wght(I, u,w), again by a CLT argument, the finite

sample distribution is approximately Gaussian. By assump-

tion, E[ξ̂(I, u,Φi, T ) | A∗
u] is a.s. constant and the weights

in (7) are A∗
u-measurable. The corresponding variance is

obtained by a straightforward calculation using Thm. 2.4:

Var
[
ξ̂n,wght(I, u,w)

]

= EVar

⎡
⎢⎢⎣
∑n

k=1 w(Φk,∪jIj , u)
α̂fu,hu(Φk, I, T )

α̂1,hu(Φk, I, T )∑n
k=1 w(Φk,∪jIj , u)

∣∣∣∣∣∣∣∣
A∗

u

⎤
⎥⎥⎦

≈ vu · E
[[

1∑
k w(Φk, I, u)

]2

n∑
k=1

[∑
t1∈Φk,g∩[0, T ] n(t1,Φk,g, I, u)

]2
∑

t1∈Φk,g∩[0, T ] n(t1,Φk,g, I, u)2

·
∑

t1∈Φk,g∩[0, T ] n(t1,Φk,g, I, u)
2[∑

t1∈Φk,g∩[0, T ] n(t1,Φk,g, I, u)
]2

]

= vu · n · E

⎡
⎢⎣ n∑
k=1

∑
t1∈Φk,g∩[0, T ] n(t1,Φk,g, I, u)

2[∑
t1∈Φk,g∩[0, T ] n(t1,Φk,g, I, u)

]2
⎤
⎥⎦
−2

.

If equal weights are used,

Var
[
ξ̂n(I, u)

]
(9)

≈ vu · n−1 · E

⎡
⎢⎣

∑
t1∈Φk,g∩[0, T ] n(t1,Φk,g, I, u)

2[∑
t1∈Φk,g∩[0, T ] n(t1,Φk,g, I, u)

]2
⎤
⎥⎦ .

In any of the two cases, the resulting CI is given by the
Gaussian approximation. We will refer to the CIs based on
this approach as model-based confidence intervals.

It should be mentioned here that biases known from clas-
sical theory on estimation of first and second order tail
parameters might in principle also occur within the MPP
framework of this paper. Under suitable second-order con-
ditions, the Hill estimator, for instance, is known to be
asymptotically normal, with a bias depending on the sec-
ond order tail parameter and the threshold u applied for
the estimator [e.g. 10, Ch. 3]. To find appropriate conditions
that would allow for similar results in the MPP framework
is not straightforward due to the complex structure of de-
pendencies. Hence, in Theorem 2.6, it is not the estimator’s
deviation from the conditional tail index ξ(I) that is consid-
ered, but the deviation from its finite threshold counterpart

μ
(2)
fu,hu

(I).

A second type of bias typically arises when the tail index
is considered as a function of a covariate and then estimated
with a kernel-based approach, where the kernel averages over
a certain range in the covariate space. Based on iid data,
Goegebeur and DeWet [18] provide sound theoretical results
for such a situation, including a bias correction for the cor-
responding tail index estimator. While the conditioning on
the existence of points in an MPP, as considered in the paper
at hand, might appear similar to the existence of covariate
information, it can certainly not be treated within the same
framework. This is again due to the fact that the distances
within the point pattern of an MPP might be linked to the
tail properties of the marks in a highly endogenous way; an
analog approach for MPPs is not obvious.

2.4.2 Subsampling-based confidence intervals

While the assumptions (Independent-noise-marking) and
(GRFM-trans) allow for a theoretical calculation of the tail
index estimator’s asymptotic variance, subsampling pro-
vides a fully non-parametric way of estimating the un-
certainty of the estimator. A broad survey on bootstrap-
ping and subsampling methods is given by Politis, Romano
and Wolf [38]. For a general statistic s(Φ, T ) for which
T Var[s(Φ, T )] → V for some V > 0 as |T | → ∞, Politis
and Sherman [39] showed that, under some mixing assump-
tions, V is consistently estimated through

V̂ = [(1−c)T ]−1

∫
[0,(1−c)T ]

cT ·E
[
s(Φ−y, cT )− s(Φ, cT )

]2
dy
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if c = cT → 0 and cT → ∞ as T → ∞. Here, s(Φ, cT ) =
[(1 − c)T ]−1

∫
[0,(1−c)T ]

s(Φ−y, cT )dy and Φx denotes the

translation of the point pattern Φ by x.
The Riemann sum approximation of V̂ , is then given by

V̂ ∗ = n−1
n∑

i=1

T

n

[
s(Φ, [ i−1

n T, i
nT ])− s̄

]2

with s̄ = n−1
∑n

i=1 s(Φ, [
i−1
n T, i

nT ]). Hence,

Var[s(Φ, T )] ≈ T−1V̂ ∗ = n−2
n∑

i=1

[
s(Φ, [ i−1

n T, i
nT ])− s̄

]2
.

With regard to ξ̂n(I, u), which already is an average of n re-
alizations, an additional splitting of the observation window
is not needed if n is sufficiently large. Then, Var ξ̂n(I, u)

is naturally estimated through n−2
∑n

i=1[ξ̂(I, u,Φi) − ξ̄]2,

where ξ̄ = n−1
∑n

i=1 ξ̂(I, u,Φi). Confidence intervals can
again be based on the quantiles of the normal distribution
since ξ̂n(I, u) is asymptotically Gaussian (for n → ∞) by
the classical CLT. We will refer to these CIs as subsampling-
based confidence intervals.

3. SIMULATION STUDY

3.1 The model

Doubly stochastic Poisson processes (DSPPs), also called
Cox processes, are well-established in the modeling of high-
frequency financial data [e.g., 6, 23, 29]. Here, a DSPP-
based MPPmodel is considered, combined with an intensity-
dependent marking [e.g., 25, 36]. Let Z(t) = (Z1(t), Z2(t)),
t ∈ R, be a bivariate stationary Gaussian field, where Z1

generates the intensity and Z2 drives the marks. This ap-
proach allows for a flexible management of dependencies
between intensity and marks via the matrix-valued cross-

covariance function C(r) = (
C11(r) C12(r)
C21(r) C22(r)

), r ∈ R, where

Cij(r) = Cov(Zi(0), Zj(r)), i, j ∈ {1, 2}. The mean of
Z is denoted by (m1,m2). In particular, the random in-
tensity of point locations is given by exp(Z1(·)), i.e., the
unmarked ground process Φg = {ti : i ∈ N} is a log
Gaussian Cox process (LGCP) with random intensity mea-
sure Λ(B) =

∫
B
exp(Z1(t))dt. In addition, let (Yi)i∈N be

a sequence of independent random Fréchet variables with
Yi ∼ Fα(ti), where Fα(x) = exp(−x−α) denotes the Fréchet
distribution function with parameter α, and α(·) is given
by α(t) = α0 + α1 exp(−Z2(t)), α0, α1 ≥ 0, t ∈ R. Let
further (Si)i∈N be a sequence of iid random signs with
P(S1 = 1) = P(S1 = −1) = 0.5. Then, conditionally on
Z, let the marks be given by yi = m(ti) = SiYi, i.e., their
absolute values are Fréchet-distributed with an intensity-
dependent tail parameter and their signs are random and
independent of Z. To have finite first moments of the marks,
α0 ≥ 1 is assumed.

Since F−1
α (V ) ∼ Fα for V ∼ U [0, 1], the marks yi =

m(ti) can be considered as a deterministic function of time
provided that Z, the random field V = {V (t)}t∈R of iid
U [0, 1] variables and the random field S = {S(t)}t∈R of iid
signs are known:

mv,s,λ(t)

=
[
m(t) |V (·) = v(·), S(·) = s(·), exp(Z2)(·) = λ2(·)

]
= s(t) · F−1

α0+α1/λ2(t)
(v(t)).

If the two components of Z are positively correlated, the
Fréchet parameter α tends to be small when the intensity
of points is high. This will lead to increased conditional tail
indices ξ(r, u) for small temporal distances r.

3.2 Theoretical value of ξ(r, u)

Since [Φ|Z, V, S] is a Poisson point process with deter-
ministic marks, the conditional tail index ξ(r, u) can at least
partially be treated analytically using an extended Camp-
bell theorem and the fact that the reduced Palm measure
of a Poisson process coincides with the probability measure
PΦ [e.g., 9, Prop. 13.1.IV and Prop. 13.1.VII, resp.]. For the
second order moment measure αf,h (cf. (1)), this yields

α
(2)

f�,h
(C(I))

=

∫∫∫ ∫
[0,1]

EΦ|Z,V,S [(f
�h)(mv,s,λ(t1))Φg(I + t1)]

· λ1(t1)dt1 P
(exp(Z1),exp(Z2))(dλ1, dλ2)P

V (dv)PS(ds)

=

∫∫∫ ∫
[0,1]

(f �h)(mv,s,λ(t1))

∫
I+t1

λ1(r)dr

· λ1(t1)dt1 P
(exp(Z1),exp(Z2))(dλ1, dλ2)P

V (dv)PS(ds),

for � ∈ {0, 1}. Due to the Cox-process-based construction of

Φ, the measures α
(2)

f�,h
(C(·)), � ∈ {0, 1}, are dominated by

the Lebesgue measure ν on R and with Fubini’s theorem,

∂α
(2)

f�,h
(C(r))

∂ν(r)

=

∫∫∫
(f �h)(mv,s,λ(t1))λ1(r + t1)λ1(t1)

P
(exp(Z1),exp(Z2))(dλ1, dλ2)P

V (dv)PS(ds).

Hence,

ξ(r, u) =
∂α

(2)
fu,hu

(C(r))

∂α
(2)
1,hu

(C(r))
(10)

=
∂α

(2)
fu,hu

(C(r))

∂ν(r)
·
(
∂α

(2)
1,hu

(C(r))

∂ν(r)

)−1

=

∫
(fuhu)(mv,s,λ(0))λ1(r)λ1(0)P(d(λ1, λ2, v, s))∫
hu(mv,s,λ(0))λ1(r)λ1(0)P(d(λ1, λ2, v, s))

,
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where P(d(λ1, λ2, v, s)) is short notation for
P
(exp(Z1),exp(Z2))(dλ1, dλ2)P

V (dv)PS(ds). As before, for
y > 0, fu(y) = log y − u and hu(y) = 1log y>u, and
fu(y) = hu(y) = 0 for y ≤ 0. Note that the RHS of (10)
is not an integral w.r.t. the law of the MPP anymore,
but only w.r.t. on the law of the random fields that drive
the intensity of points and the marking. Although it is
analytically intractable, Monte-Carlo simulation of Z, V
and S provides an approximation ξ̂MC(r, u) of ξ(r, u) for
the above model. This enables a direct comparison of the
true conditional tail index with the estimated one based on
realizations of the full point process.

3.3 Results

Since, by construction, locations and marks are depen-
dent, the confidence intervals derived in Section 2.4, which
are based on the assumption (GRFM-trans), are only ap-
proximate and possibly underestimate the true variance.
Compared to this deviation through mark location interac-
tion, the fact that the covariance function of the underlying
random field does not meet the finite range condition in
assumption (GRFM-trans) will be negligible. By this sim-
ulation study, the actual level of the confidence intervals is
determined.

The particular set-up is the following: The random field
Z1 has a mean value of m1 = − log(0.5) and the exponential
covariance model C(h) = 0.1 exp(−|h|/4). Perceiving dis-
tances as being measured in minutes, this choice causes the
average distance between consecutive observations to be ap-
proximately 0.5 minutes and interaction effects to range up
to 10 minutes, which roughly corresponds to the respective
numbers in real transaction data (cf. Section 4). The sec-
ond component of Z is a linear combination of shifts of Z1:
Z2(·) = Z1(·)+

∑n
i=1 ci[Z1(·)−Z1(·−si)] with ci, si ∈ R. This

determines a particular form for the cross-covariance func-
tion of (Z1, Z2). While c1 = . . . = cn = 0 implies completely
symmetric interaction effects between marks and locations,
positive values of c and s introduce asymmetry: Z2(t) is pos-
itively correlated with Z1(t) but Z2(t) is particularly large if
Z1 is small at the locations t− si. Since the Fréchet param-
eters of the marks are given by α(t) = α0 +α1 exp(−Z2(t)),
the larger the value of Z2, the heavier the tail of the mark
distribution. Hence, this specification of Z2 with positive
values of si induces a heavy tail at time t if the intensity
of points at t is large or if there is an increase in intensity
immediately before t. We choose n = 100 for smoothness
reasons and (c1, . . . , c100) = (0.100, 0.099, . . . , 0.001) and
(s1, . . . , s100) = (2, 4, . . . , 200)/60. Further, let α0 = 3 and
α1 = 0.1.

The model is simulated on a 24,000 hour interval, which
roughly corresponds to 3,000 days of trading, i.e., the point
process contains approximately 3 million points. Figure 1
summarizes the behavior of the estimator ξ̂n(r, u) based on
such a realization, where u is the 95% and the 99% sam-
ple quantile and n is chosen to be 100, which means that
the simulated dataset is split into 100 parts of a length

Figure 1. Estimation of ξ(r, u) for u the 95% (top) and the
99% sample quantile (bottom) together with pointwise
approximated 95%-CIs. The Gaussian kernel with a

bandwidth of 4 and the rectangular kernel with a bandwidth
of 1 are used. An approximation of the theoretical values
ξ(r, u) is based on Monte-Carlo simulation of the RHS of

(10) with 106 realizations of the random fields Z, V and S.
(Color figure online)

roughly corresponding to one month. Note that in the sim-
ulation, there is no instationarity or regime-switching in-
cluded; hence, the non-ergodic modeling does not play an
important role, here. As kernels for the estimator ξ̂(r, u),
the Gaussian and the rectangular kernel are used with a
bandwidth of 4 and 1, respectively. The approximated point-
wise 95%-confidence intervals according to (8) in Theorem
2.6 (model-based CIs) are included. For the approximation

ξ̂MC(r, u) of ξ(r, u), 1 million realizations of the random
fields Z, V and S on [−30, 30] are generated. Note that, once
Z is simulated, it is sufficient to simulate V (·) ∼ U [u∗, 1]
with u∗ = inft∈[−30,30] Fα(t)(exp(u)). For smaller values
of V , hu(m(t)) is zero and the corresponding points would
not enter into the estimator.
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Figure 2. Empirical level of the model-based CIs according to (8) in Theorem 2.6 (continuous lines) and of subsampling-based
CIs from Section 2.4.2 (dashed lines) for different thresholds u (from left to right, then top to bottom: 95%, 99%, 99.8% and

99.95%-quantile) and for the two nominal levels 75% and 90% (dotted lines).

In order to validate the confidence intervals, a realization
of the above model is simulated and the confidence intervals
are calculated. Then, the model is simulated another 100
times and for each grid point r ∈ [−30, 30], those realiza-

tions are counted whose respective values ξ̂n(r, u) fall into
the afore calculated CI. Then, the roles are interchanged 100
times such that each realization once becomes the center of
the CI. As nominal levels, we choose 75% and 90%. Figure 2
shows the results for different values of the threshold u.
It displays that for a relatively low threshold (u = 95%-

quantile), the variance of ξ̂n(r, u) is considerably underesti-
mated leading to an empirical level that is up to 25 percent-
age points below the nominal level. With increasing thresh-
old, this error decreases. Already for the 99.8%-quantile, the
confidence intervals hit the nominal level in average. The
subsampling-based confidence intervals hit the nominal level
for all thresholds, as expected.

Figure 3 shows the estimator ξ̂n(r, u), applied to the
union of all 101 simulated datasets, together with an approx-
imation to the true function ξ(r, u), obtained from Monte-
Carlo simulation. The MC-estimate is fairly smooth since
it is based on 108 random field realizations on the interval

[−30, 30]. The width of the confidence intervals is roughly
one tenth of that in Figure 1 since there are 101 realizations
instead of one.

4. APPLICATION TO TRANSACTION DATA
FROM THE GERMAN STOCK

EXCHANGE

The conditional tail index estimator ξ̂(r, u) is exemplarily
applied to large transaction datasets from stock trading in
Germany, processed via the Xetra trading system between
1997 and 2004. Blocks of size one year are considered sep-
arately in order to exclude possible long-term effects. The
same data pre-processing as in Engle [15] is applied in order
to account for diurnal patterns in the duration and return
series. Further, the original returns are transformed to re-
turns per time unit [15].

In correspondence with the various contributions on
structural changes and nonlinear modeling of financial pro-
cesses mentioned in the introduction, also in the transaction
datasets, periods of trading can be observed that behave dif-
ferently from the major part of the trading time. In the case
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Figure 3. Analogously to Figure 1, but averaged over all 101 realizations.

that tail characteristics of the logreturns are of interest, only
the set of extremal transactions is considered which may
further strengthen the effects of structural breaks. Hence,
we consider a realization ϕ of the process Φ, observed on
a certain interval B, as a concatenation of multiple realiza-
tions ϕ1, . . . , ϕn of a possibly non-ergodic MPP, observed
on smaller intervals B1, . . . , Bn, respectively, where the in-
tervals are pairwise disjoint and B = ∪iBi; the objective
is then to estimate the conditional tail index ξ̃(r, u). This
means that each trading period is considered to belong to
one randomly chosen regime (ergodicity class) out of a pos-
sibly infinite number of different regimes. Here, additionally
independence between the concatenated parts is assumed,
which is in general only an approximation to the truth.
However, if the clock time length D of each period is large
compared to the average inter-event distance within each
realization of the point process, dependence between events
from different parts can be expected to be fairly small and
the error of this independence assumption is negligible. This
argument might be formalized via some weak mixing con-

ditions guaranteeing that the estimators of μ
(i)
f , applied to

the small realizations, become asymptotically independent
(as D → ∞). By the same arguments, edge effects due to
finite observation windows can be neglected [e.g., 41].

As regards the concrete choice of D, McCulloch and Tsay
[34], for instance, assume that the length of each realization
corresponds to one trading day, but also other choices of D
might be adequate, depending on the statistical questions
at hand.

In order to test the results for being significant, the fol-
lowing null model is considered: Within each subsample of
length D, the marks of the MPP are randomly permuted
while the pattern of point locations is kept fixed. This pro-
cedure can be expected to destroy any mark-location de-
pendence in the MPP. Hence, applying the above estima-

tor to multiple realizations of this null model yields a set
of reference curves that correspond to no interaction ef-
fects.

4.1 Results

Four different levels of disaggregation are applied, in par-
ticular, the data is split into blocks of length one year
(n = 1), one month (n = 12), one week (n = 52) and one day
(n ≈ 250). It turns out that a choice n > 1 yields more stable
results and smaller estimated variances, compared to n = 1.
However, going below a length of one week (i.e., n > 52)
does not seem to be sensible since, particularly through the
selection of extreme transactions, data become sparse and
many of the small blocks would not contain any observation
exceeding the threshold. Moreover, the estimation results do
not differ significantly between moderate choices of n, i.e.,
n between 12 and 52. In the following, only the results for
partitioning into blocks of length one week are shown, i.e.
n = 52.

In Section 2.3, variance-minimizing weights were in-
troduced that maintain the consistency property of
ξ̂n,wght(r, u,w) for ξ̃(r, u) under some suitable indepen-
dence assumptions. Though, it turns out that non-equal
weighting (i.e., the use of ξ̂n,wght(r, u,w) instead of ξ̂n(r, u))
only marginally improves the estimators variance since all
weights turn out to be fairly similar in this particular dataset
(exp(entropy(w)) ≈ n − 2). Hence, in order to be able
to compare the estimated variance to a subsampling-based
variance estimate, we restrict to the unweighted estimator
in the following.

Exemplarily, Figure 4 shows the conditional tail index
estimator for a one-year period (2004) of transaction data
of the Deutsche Telekom AG stock (ISIN DE0005557508)
with a total of 898,000 transactions. Here, only the lower
tail, i.e., negative log returns, are considered. While in the
above simulation study, the tails were symmetric by con-
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Figure 4. Estimation of ξ(r, u) for a one-year period of transaction data of the Deutsche Telekom AG stock (ISIN
DE0005557508) with a total of 898,000 transactions. u being the 98.9%- (left) and the 99.77%-quantile (right). Pointwise
95%-CIs based on Theorem 2.6 and subsampling-based CIs in dashed and dotted lines, resp. (Compare also Figure 1.) The

gray lines stem from realizations of a null model.

struction, in real data the tails can be expected to behave
differently. However, the basic characteristics of the condi-
tional tail index ξ(r) turn out to be the same for negative
and positive log returns in our transaction datasets. Note
that this is contrary to larger scale return data (e.g., daily
data), for which the negative returns usually exhibit heavier
tails than the positive returns.

Figure 4 exhibits that the tail index is significantly in-
creased for small values of r (from −5 to +10 minutes). The
confidence intervals indicate the precision of the estimates.
Qualitatively the same results can be shown for most of
the other stocks of the German stock index that have suffi-
ciently long records. The increase of the tail index ξ(r, u) at
the origin is not completely symmetric, the decay for r > 0
(conditioning on the future) is slower than for negative val-
ues of r. Assuming that causal influence can only be car-
ried out by past events, this might sound counter-intuitive
at first sight. Though, transactions are generally clustered,
which causes a large overlap between the data that enter into
ξ̂n(r, u) and those entering ξ̂n(−r, u). Furthermore, an ex-
treme log return possibly induces further immediate trans-
actions due to reactions of other market participants. Hence,
for small positive values of r, ξ̂n(r, u) might be even larger

than ξ̂n(−r, u), although there is no causal influence from
future transactions to current log returns. The gray curves
in Figure 4 stem from applying the estimator to multiple
realizations of the null model. The fact that the estimated
curve for the original data projects beyond the range of the
null model curves confirms that mark-location interactions
w.r.t. the tail index exist.

Another observation that can be made from Figure 4
and that also holds true for the other German stock in-
dex datasets, is that the model-based confidence intervals
approach the subsampling-based intervals as the threshold

Figure 5. Ratio of model-based standard deviation to
subsampling standard deviation for different thresholds: The
i-th boxplot corresponds to the

(
1− 0.05 · ( 12 )i−1

)
-quantile.

Each boxplot contains the values for the 12 largest datasets
(≥500,000 transactions).

increases to a sufficiently high level. Figure 5 shows the ratio
of average model-based standard deviation to average sub-
sampling standard deviation, averaged over all distances r
and upper and lower tails. Each boxplot represents a dif-
ferent threshold and contains the values for the 12 largest
datasets (≥500,000 transactions). For low thresholds, the
true variance, represented by the subsampling variance, is
substantially underestimated by the model-based variance.
For large thresholds, the ratio is slightly larger than 1 in
average, thus introducing a bit of conservatism in the result-
ing confidence intervals. In summary, the asymptotic confi-
dence intervals derived in Section 2.4, based on the assump-
tion (GRFM-trans), work reasonably well for our transac-
tion datasets and yield reliable results for thresholds above
the 99.5%-quantile.
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5. DISCUSSION

Irregularly spaced financial data, particularly log returns
between consecutive transactions of electronically traded as-
sets, can naturally be perceived as MPPs, which are there-
fore well-established in financial and econometric literature.
At the same time, modeling extreme financial events is of
pivotal interest, for example, for insurance or risk manage-
ment purposes. This paper tries to bring together these two
concepts.

Based on existing second-order moment measures for
marked point processes, an MPP analog of the extreme
value index (tail index) is proposed as well as conditional
versions thereof, to detect whether the tail behavior of a
mark depends on the point pattern in its “neighborhood”.
MPP analogs for other summary statistics of (multivariate)
extreme value distributions can be defined in a similar way.
Conditional versions of extremal coefficients, for instance,
allow for detection of interaction of multivariate mark dis-
tributions with the pattern of point locations and can also
help to detect whether the sampling of a continuous-space
process is independent of the process itself or not. How-
ever, multivariate extreme value parameters, and in partic-
ular their MPP analogs, are difficult to estimate consistently.
Typically, estimators in that context are non-stable.

Since the above summary statistics are defined as mean
values of certain mark functionals, the question arises, which
mean is actually of interest in a practical situation. If there
is an underlying continuous-time process from which the
observed values are generated by a random sampling pro-
cedure, then the mean of interest will usually be reflected
by the temporal average over the whole index space instead
of the average over the sampling locations. Weighting pro-
cedures can then be used to compensate for the irregular
distribution of point locations. Though, the assumption of
a continuous-time background process seems to be prob-
lematic in the framework of financial transaction data since
the observed values interact with each other and with the
point pattern. Malinowski, Schlather and Zhang [33] sug-
gest to proceed differently for different scales, i.e., to con-
sider the data as a genuine MPP on the very small scale,
but to assume an underlying random field on larger scales
and to correct for the irregular distribution of locations by a
weighting procedure based on the idea of variance minimiza-
tion. This is closely related to including non-ergodicity into
the model and to replace expectation functionals w.r.t. the
point process by two-step expectations that average within
each ergodicity class first and then aggregate the different
classes.

When being faced with real data, assuming ergodicity or
not is entirely discretionary since there will always be the re-
striction to finite observation windows. As regards financial
transaction data, it might be sensible to perceive the data
as a concatenation of multiple realizations of a possibly non-
ergodic MPP. But also for realizations of an ergodic process,

employing the estimators derived for the non-ergodic set-up
can improve the statistical properties of the estimate.

By applying the conditional tail index estimator to real
transaction data, it is shown that the tail index of inter-
transaction log returns is significantly increased if there are
other transactions close-by. Finite sample properties of the
respective estimators, in particular the variability, have been
assessed by exploiting that, due to the thresholding, consec-
utive events that exceed the threshold become stochasti-
cally independent under some weak assumptions. The vari-
ance estimates based on the assumption (GRFM-trans) and
the subsampling-based variance estimates turn out to co-
incide for sufficiently high thresholds. Though, for general
processes, variance estimates of ξ̂n,wght(I, u,w) based on
the assumptions (Independent-noise-marking) or (GRFM-
trans) can be highly biased.

The detection of an increase of risk caused by the ex-
istence of other transactions, might by itself be a valuable
finding for risk management purposes or automated trading
algorithms—referring to a very fine temporal scale. Yet, it
also indicates that treating this type of data as measure-
ments of a continuous-time process might be suboptimal
because this does not capture physical interaction between
the observed events.
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APPENDIX A. MPP THEORY AND
PROOFS

Formally, an MPP Φ on R with real-valued marks is a
measurable mapping

Φ : (Ω,A, P ) → (M0,M0),

where M0 = M0(R × R) is the set of all counting measures
ϕ on R × R with ϕ( · × R) being locally finite, and M0 =
M0(R × R) is the smallest σ-algebra making all mappings
ΦB×L : M0 → N0, ϕ �→ ϕ(B×L), B,L ∈ B(R), measurable,
i.e.

M0 = σ
(
{Φ−1

B×L(k) : k ∈ N0, B, L ∈ B(R)}
)
.

In order to condition on the location of all transactions and
on exceeding the threshold u, we define the following sub-
σ-algebra: Let Iu = {∅, [u,∞), [u,∞)c,R} ⊂ B(R) be the
σ-algebra generated by the interval [u,∞) and letM∗ be the
smallest σ-algebra making all mappings ΦB×L : M0 → N0,
ϕ �→ ϕ(B × L), B ∈ B(R), L ∈ Iu, measurable, i.e.

M∗ = σ
(
{Φ−1

B×L(k) : k ∈ N0, B ∈ B(R), L ∈ Iu}
)
.
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Furthermore, let A∗
u = Φ−1(M∗) ⊂ A.

Since σ(Φ−1(E)) = Φ−1(σ(E)) holds true for any subset
E ⊂ M0, it is

A∗
u = Φ−1(M∗)

= σ(Φ−1({Φ−1
B×L(k) : k ∈ N0, B ∈ B(R), L ∈ Iu}))

= σ
({

{ω : Φ(ω)(B×L) = k} : k∈N0, B ∈B(R), L ∈ Iu
})

and

Φ−1
g (M0(R)) = σ(Φ−1

g ({Φ−1
B (k) : k ∈ N0, B ∈ B(R)}))

= σ
({

{ω ∈ Ω : Φ(ω)(B × R) = k} : k ∈ N0, B ∈ B(R)
})

.

Thus, Φ−1
g (M0(R)) ⊂ A∗

u and the ground process Φg is
(A∗

u,M0(R))-measurable. By similar arguments, also the
N0-valued random variable α̂1,hu(I,Φ, T ) is A∗

u-measurable.
The following lemma shows in which way the Gaussian

dependence structure of the underlying random field enters
into the proof of Theorem 2.4.

Lemma A.1. A random field Y on R
d as in assumption

(GRFM-trans) has the following property: For all t, s ∈ R
d,

t �= s, the conditional distribution

Fu(x, y)

= P
[
log Y (t) ≤ x, log Y (s) ≤ y | log Y (t) > u, log Y (s) > u

]
becomes a product distribution in the limit u → ∞.

Proof. Follows directly from Juri and Wüthrich [27,
Thm. 5.3] and the fact that a copula is invariant under
monotone transformation of the margins.

Proof of Theorem 2.4 and extension. With regard to the

proof of Theorem 2.6, the more general case of
α̂fu,hu (I,Φ,T )
α̂1,hu (I,Φ,T )�

with � ≥ 0 is considered.
With e(u) = E [log Y (0)− u| log Y (0) > u] it is

E

[ α̂fu,hu(I,Φ, T )

α̂1,hu(I,Φ, T )
�

∣∣∣A∗
u

](11)

= α̂1,hu(I,Φ, T )
−�

· E

⎡
⎣ ∑

(t1,y1),(t2,y2)∈Φ

(log y1 − u)1log y1>u1(t1,t2)∈C(T,I)

∣∣∣∣∣∣A∗
u

⎤
⎦

= α̂1,hu(I,Φ, T )
−�

·
∑

t1∈Φg∩[0, T ] 1log Y (t1)>u ·#{t2 ∈ Φg : t2 − t1 ∈ I}
· E [(log Y (t1)− u)|A∗

u]

= e(u) · α̂1,hu(I,Φ, T )
1−�.

Furthermore,

Var
[ α̂fu,hu(I,Φ, T )

α̂1,hu(I,Φ, T )
�

∣∣∣A∗
u

]
(12)

= E
[
(α̂fu,hu/α̂

�
1,hu

)2 | A∗
u

]
−
(
E[α̂fu,hu/α̂

�
1,hu

| A∗
u]
)2

= α̂−2�
1,hu

· E
[
α̂2
fu,hu

| A∗
u

]
− e(u)2α̂2−2�

1,hu

with

E
[
α̂fu,hu(I,Φ, T )

2 | A∗
u

](13)

= E

[ ∑
t1∈Φg∩[0, T ]

∑
s1∈Φg∩[0, T ]

(log Y (t1)− u)(log Y (s1)− u)

· 1log Y (t1)>u1log Y (s1)>u ·#{t2 ∈ Φg : t2 − t1 ∈ I}

·#{s2 ∈ Φg : s2 − s1 ∈ I}
∣∣∣A∗

u

]
=

∑
t1∈Φg∩[0, T ]

∑
s1∈Φg∩[0, T ]

n(t1,Φg, I, u)n(s1,Φg, I, u)

· E
[
(log Y (t1)− u)(log Y (s1)− u) | A∗

u

]
=

∑
t1∈Φg∩[0, T ]

∑
s1∈Φg∩[0, T ]

n(t1,Φg, I, u)n(s1,Φg, I, u)

·
[
E [log Y (0)− u|A∗

u]
2
+Cov

[
log Y (t1), log Y (s1) | A∗

u

]]
=

∑
t1∈Φg∩[0, T ]

∑
s1∈Φg∩[0, T ]

n(t1,Φg, I, u)n(s1,Φg, I, u)

· Cov
[
log Y (t1), log Y (s1) | log Y (t1) > u, log Y (s1) > u

]
+ e(u)2 · α̂1,hu(I,Φ, T )

2.

Due to the finite range h0 of the covariance function of Y
and the minimum distance d0 between point locations

E
[
α̂fu,hu(I,Φ, T )

2 | A∗
u

](14)

= vu
∑

t1∈Φg∩[0, T ]

n(t1,Φg, I, u)
2 + e(u)2α̂1,hu(I,Φ, T )

2

+ εuvuα̂1,hu(I,Φ, T )
h0

d0

for some A∗
u-measurable random variable εu which is less

than one in absolute value. It follows directly from Lemma
A.1 that the conditional covariance terms for t1 �= s1 vanish
for u → ∞. Hence, εu → 0 a.s. and since εu is dominated
by 1, also E|εu| → 0, as u → ∞. Note that, if addition-
ally condition (Independent-noise-marking) is satisfied, all
covariance terms in (13) vanish due to the iid assumption,
up to those for which t1 = s1. Hence, εu equals 0 in this
case.

Plugging (14) into (12) yields

Var
[
α̂fu,hu(I,Φ, T )/α̂1,hu(I,Φ, T )

� | A∗
u

]
(15)

= vu ·
∑

t1∈Φg∩[0, T ] n(t1,Φg, I, u)
2

α̂1,hu(I,Φ, T )
2�

+ εuvuα̂1,hu(I,Φ, T )
1−2�h0

d0

and the proof is complete.
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Proof of Theorem 2.6. Since the marginals of the underly-
ing random field Y are assumed to be in the Fréchet MDA,
log Y (0) is in the Gumbel MDA. It is well known that being
in the MDA of the generalized extreme value distribution
with shape parameter ξ is equivalent to the distribution of
excesses over high thresholds converging to the generalized
Pareto distribution (GPD) with the same shape parame-
ter ξ [e.g., 14, Thm. 3.4.13]. In the Gumbel case, where ξ
equals 0, the corresponding GPD reduces to the exponen-
tial distribution and therefore all moments of the excesses
Zi = [log Y (0)−u | log Y (0) > u] exist and converge to some
constant in (0,∞) as u → ∞.

Then, application of [33, Thm. 1] yields the weak conver-

gence of α̂∗
fuT

,huT
(I,Φ, T )/

√
α̂1,huT

(I,Φ, T ) to a centered

Gaussian variable.
For the asymptotic variance of

α̂∗
fu,hu

(I,Φ, T )

α̂1,hu(I,Φ, T )
�
, � ∈ {0.5, 1},

note that under the random field model assumption,
ξ(I, u) = e(u). Hence, applying the decomposition of vari-
ance w.r.t. A∗

u and replacing fu(y) = log y − u by f̃u(y) =
log y−u−e(u) in (11)–(15), the terms e(u) in these equations
vanish and it follows directly that

Var

[
α̂∗
fu,hu

(I,Φ, T )

α̂1,hu(I,Φ, T )
�

]
(16)

= Var

[
α̂fu,hu(I,Φ, T )

α̂1,hu(I,Φ, T )
�

]
−Var

[
e(u) · α̂1,hu(I,Φ, T )

1−�
]
,

for arbitrary u and T .
With (11),

VarE

[
α̂fu,hu(I,Φ, T )

α̂1,hu(I,Φ, T )
�

∣∣∣A∗
u

]
= Var

[
e(u)α̂1,hu(I,Φ, T )

1−�
]
,

which equals 0 if and only if � = 1. Together with (15), one
obtains

Var

[
α̂fu,hu(I,Φ, T )

α̂1,hu(I,Φ, T )
�

]
(17)

= EVar

[
α̂fu,hu(I,Φ, T )

α̂1,hu(I,Φ, T )
�

∣∣∣A∗
u

]

+VarE

[
α̂fu,hu(I,Φ, T )

α̂1,hu(I,Φ, T )
�

∣∣∣A∗
u

]

= vuE

[∑
t1∈Φg∩[0, T ] n(t1,Φg, I, u)

2

α̂1,hu(I,Φ, T )
2�

]

+ E

[
εuvuα̂1,hu(I,Φ, T )

1−2�h0

d0

]
+ e(u)2 Var

[
α̂1,hu(I,Φ, T )

1−�
]

with some random function εu satisfying |εu| ≤ 1 and εu →
0 a.s. and in L1 for u → ∞ (see proof of Theorem 2.4).

Then, with (16), (17) and � = 0.5, the asymptotic vari-

ance of
α̂∗

fuT
,huT

(I,Φ,T )√
α̂1,huT

(I,Φ,T )
(for T → ∞) is

su∞ = lim
T→∞

vuT

· E
[∑

t1∈Φg∩[0, T ] n(t1,Φg, I, uT )
2

α̂1,huT
(I,Φ, T )

+ εuT

h0

d0

]
,

where the expectation can also be applied to numerator
and denominator separately due to the a.s. convergence of
α̂1,huT

(I,Φ, T )/Eα̂1,huT
(I,Φ, T ) [cf. 33]. For fixed u, the

asymptotic variance of
α̂∗

fu,hu
(I,Φ,T )√

α̂1,hu (I,Φ,T )
is

su = lim
T→∞

vu

[
E

[∑
t1∈Φg∩[0, T ] n(t1,Φg, I, u)

2

α̂1,hu(I,Φ, T )
+ εu

h0

d0

]](18)

= vu

[
E
∑

t1∈Φg∩[0, 1] n(t1,Φg, I, u)
2

Eα̂1,hu(I,Φ, 1)
+

h0

d0
Eεu

]
,

where the second equation follows by again applying the
pointwise ergodic theorem to both numerator and denomi-
nator, and by noting that the ratio on the RHS of (18) is
bounded by (|I|/d0)2.

The last assertion concerning the variance of
α̂fu,hu (I,Φ,T )
α̂1,hu (I,Φ,T )

and
α̂∗

fu,hu
(I,Φ,T )

α̂1,hu (I,Φ,T ) also follows from (16) and (17) with

� = 1.
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[36] Myllymäki, M. and Penttinen, A. (2009). Conditionally het-
eroscedastic intensity-dependent marking of log Gaussian Cox
processes. Statistica Neerlandica 63 450–473. MR2598981

[37] Piger, J. (2009). Econometrics: models of regime changes. In En-
cyclopedia of Complexity and Systems Science (R. A. Meyers,
ed.) 2744–2757. Springer.

[38] Politis, D. N., Romano, J. P. and Wolf, M. (1999). Subsam-
pling. Springer, New York. MR1707286

[39] Politis, D. N. and Sherman, M. (2001). Moment estimation for
statistics from marked point processes. Journal of the Royal Sta-
tistical Society, Series B 63 261–275. MR1841414

[40] Schlather, M., Ribeiro, Jr, P. J. and Diggle, P. J. (2004).
Detecting dependence between marks and locations of marked
point processes. Journal of the Royal Statistical Society, Series B
66 79–93. MR2035760

[41] Stoyan, D., Kendall, W. S. and Mecke, J. (1995). Stochastic
Geometry and its Applications, 2nd ed. John Wiley & Sons Ltd,
Chichester. MR0895588

[42] Wackernagel, H. (2003). Multivariate Geostatistics: An Intro-
duction with Applications. Springer.

[43] Zhang, M. Y., Russell, J. R. and Tsay, R. S. (2001). A nonlin-
ear autoregressive conditional duration model with applications
to financial transaction data. Journal of Econometrics 104 179–
207. MR1862032

Alexander Malinowski
University Mannheim
Institute for Mathematics
A5 6, 68131 Mannheim
Germany
E-mail address: malinows@math.uni-goettingen.de

Martin Schlather
University Mannheim
Institute for Mathematics
A5 6, 68131 Mannheim
Germany
E-mail address: schlather@math.uni-mannheim.de

Zhengjun Zhang
University of Wisconsin at Madison
Department of Statistics
1300, University Avenue
Madison, WI 53706
USA
E-mail address: zjz@stat.wisc.edu

122 A. Malinowski, M. Schlather, and Z. Zhang

http://www.ams.org/mathscinet-getitem?mr=1950431
http://www.ams.org/mathscinet-getitem?mr=2371524
http://www.ams.org/mathscinet-getitem?mr=2234156
http://www.ams.org/mathscinet-getitem?mr=2744471
http://www.ams.org/mathscinet-getitem?mr=2870155
http://www.ams.org/mathscinet-getitem?mr=1458613
http://www.ams.org/mathscinet-getitem?mr=1639411
http://www.ams.org/mathscinet-getitem?mr=3003842
http://www.ams.org/mathscinet-getitem?mr=1278033
http://www.ams.org/mathscinet-getitem?mr=2234447
http://www.ams.org/mathscinet-getitem?mr=2848661
http://www.ams.org/mathscinet-getitem?mr=0378204
http://www.ams.org/mathscinet-getitem?mr=2441462
http://www.ams.org/mathscinet-getitem?mr=2081852
http://www.ams.org/mathscinet-getitem?mr=1113698
http://www.ams.org/mathscinet-getitem?mr=2655622
http://www.ams.org/mathscinet-getitem?mr=1983762
http://www.ams.org/mathscinet-getitem?mr=2598981
http://www.ams.org/mathscinet-getitem?mr=1707286
http://www.ams.org/mathscinet-getitem?mr=1841414
http://www.ams.org/mathscinet-getitem?mr=2035760
http://www.ams.org/mathscinet-getitem?mr=0895588
http://www.ams.org/mathscinet-getitem?mr=1862032
mailto:malinows@math.uni-goettingen.de
mailto:schlather@math.uni-mannheim.de
mailto:zjz@stat.wisc.edu

	Introduction
	Methods
	Marked point processes
	(Conditional) tail index for MPPs
	Estimation
	Confidence intervals
	Confidence intervals based on (Independent-noise-marking) and (GRFM-trans)
	Subsampling-based confidence intervals


	Simulation study
	The model
	Theoretical value of (r, u)
	Results

	Application to transaction data from the German stock exchange
	Results

	Discussion
	Acknowledgment
	MPP theory and proofs
	References
	Authors' addresses

