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Copula structure analysis based on extreme
dependence
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We introduce a technique to analyse the dependence
structure of an elliptical copula with focus on extreme obser-
vations. The classical assumption of a linear model for the
distribution of a random vector is replaced by the weaker as-
sumption of an elliptical copula in the high risk observations.
More precisely, we describe the extreme dependence struc-
ture by an elliptical copula, which preserves a ‘correlation-
like’ structure in the extremes. Based on the tail dependence
function we estimate the extreme copula correlation matrix,
which is then analysed through classical covariance structure
analysis techniques. After introducing the new concepts we
derive some theoretical results. A simulation study shows
that the estimator performs very well even under the com-
plexity of the extreme value problem. Finally, we use our
method on real financial data assessing extreme risk depen-
dence.
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1. INTRODUCTION

Covariance or correlation structure analysis is a popular
method in multivariate statistics to analyse the dependence
in the data assuming a latent structure. Classical structure
analysis is based on the assumption of normally distributed
data, see e.g. [20] or the review paper [2]. Likelihood ratio
tests were developed to distinguish between different model
hypotheses. But the asymptotic χ2-distribution is only valid
for normally distributed data. However, many data sets ex-
hibit properties contradicting the assumption of normality,
see e.g. [5] for a study of financial data. Therefore, a number
of extensions have been developed to deal with those kinds of
features. On the one hand, scaled normal theory test statis-
tics and estimators were introduced, e.g. in [22], [35] or [40],
on the other hand so-called asymptotically distribution-free
test statistics were developed in [3]. Concerning the first
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approach we also like to mention [37], who extended the
normal theory methods for structure analysis to the class of
elliptical distributions, by suitably scaling the test statistics
with an estimator of the kurtosis parameter of the elliptical
distribution.

All of the above approaches use in some way the covari-
ance matrix, but for multivariate data it may happen that
some margins are well modelled as being normal and some
are much more heavy-tailed such that the existence of sec-
ond moments is not guaranteed.

Motivated by such problems [24] introduced a correla-
tion structure analysis, which does not assume the exis-
tence of any moments of the data. Their approach is based
on analysing the ‘correlation matrix’ of an elliptical copula
model describing the dependence in the data by Kendall’s
tau. Recall that this dependence measure is based on the
ranks of the data, consequently, it disregards the absolute
size of the data. The result is a robust copula structure anal-
ysis.

In many applications, however, dependence in extremes is
a much more important issue than dependence in the mean
of the data or its ranks as it is assessed by the classical
correlation or by Kendall’s tau, respectively. For example,
financial risk management is confronted with problems con-
cerning joint extreme losses, and one of its prominent ques-
tions is how to measure or understand dependence in the ex-
tremes; see e.g. [31]. This focus on dependence in extremes
requires a different approach than in [24] and will be devel-
oped in this paper. We assess extreme dependence by the
well-known concept of a tail dependence function. For such
elliptical copulas, which can model extreme dependence, we
present how to estimate a copula correlation matrix based
on the tail dependence function. Given this estimate we il-
lustrate, how to analyse the structure of the estimated corre-
lation matrix. We will call this new method extreme copula
structure analysis.

Our paper is organised as follows. We start with a short
review of classical factor analysis and afterwards give some
definitions and preliminary results on elliptical distributions
and elliptical copulas in Section 2. Section 3 introduces the
tail dependence function as a copula dependence concept
and estimators are developed, which can be used for an ex-
treme copula structure analysis. We also derive asymptotic
results like asymptotic normality of our estimators. In Sec-
tion 4 a simulation study shows that the derived asymptotic
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results hold already for a moderate sample size. Finally, we
perform a factor analysis based on the copula correlation
matrix estimate of a real life data set and give an interpre-
tation of the results. The longer proof of our main result is
postponed to Section 6.

Throughout this paper we shall use the following nota-
tion. We denote the set of real d×m matrices by Md,m(R).
If d = m we simply write Md(R). The space of symmetric
matrices is denoted by Sd, the positive semi-definite cone
by S

+
d and the positive definite cone by S

++
d . The symbol

Id stands for the d × d identity matrix and det(A) for the
determinant of a matrix A ∈ Md(R). The transposed of
a matrix A ∈ Md(R) will be denoted by A�. Moreover,
vecp : Mk,l(R) → Ru stands for the operator that stacks
the u non-duplicated and non-fixed elements of a patterned
matrix below another. For example, in case of a correlation
matrix R we get

r := vecp(R) ∈ Rd(d−1)/2.(1)

Finally, we abbreviate R
d

+ := [0,∞]d\{(∞, . . . ,∞)}, and for

x,y ∈ R
d

+ we denote by x∨y the componentwise maximum
and by x ∧ y the componentwise minimum.

2. PRELIMINARIES

2.1 Structure analysis based on the
correlation matrix

Classical structure analysis techniques such as factor
analysis can be based on the covariance Cov(X) = Σ or
the correlation matrix Corr(X) = R of a random vector
X ∈ Rd. In the first case the results depend on the scale
of X and, thus, often the correlation matrix is used. We
will later on also work with a correlation like dependence
measure, the ‘copula correlation matrix’.

In classical factor analysis the data X is assumed

to satisfy a linear model X
d
= μ + L̃f + Ṽe, where

μ = (μ1, . . . , μd)
�, f = (f1, . . . , fm)� (m < d) are

non-observable and (usually) uncorrelated factors, e =

(e1, . . . , ed)
� is a noise vector, and

d
= means equality in dis-

tribution. Further, L̃ ∈ Md,m(R) is called loading matrix

and Ṽ is a diagonal matrix with non-negative entries, the
specific factor loadings. An often used additional assump-
tion is that (f�, e�) has mean zero and covariance matrix
Im+d. Describing the dependence structure of X through

its covariance matrix yields Σ = L̃L̃� + Ṽ2; i.e., the depen-
dence of X is described through the entries of L̃. In terms
of the correlation matrix R we get the following decom-
position R = LL� + V2, where L = diag(Σ)−1/2L̃ and

V2 = diag(Σ)−1/2Ṽ2diag(Σ)−1/2.

2.2 Elliptical copulas

Elliptical copulas describe the dependence structure in el-
liptical distributions as well as in their extensions, the meta-
elliptical distributions, which were originally introduced in

[13]. We start by recalling the definition of an elliptical dis-
tribution and refer also to [12] for a comprehensive overview.

Definition 2.1. A d-dimensional random vector Z is said
to have an elliptical distribution with parameters μ ∈ Rd

and Σ = (σij)1≤i,j≤d ∈ S
+
d (R), if it has the stochastic rep-

resentation Z
d
= μ+GAU(m) , where G is a positive random

variable, U(m) ∼ unif(s ∈ Rm : s�s = 1) is independent of
G, and A ∈ Md,m(R) is a matrix such that AA� = Σ for
some m ∈ N. In particular, if G has a density, then the
density of Z is of the form

det(Σ)−1/2g
(
(z− μ)�Σ−1(z− μ)

)
,

where g(·) is a function uniquely determined by the distribu-
tion of the generating variable G. We shall use the notation
Z ∼ Ed(μ,Σ, G). Further, if the first moment exists, then
E(Z) = μ and, if the second moment exists, then G can be
chosen such that Cov(Z) = Σ.

Up to a scaling factor all marginal distributions of a d-
variate elliptical distribution are identical. We regain the
flexibility of modelling the margins separately, while keep-
ing the dependence structure of an elliptical distribution,
by considering meta-elliptical distributions. The dependence
structure in a meta-elliptical distribution is described by the
corresponding elliptical copula, where a copula C : [0, 1]d →
[0, 1] is a d-dimensional distribution function with stan-
dard uniform margins, i.e. C(1, . . . , 1, uj , 1, . . . , 1) = uj for
j ∈ {1, . . . , d}. For more technical background information
on the copula concept we refer to [32].

Definition 2.2. Let Z ∼ Ed(μ,Σ, G) and define Z∗ :=
diag(σ11, . . . , σdd)

−1/2(Z − μ) ∼ Ed(R, G) with R :=
(σij/

√
σiiσjj)1≤i,j≤d. Then we define the elliptical copula

ECd(R, G) as the copula of Z∗ ∼ Ed(,R, G). We shall call
R the copula correlation matrix.

As a simple consequence of the definition and the fact
that copulas are invariant with respect to μ under strictly
increasing transformations Z and Z∗ have the same copula;
see [11, Theorem 2.6]. Hence an elliptical copula is charac-
terised by the generating variable G and the copula correla-
tion matrix R =: (ρij)1≤i,j≤d.

Our assumptions are based on the following:

(A1) X1, . . . ,Xn are i.i.d. with elliptical copula ECd(R, G).
(A2) ρii > 0, for i = 1, . . . , d, and |ρij | < 1, for i 	= j.
(A3) limx→∞ P(G > tx)/P(G > x) = t−ν for all t > 0 and

some ν > 0. This means that G is regularly varying
with index ν, denoted by G ∈ RV−ν .

3. METHODOLOGY

In this section we will introduce a copula-based depen-
dence concept and the corresponding copula correlation ma-
trix estimate. This estimate will describe the dependence
structure in the extremes.
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3.1 Dependence concepts

Measuring dependence by correlation or covariance is lim-
ited by the fact that they measure only linear dependence.
Further, since copulas are invariant under strictly increas-
ing transformations, correlation is not a copula parameter,
but depends on the full distribution; see e.g. [11, Example
3.1]. On the other hand, for the proposed structure analysis
method, we need a dependence concept, which can at least
be linked to correlation.

Although the focus in this paper is on extreme depen-
dence, we shall also need Kendall’s tau, since we shall use it
as a preliminary dependence estimate; for more details see
[23].

Definition 3.1. Kendall’s tau τij between two different
components (Xi, Xj), i 	= j, of a random vector X is de-
fined as

τij := P

(
(Xi − X̃i)(Xj − X̃j) > 0

)
−P

(
(Xi − X̃i)(Xj − X̃j) < 0

)
,

where (X̃i, X̃j) is an independent copy of (Xi, Xj).

Concerning elliptical copulas the following result will be
used, which is given in [13, Theorem 3.1].

Proposition 3.2. Let X be a random vector with ellip-
tical copula ECd(R, G) and generating variable G > 0. If
rank(R) = 1 and G is continuous or, if rank(R) ≥ 2 and
P(G = 0) = 0, then τij = 2arcsin(ρij)/π.

By Sklar’s theorem, the copula C describes the depen-
dence structure in a multivariate distribution model on all
levels of the data. It also describes dependence in extremes.
As C is a distribution on [0, 1]d with uniform marginals,
extreme values happen near all boundaries and joint ex-
treme dependence between all components happens around
the points (0, . . . , 0) and (1, . . . , 1). As we will be interested
in dependence of large risks, we concentrate on the depen-
dence around the point (1, . . . , 1).

This can be captured by the following concept; see e.g.
equation (1) in [26] or equation (2.3) in [19].

Definition 3.3. Let X be a random vector with values in
R

d

+ and marginal distribution functions Fj for j = 1, . . . , d.
We define the (upper) tail dependence function of X as

T (x) := lim
t→0

t−1
P(1− F1(X1) ≤ tx1, . . . , 1−Fd(Xd) ≤ txd)

(2)

= lim
t→0

t−1C(1− tx1, . . . , 1− txd),

for x = (x1, . . . , xd) ∈ R
d

+ if the limit exists, where C is the
survival copula of C.

Remark 3.4. (i) If T (x) > 0 for some x > 0, X is

called asymptotically dependent and asymptotically inde-
pendent, otherwise. In [18, Theorem 4.3] it is shown that

a random vector X with elliptical copula is asymptotically

dependent, if and only if the corresponding generating vari-
able G ∈ RV −ν for some ν > 0. By definition, T (x) = 0,

if T (Xi,Xj)(xi, xj) = 0 for some i, j, i.e. X is asymptoti-
cally independent, if some bivariate margins (Xi, Xj) of X

are asymptotically independent. Concerning asymptotic in-

dependence we refer to [28], and for a conditional modelling
and estimation approach allowing for asymptotic indepen-

dence in some components and asymptotic dependence in

others; see [16]. We will use the assumption of asymptotic
dependence for modelling and estimation and, therefore, we

omit further discussions about asymptotic independence.

(ii) The bivariate marginal tail dependence function

measures the amount of dependence in the upper right cor-
ner of the first quadrant of R2. Thus only positive depen-

dence of (Xi, Xj) will be considered. As a consequence, if

the estimated T is close to 0, the data may still be depen-
dent or, for instance, negatively dependent. For an account

of negative dependence in the extremes, one can move due to
the symmetry of the elliptical copula from the pair (Xi, Xj)

to (Xi,−Xj) and interpret the findings appropriately.

From [26, Theorem 4] we know the tail dependence func-
tion T (x) corresponding to an elliptical copula ECd(R, G).

It is given by

T (x) =
( ∫
u∈Sd−1,A1·u>0

(A1·u)
νdFU (u)

)−1

∫
u∈Sd−1,A1·u>0,...,Ad·u>0

d∧
i=1

xi(Ai·u)
νdFU (u) ,

where Ai· is the i-th row of A from Definition 2.1 and FU

is the uniform distribution on the unit sphere Sd−1 = {s ∈
Rd : s�s = 1} in Rd. For the estimation of R and ν with
focus on extreme dependence we will need a one-to-one re-

lation between the tail dependence function and R respec-

tively ν. As shown in [26, Remark 5.2] the bivariate ver-
sion of T (x) reduces to a nice functional form, and depends

only on ρij and ν (cf. [25, Theorem 1]). We recall this rep-
resentation in Proposition 3.5. The second equality of this

Proposition is due to [8], who derived an expression for the

Pickands dependence function A(x) := 1 − T (x, 1 − x, ν, ρ)
of the bivariate t-distribution, and which was shown in [1]

to be the same for all elliptical distributions with G ∈ RV−ν

for some ν > 0.

Proposition 3.5. Suppose X has elliptical copula
ECd(R, G) and (A2)–(A3) hold. Then the bivariate marginal
tail dependence function of X is given by
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Tij(x, y)

(3)

=

(
x

∫ π/2

gij((x/y)1/ν)
(cosφ)ν dφ+ y

∫ π/2

gij((x/y)−1/ν)
(cosφ)ν dφ

)
(∫ π/2

−π/2

(cosφ)ν dφ

)−1

= x
(
1− tν+1(a(x, y))

)
+ y

(
1− tν+1(a(y, x))

)
=: T (x, y, ν, ρij),

where

a(x, y) =

((
x

y

) 1
ν

− ρij

)√
ν + 1

1− ρ2ij

and x is the i-th and y the j-th component of x ∈ Rd.

Moreover, gij(t) := arctan((t − ρij)/
√

1− ρ2ij) and tν+1

denotes the t-distribution with ν + 1 degrees of freedom.

Remark 3.6. (i) The case of ρij = 1 can be interpreted
as a limit, i.e.

T (x, y, ν, 1) := lim
ρij→1

T (x, y, ν, ρij).

Then

gij(t) = lim
ρij→1

arctan

⎛⎝ t− ρij√
1− ρ2ij

⎞⎠ =

⎧⎨⎩
+π/2, t > 1,

0, t = 1,
−π/2, t < 1,

and we obtain T (x, y, ν, 1) = x∧ y for all i 	= j ∈ {1, . . . , d}.
Similarly, T (x, y, ν,−1) = 0.

(ii) We want to recall that by [26, Theorem 5.1], T is
also for arbitrary dimension d completely characterised by
the copula correlation matrix R and the index ν of regular
variation of G.

3.2 Extreme copula correlation estimator

From Proposition 3.5 we observe that, for an elliptical
copula, T can be expressed as a function of R and ν. Vice
versa, the correlation matrix R is a function of the tail de-
pendence function and the index ν of regular variation of G.
We will exploit this functional relationship for the estima-
tion of R. Using the tail dependence function for estimation
of R focuses on the dependence structure in the upper ex-
tremes and does not necessarily model the dependence of the
data in other regions in a realistic way. This is in contrast
to the classical approach (based on the empirical correlation
matrix). However, it allows us to assess the dependence in
the extreme risks appropriately.

Given an estimator of T , we can estimateR and ν; i.e., we
estimate the elliptical structure, which is likely to generate
the observed extreme dependence. By Proposition 3.5, given
an estimator of ν and of all bivariate marginal tail depen-
dence functions, we can estimate the bivariate correlations,

i.e. the correlation matrix R. We start with an estimator of
the tail dependence function.

Definition 3.7. Given an i.i.d. sample X1, . . . ,Xn with
Xl = (Xl,1, . . . , Xl,d)

� for l = 1, . . . , n, we define the em-
pirical tail dependence function for x = (x1, . . . , xd) > 0
as

T(x; k) =
1

k

n∑
l=1

1(1− Fj(Xl,j) ≤
k

n
xj , j = 1, . . . , d),(4)

where 1 ≤ k ≤ n, and Fj denotes the empirical distribution
function of {Xl,j}nl=1 for 1 ≤ j ≤ d. Further, we define the
empirical bivariate marginal tail dependence function as

Tij(x, y; k)(5)

:=
1

k

n∑
l=1

1(1− Fi(Xl,i) ≤
k

n
x , 1− Fj(Xl,j) ≤

k

n
y ),

where x is at the i-th and y at the j-th component of x.

For details on empirical tail dependence functions see [9],
[25], [36], and further references therein. Since T estimates
a tail dependence function, the number k should be small
compared to n. Setting xj = 1 for 1 ≤ j ≤ d in (4), only
the k largest observations of Xl,j satisfy 1−Fj(Xl,j) ≤ k/n,
therefore, k can be interpreted as the number of the largest
order statistics, which are used for the estimation as is typ-
ical in extreme value statistics.

Immediately from representation (3), it follows that
T (ax) = aT (x) for every a > 0, i.e. T is homogeneous of
order 1. Hence, for the estimation we follow the convention
only to consider points (x(θ), y(θ)) := (

√
2 cos(θ),

√
2 sin(θ))

for θ ∈ (0, π/2), which includes the point (1, 1), but also
points off the diagonal. By this procedure we obtain more
information about the tail dependence of the data than by
just considering the point (1, 1) on the diagonal.

Recall that our task is now to estimate ν and ρ from T for
each pair of marginals (Xl,i, Xl,j) for 1 ≤ i, j ≤ d. Obviously,
it is not straightforward to estimate two parameters from
one curve. We proceed as follows. For estimation of ν we
use the approach of [26], which is based on inversion of the
tail dependence function with respect to ν. To derive this
estimator we need to replace the unknown ρij in (3) by an
appropriate initial estimator ρ̂. We will choose the estimator
(cf. Proposition 3.2)

ρ̂τij := sin
(π
2
τ̂ij

)
,(6)

where τ̂ij =
(
n
2

)−1 ∑
1≤l<k≤n sgn((Xk,i −Xl,i)(Xk,j −Xl,j))

is the empirical version of Kendall’s tau τij , cf. Defini-
tion 3.1. The convergence rate of τ̂ij , i.e. of ρ̂

τ
ij , is n−1/2,

which is much faster than the convergence rate for any tail
dependence function estimator, even when based on all n
data points; see e.g. Theorem 5 in [36]. Thus the asymp-
totic behaviour of the tail index estimator ν̂ is not changed,
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if ρij is replaced by ρ̂τij in the tail dependence function. We
also want to recall that this estimator works regardless of
the marginal models, which can be heavy- or light-tailed,
and different in different components.

The following estimate has been suggested and its prop-
erties discussed in some detail in [26]. In contrast to esti-
mators focusing only on the point (1, 1) it uses more data,
giving high weights to realisations near the diagonal and
lower weights away from the diagonal.

Definition 3.8. Define T←ν(·|x, y, ρ) as the inverse of
T (x, y, ν, ρ) (given in (3)) with respect to ν. Using ρ̂τij es-
timated as in (6) and Tij estimated as in (5), define for
i 	= j

Q̂ij :=
{
θ ∈

(
0,

π

2

)
: Tij(x(θ), y(θ); k)

< T

(
x(θ), y(θ),

∣∣∣∣∣ ln(tan(θ))ln(ρ̂τij ∨ 0)

∣∣∣∣∣ , ρ̂τij
)}

,

Q̂∗
ij :=

{
θ ∈

(
0,

π

2

)
: |ln(tan(θ))|

<
(
1− k−1/4

)
ν̃ij(1, 1; k)

∣∣ln(ρ̂τij ∨ 0)
∣∣}

Q∗
ij :=

{
θ ∈

(
0,

π

2

)
: |ln(tan(θ))| < ν |ln(ρij ∨ 0)|

}
,

where for θ ∈ Q̂ij we define ν̃ij as the estimator of ν based
on the empirical bivariate tail dependence function (5)

ν̃ij(x(θ), y(θ); k) := T←ν
(
Tij(x(θ), y(θ); k)|x(θ), y(θ), ρ̂τij

)
.

Further, let w be a non-negative weight function. Then we
define the smoothed estimator ν̂ of ν as

ν̂(k, w) :=
1

d(d− 1)

∑
i 	=j

1

W
(
Q̂ij ∩ Q̂∗

ij

)(7) ∫
θ∈ ̂Qij∩ ̂Q∗

ij

ν̃ij(x(θ), y(θ); k)W (dθ),

where W is the measure induced by w.

The asymptotic mean-squared error of ν̂(k, w) is given
in [26, Corollary 1]. From Theorem 1 in [26] we know
that for every fixed x, y > 0 the tail dependence function
T (x, y, ν, ρij) is strictly decreasing with respect to ν for all
ν > | ln(x/y)/ ln(ρij ∨ 0)|. Thus the estimator ν̃ij is well-
defined.

We use now the estimate ν̂ to define an estimator of the
correlation matrix R via extreme observations. To this end
we invert the bivariate tail dependence function with respect
to ρ after having plugged in ν̂. Using (3) it is straightforward
to show the following.

Lemma 3.9. For fixed x, y, ν > 0 and all ρ ∈ [−1, 1], the
tail dependence function T (x, y, ν, ρ) is strictly increasing in
ρ and the inverse T←ρ(·|x, y, ν) of T with respect to ρ exists.

By Remark 3.6 (i), for ν > 0 we have T (1, 1, ν, 1) = 1 and
T (1, 1, ν,−1) = 0. Hence, we can define

ρ̃ij(1, 1; k) := T←ρ (Tij(1, 1; k)| 1, 1, ν̂(k, w)) .(8)

Since this estimator only employs information at (x, y) =
(1, 1), it may not be very efficient. Therefore, we define an
estimator based on Tij(x, y; k) for other values (x(θ), y(θ))
for θ ∈ (0, π

2 ).
The following definition is an analogue of Definition 3.8.

To ensure existence and consistency of the estimator, we
define the appropriate sets.

Definition 3.10. Define T←ρ(·|x, y, ν) as the inverse of
T (x, y, ν, ρ) (as given in (3)) with respect to ρ. Using ν̂ es-
timated as in (7) and Tij estimated as in (5), define for
i 	= j

Ûij :=
{
θ ∈

(
0,

π

2

)
: Tij (x(θ), y(θ); k)

< T
(
x(θ), y(θ), ν̂(k, w), e−| ln(tan θ)|/ν̂(k,w)

)}
,

Û∗
ij :=

{
θ ∈

(
0,

π

2

)
: |ln(tan θ)|

< (1− k−1/4)ν̂(k, w)
∣∣ln (ρ̃ij(1, 1; k) ∨ 0

)∣∣}
U∗
ij := Q∗

ij ,

where for θ ∈ Ûij we define ρ̃ij as the estimator of ρij based
on the empirical bivariate tail dependence function (5)

ρ̃ij(x(θ), y(θ); k)(9)

:= T←ρ (Tij(x(θ), y(θ); k)|x(θ), y(θ), ν̂(k, w)) .

Observe that the set U∗
ij defines for given θ and ν the

constraint

ρij < ρ∗ := ((xi(θ) ∧ xj(θ))/(xi(θ) ∨ xj(θ)))
1/ν

.

By Lemma 3.9 there exists a unique ρ such that

T (x(θ), y(θ), ν̂(k, w), ρ) = Tij (x(θ), y(θ); k) , θ ∈ Ûij .

This implies that the definition in (9) makes sense.

Note further that, by the definition of ρ̃ij(1, 1; k) in (8), it

always holds that π/4 ∈ Ûij provided that Tij(1, 1; k) < 1,

and we also have π/4 ∈ Û∗
ij , since

(1− k−1/4)ν̂(k, w)
∣∣ln (ρ̃ij(1, 1; k) ∨ 0

)∣∣ > 0 .

To ensure consistency we further require θ ∈ Ûij . This im-
plies that the true ρij is smaller than e−| ln(tan(θ))|/ν̂(k,w)

with probability tending to one. The set U∗
ij is then the true

subset of (0, π/2), where Lemma 3.9 applies.

Now we can define an estimator for ρij as a smooth ver-
sion of ρ̃ij :
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Definition 3.11. Let w∗ be a non-negative weight function
and W ∗ be the measure induced by w∗. Then we define for
i 	= j and with ρ̃ij as in (9)

ρ̂Tij(k, w
∗) :=

1

W ∗
(
Ûij ∩ Û∗

ij

)(10) ∫
θ∈̂Uij∩̂U∗

ij

ρ̃ij(x(θ), y(θ); k)W
∗(dθ).

Further, we define ρ̂Tii(k, w
∗) := 1 for 1 ≤ i ≤ d, and

R̂T (k, w
∗) := (ρ̂Tij(k, w

∗))1≤i,j≤d. We call R̂T the extreme
copula correlation estimator.

The next theorem presents the asymptotic properties of
R̂T (k, w

∗). To derive these properties we will use the theory
developed in [36] about the limit behaviour of Tij and give a
formal proof in Section 6. In order to derive the asymptotic
properties we need the following second order condition.

There exists A(t) → 0 as t → 0 such that

lim
t→0

t−1
P(1− F1(X1,1) ≤ tx1, . . . , 1− Fd(X1,d) ≤ txd)− T (x)

A(t)

(11)

= b(x)

holds locally uniformly for all x = (x1, . . . , xd) in R
d

+, and
b is some non-constant function.

Remark 3.12. The second order condition (11) holds pro-
vided the regularly varying distribution function of the gen-
erating random variable G satisfies such a second order con-
dition. More precisely, it is required that there exists some
function Ã(t) → 0 such that for all x > 0 and some β ≤ 0

lim
t→∞

P (G > tx)/P (G > t)− x−ν

Ã(t)
= x−ν x

β − 1

β
.

This entails the second order condition on the tail depen-
dence function (11); cf. [25, Theorem 3].

Theorem 3.13. Suppose (A1)–(A3) and (11) hold. Further
assume that k = k(n) → ∞, k/n → 0 and

√
kA(k/n) → 0 as

n → ∞. Let w∗ be a non negative weight function satisfying
supθ∈U∗

ij
w∗(θ) < ∞ for all i 	= j and θ ∈ (0, π/2), and W ∗

is the measure induced by w∗. Define

B̃ij(x, y) := Bij(x, y)+

(12)

−Bij(x,∞)
∂

∂x
T (x, y, ν, ρij)−Bij(∞, y)

∂

∂y
T (x, y, ν, ρij),

Bij(x, y) := B(∞, . . . ,∞, x,∞, . . . ,∞, y,∞, . . . ,∞),

where x is the i-th and y the j-th component and B is a zero

mean Wiener process on R
d

+ with covariance structure

E(B(x)B(y)) = T (x ∧ y), x,y ∈ R
d

+.(13)

Set as in (1)

r := vecp(R) and r̂T (k, w
∗) := vecp

(
R̂T (k, w

∗)
)
,

then

√
k (r̂T (k, w

∗)− r)
d−→ Nd(d−1)/2(0,ΓT ) , n → ∞ ,

where ΓT = (γT
ij,kl)1≤i 	=j,k 	=l≤d with

γT
ij,kl = σ1;ij,kl + σ2;ij,kl + σ3;ij,kl + σ4;ij,kl.(14)

Setting h(θ, ν, ρ) := T (x(θ), y(θ), ν, ρ) we have

σ1;ij,kl =
2

d2(d− 1)2W ∗(U∗
ij)W

∗(U∗
kl)

×
∏

J∈{ij,kl}
(15)

∫
θ∈U∗

J

∂

∂ν
T←ρ (TJ (x(θ), y(θ))| x(θ), y(θ), ν)W ∗(dθ)

×

⎛⎝ ∑
1≤p<q,r<s≤d

1

W ∗(Q∗
pq)W

∗(Q∗
rs)

∫
θ1∈Q∗

pq

∫
θ2∈Q∗

rs

×
E

(
B̃pq(x(θ1), y(θ1))B̃rs(x(θ2), y(θ2))

)
∂
∂νh(θ1, ν, ρpq)

∂
∂νh(θ2, ν, ρrs)

W ∗(dθ2)W
∗(dθ1))

and

σ2;ij,kl =
1

d(d− 1)W ∗(U∗
ij)W

∗(U∗
kl)

(16)

∑
1≤p<q≤d

1

W ∗(Q∗
pq)

(∫
θ1∈U∗

ij

∫
θ2∈U∗

kl

∫
θ3∈Q∗

pq

∂

∂ν
T←ρ (Tij(x(θ1), y(θ1))|x(θ1), y(θ1), ν)

×
E

(
B̃pq(x(θ3), y(θ3))B̃kl(x(θ2), y(θ2))

)
∂
∂νh(θ3, ν, ρpq)

∂
∂ρh(θ2, ν, ρkl)

W ∗(dθ3)W
∗(dθ2)W

∗(dθ1)) ,

similarly σ3;ij,kl (by interchanging the indices ‘ij’ and ‘kl’),
and

σ4;ij,kl =
1

2W ∗(U∗
ij)W

∗(U∗
kl)

∫
θ1∈U∗

ij

∫
θ2∈U∗

kl

(17)

E

(
B̃ij(x(θ1), y(θ1))B̃kl(x(θ2), y(θ2))

)
∂
∂νh(θ1, ν, ρij)

∂
∂ρh(θ2, ν, ρkl)

W ∗(dθ2)W
∗(dθ1) .

Using (14), we can define an estimator of ΓT .

Definition 3.14. We define the estimator of

ΓT = (γT
ij,kl)1≤i 	=j,k 	=l≤d by Γ̂T = (γ̂T

ij,kl)1≤i 	=j,k 	=l≤d
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with

γ̂T
ij,kl := σ̂1;ij,kl + σ̂2;ij,kl + σ̂3;ij,kl + σ̂4;ij,kl.(18)

The σ̂ are defined in (15)–(17), where ν, ρij and ρkl are re-
placed by their estimators ν̂(k, w), ρ̂Tij(k, w

∗) and ρ̂Tkl(k, w
∗),

respectively, the sets U∗ and Q∗ are replaced by their es-
timators Û ∩ Û∗ and Q̂ ∩ Q̂∗, respectively, and the co-
variances E(B̃ij(·)B̃kl(·)) are replaced by their estimators

Ê(B̃ij(·)B̃kl(·)) using (12) and (13) and estimating T by T.

The asymptotic properties of T, ν̂, ρ̂Tij in combination
with the delta method yield immediately the following re-
sult.

Theorem 3.15. Under the conditions of Theorem 3.13, the
estimator vecp(Γ̂T ) is consistent and asymptotically normal.

Remark 3.16. It may happen that the correlation matrix
estimators (6) or (10) are not positive semi-definite. In this
case, we apply some of the methods described in [17] or
[34] to project the indefinite correlation matrix to the set
of positive semi-definite correlation matrices; see also [24]
for details. Considering covariance matrix estimators, which
are not positive semi-definite, we project them on S

+ by
replacing the negative eigenvalues of the covariance matrix
estimator by their absolute values.

Estimation of dependence in extremes is always difficult.
The problem of estimating tail dependence lies in its defini-
tion as a limit; see (2). For some methods and pitfalls of esti-
mating the tail dependence function Tij(1, 1) we refer to [14].
Estimators of the tail dependence are based on a sub-sample
using the largest (or smallest) observations. Concerning the
optimal choice of the threshold (equivalently the number k
of upper order statistics used in the estimation), we refer to
[6], [10], [25], [26] and [33]. In our applications we used a
heuristical approach to select k, which will be explained in
the next section.

4. COPULA STRUCTURE ANALYSIS: A
FACTOR ANALYSIS EXAMPLE

In the previous section we have presented an extreme cop-
ula correlation estimate R̂T for the copula correlation R of
an elliptical copula, which is based on extreme dependence.
Now we want to explain how the structure of this matrix can
be analysed. Therefore, we will assume a model for the struc-
ture of R in the extremes. Throughout the rest of the paper
we will assume a factor model; i.e., we assume the structure
R(ϑ) = LL� + V2, where L ∈ Md,m(R), V ∈ S

+
d (R) is a

diagonal matrix, and ϑ ∈ Θ ⊂ Rp are the free parameters
in L and V . But this choice is arbitrary. One can choose
any parametric model which defines a correlation matrix.
We will now use the asymptotic properties of the extreme
copula correlation estimator R̂T defined in (10) to derive
testing procedures.

In case of the classical covariance structure analysis, there
is a vast amount of literature on how to define a suitable test
to decide if the true covariance is a member of the assumed
model class; see e.g. [2], [3], [35] and [37]. We adapted the
main ideas to our setting, that is to measure the discrepancy
between the model R(ϑ) and an estimate R̂ of the copula
correlation matrix. Therefore, we minimise a discrepancy
function F (·, ·) with respect to ϑ ∈ Θ:

min
ϑ∈Θ

F (R̂,R(ϑ)) .

A suitably scaled version of the discrepancy function should
then be asymptotically pivotal; i.e., its asymptotic distribu-
tion should be independent of the unknown parameters in
the model. There are different choices of discrepancy func-
tions, but for most of them their corresponding asymptotic
distribution depends on distributional assumptions about
X, like e.g. the normal maximum likelihood discrepancy
function

FML(R̂,R(ϑ)) = log
(
det(R(ϑ))

)
− log

(
det(R̂)

)
+tr

(
R̂R(ϑ)−1

)
− d .

Since we do not make any assumptions about the marginal
distributions of X we can not work with such a discrepancy
function. But we can apply the asymptotic distribution-
free method developed in [3]. There a quadratic discrepancy
function

F (R̂,R(ϑ)|U) = (r̂− r(ϑ))�U−1(r̂− r(ϑ)) ,

where U is a suitably chosen weight matrix, is used to esti-
mate the parameter ϑ. The estimator

ϑ̂ := argminF (R̂,R(ϑ)|U)

is asymptotically normal with mean ϑ0 and covariance ma-
trix (2.12a) in [3] as long as vecp(R̂) is asymptotically nor-
mal, which is the case for the extreme copula correlation
estimator R̂T (k, w

∗) defined in (10).
Now let r0 = vecp(R0) be the vectorised correlation ma-

trix and assume that X has the elliptical copula ECd(R0, G)
at least in the extremes. Then we estimate the copula corre-
lation by R̂T (k, w

∗) as shown in Section 3.2. The parameter
ϑ of the structure model is then estimated by minimising
the quadratic discrepancy function with weight matrix

ÛT := Γ̂−1
T − Γ̂−1

T Δ̂(Δ̂Γ̂−1
T Δ̂)−1Δ̂�Γ̂−1

T ,

where Δ̂ is an estimator of Δ := ∂r(ϑ)
∂ϑ |ϑ=ϑ0 . Using the es-

timator

ϑ̂T := argminF (R̂T (k, w
∗),R(ϑ)|ÛT ) ,

we define the asymptotic distribution-free test statistic

Copula structure analysis based on extreme dependence 99



ADF(ϑ̂T , R̂T (k, w
∗), Γ̂T )

= k(r̂T (k, w
∗)− r(ϑ̂T ))

�ÛT (r̂T (k, w
∗)− r(ϑ̂T ))

which is, due to [3, Proposition 4], non-centrally χ2-
distributed with df = d(d − 1)/2 − p degrees of freedom
and non-centrality parameter

η = k(r0 − r(ϑ0))
� U (r0 − r(ϑ0)) ,

for U = Γ−1
T − Γ−1

T Δ(ΔΓ−1
T Δ)−1Δ�Γ−1

T . In case R0 =
R(ϑ0) the non-centrality parameter η is zero and ADF has
a central χ2-distribution. This fact will now be used for test-
ing

H0 : r0 = r(ϑ0) for some ϑ0 ∈ Θ,

by assuming s ≥ 1 nested models

r(i) : Θ(i) → Rd(d−1)/2, ϑ(i) �→ r(i)(ϑ(i)), and Θ(i) ⊂ Rp(i)

,

for 1 ≤ i ≤ s, which all have to satisfy the conditions in [3,
Proposition 4]. The s models will be nested, if for every 1 ≤
i ≤ s − 1 and ϑ(i) ∈ Θ(i) there exists some ϑ(i+1) ∈ Θ(i+1)

such that r(i+1)(ϑ(i+1)) = r(i)(ϑ(i)). In our factor analysis
example these nested models correspond to models with an
increasing number m of common factors.

Next consider the null hypotheses

H
(i)
0 : r0 = r(i)(ϑ

(i)
0 ) for some ϑ

(i)
0 ∈ Θ(i), 1 ≤ i ≤ s,

and assume that some of these null hypotheses are true.

Then there exists some j ∈ {1, . . . , s} such that H
(i)
0 does

not hold for 1 ≤ i < j and does hold for j ≤ i ≤ s. As we are
interested in a structure model, which is likely to explain the
observed extreme dependence structure, and is as simple as
possible, we have to estimate j, the smallest index, where
the null hypothesis holds.

By [3, Proposition 4] the corresponding test statistics

ADF(i)(ϑ̂T , R̂T (k, w
∗), Γ̂T )

:= k min
ϑ∈Θ(i)

(r̂T (k, w
∗)− r(i)(ϑ̂T ))

�ÛT (r̂T (k, w
∗)− r(i)(ϑ̂T ))

are non-centrally χ2
df -distributed for 1 ≤ i < j and are χ2

df -
distributed for j ≤ i ≤ s. Consequently, we reject a null

hypothesis H
(i)
0 , if the corresponding test statistic ADF(i)

is larger than some χ2
df -quantile. Hence, j is the smallest

number, where H
(j)
0 cannot be rejected.

Example 4.1. To analyse the small sample behaviour of
the test statistic ADF, we perform a simulation study. We
choose a d = 10 dimensional setting with m = 2 factors,
loading matrix

L� = 0.9 ·
(
1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1

)

Figure 1. Estimates ν̂(k, w) for different values of k for
sample size n = 5000.

and specific factors

diag(V2) = 0.19 ·
(
1 1 1 1 1 1 1 1 1 1

)
.

Then LL� + V2 = R is a correlation matrix. The depen-
dence structure is described by the tν-copula ECd(R, G),
where G ∼

√
ν/χ2

ν for ν > 0. The tail parameter was cho-
sen to be ν = 1.5. All marginal distributions were chosen to
be standard exponential.

We simulated 500 i.i.d. samples of sizes n = 1000, 5 000
and 10 000, respectively, of the t1.5-copula. For each sample
we calculated for the one and two factor models r(1) respec-
tively r(2) the corresponding test statistic ADF(i), i = 1, 2,
based on the extreme copula correlation estimators (10) and
their estimated covariance matrices (18) with weight func-
tion taken as a discrete version of

w∗(θ) = 1−
(

θ

π/4
− 1

)2

, 0 ≤ θ ≤ π

2
,

which gives maximal weight to data near the diagonal,
and falls off to 0 in 0 and π/2. This assigns reasonable
weights, since w∗(0) = w∗(π/2) = 0 and maximal weight
w∗(π/4) = 1 on the diagonal. The mean-squared error of
the estimator ν̂(k, w∗) was analysed in [26] through a sim-
ulation study (see Figure 3). It was shown that it is advan-
tageous to use ν̂(k, w∗) compared to just using the simple
estimator ν̃(1, 1, k). The number of upper order statistics
used for the estimation of the tail dependence function have
been k = 80, 300 and 500, respectively. These were cho-
sen by a graphical approach shown in Figure 1. The figure
shows estimates of ν for different values of k. The idea is
that estimates ν̂(k, w) should be stable for suitable values
of k. Thus we identify the first stable region of the estimates
of ν and pick one of the corresponding k. Analysing such fig-
ures showed that the above values of k are suitable choices
for our simulation study.

To ensure uniqueness of the loadings, we restrict L�V−2L
to be diagonal, hence we have m(m − 1)/2 = 1 additional
constraints; see [27, Section 2.3]. Using this restriction and

the 2-factor setting, ADF(2) should be asymptotically χ2
df -

distributed with df = d(d − 1)/2 − dm +m(m − 1)/2 = 26
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Table 1. The empirical level of the ADF test for the two
factor model for different significance levels

k = 80 k = 300 k = 500

α = 0.20 0.168 0.256 0.279
α = 0.10 0.116 0.165 0.186
α = 0.05 0.084 0.113 0.127
α = 0.01 0.046 0.044 0.050

degrees of freedom. Therefore, we compare in each case the
500 estimates of ADF(i), i = 1, 2, with the χ2

26-distribution
by a QQ-plot; see Figure 2.

From the second row of Figure 2 we see that the distribu-
tion of ADF(2) fits the χ2

26-distribution rather well even for
n = 1000 observations corresponding to k = 80 upper order
statistics. In the one factor cases, depicted in the first row,
one clearly recognises the non-centrality parameter in the
huge values of the vertical axes, which leads to a rejection
of the one-factor model in almost all cases.

For the two factor model (i = 2) we present the empirical
levels of the ADF test at level α ∈ {0.01, 0.05, 0.1, 0.2}: in
Table 1.

We observe that in almost all cases the empirical level
is above the expected level of the test. This indicates that,
although we get the correct shape of the distribution, we still
have a bias in the estimate of the non-centrality parameter,
which leads to an increased rejection rate.

Example 4.2. In the second example we consider a d = 15
dimensional setting with m = 3 factors. In this case the
loading matrix is equal to

L� =

⎛⎝L� 0 0
0 L� 0
0 0 L�

⎞⎠
and the specific factor is

diag(V2) =
(
v� v� v�)

with L� = (0.70 0.70 0.75 0.80 0.80) and v� =
(0.51 0.51 0.4375 0.36 0.36).

The generating variable G is the same as in the pre-
vious example, i.e. we have again the copula of a tν-
distribution with parameter ν = 1.5. We simulated again
500 i.i.d. samples of sizes n = 1000, 5 000 and 10 000,
respectively. For each sample we calculated for the one,
two and three factor model r(1), r(2) respectively r(3) the
corresponding test statistic ADF(i), i = 1, 2, 3, based on
the estimators (10) and (18). The number k of upper or-
der statistics was selected as in Example 4.1. Under the
same uniqueness restrictions on the loadings as in Example
4.1 ADF(3) should be asymptotically χ2

df -distributed with
df = d(d−1)/2−dm+m(m−1)/2 = 63 degrees of freedom.

The test statistics ADF(i) for i = 1, 2 should be asymptoti-
cally non-centrally χ2

df -distributed with df = 90 and df = 76
degrees of freedom, respectively. Figure 3 shows the corre-
sponding QQ plots.

Table 2. The empirical level of the ADF test for the three
factor model for different significance levels

k = 80 k = 300 k = 500

α = 0.20 0.158 0.127 0.183
α = 0.10 0.108 0.054 0.080
α = 0.05 0.067 0.028 0.045
α = 0.01 0.036 0.005 0.008

We clearly observe again the high non-centrality param-
eter in the first two cases on the horizontal axes, leading to
a rejection of the one and two factor model in almost all
cases.

For the three factor model (i = 3) we present the empir-
ical levels of the ADF test at level α ∈ {0.01, 0.05, 0.1, 0.2}
in Table 2

The empirical levels are in almost all cases lower than
the nominal level of the test and especially for k = 500
quite close to the level of the test.

5. DATA EXAMPLE

Finally we want to apply our method to a financial data
set. We consider the same data as in [7]. It contains daily
observations of 21 financial indices over a period from Jan-
uary 2001 to December 2009: five equity indices (DAX,
STOXX50, S&P500, MSCI-World and MSCI-EE), 14 fixed
income indices (iBoxx indices) and two commodity indices
(Commodities and Gold). Ten of fourteen iBoxx indices are
German government bonds and bonds of Euro nations with
different times to maturity. The remaining four bonds are
corporate bonds of Euro nations with different ratings. One
can observe a very strong correlation between the German
government bonds and the iBoxx indices consisting of Euro
nation bonds, which have the same time to maturity. This
is due to the fact that the Euro indices consisted to a large
part of German bonds. High correlations are also observed
between indices of the same type but consecutive time to
maturities. Therefore we only considered the fixed income
indices iBoxx-G-3-5, iBoxx-G-7-10, iBoxx-E-1-3, iBoxx-E-
5-7, iBoxx-E-10+, iBoxx-E-AAA, iBoxx-E-AA, iBoxx-E-A
and iBoxx-E-BBB.

In a first step we computed log-returns and fitted univari-
ate ARMA(1,1)-GARCH(1,1) models to these return series
analogously to [7]. The analysis of the dependence structure
in the extremes of the fitted residuals is our goal. Before
doing this we recall that we assume an elliptical dependence
structure in the extremes, and we should put this to the
test. A formal statistical test can be based on the differ-
ence between the elliptical tail dependence function and its
empirical counterpart, which converges with rate k to some
functional of a Gaussian process (cf. [29, Theorem 1]). As
the limit process is inaccessible, the high quantile needed to
formulate a goodness-of-fit test can in principle be obtained
by some bootstrap mechanism. It is, however, well-known
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Figure 2. QQ-plot of ordered estimates ADF(i) for n = 1000 and k = 80 (left), n = 5000 and k = 300 (middle)and
n = 10 000 and k = 500 (right)observations. The first row shows the results for the one factor model and the second row for

the two factor model.

Figure 3. QQ-plot of ordered estimates ADF(i) for n = 1000 and k = 80 (left), n = 5000 and k = 300 (middle)and
n = 10 000 and k = 500 (right)observations. The first row shows the results for one factor model, the second row for the two

factor model and the last row for three factor model.

that the naive bootstrap yields unsatisfactory results for the
estimation of high quantiles and more sophisticated boot-
strap methods are required (e.g. the wild bootstrap, cf. [39]
or [30]). One version of the wild bootstrap, called multiplier
bootstrap has been suggested in [4] for the goodness-of-fit of

one-parametric tail copulas based on some specific estima-
tion procedure for this one parameter. It should be possible
to extend this theory also to develop goodness-of-fit tests
for elliptical tail dependence. This is, however, not straight-
forward and hence a topic for future work. For the data set
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Figure 4. Pairwise scatter plots of pseudo-observations
computed from the negative residuals of DAX, S&P500,

iBoxx-G-3-5, iBoxx-E-5-7, iBoxx-E-BBB and the Gold index.

of the present paper, before setting to work on the structure
analysis, we performed some exploratory tests like checking
the shape of the pseudo-observations (see e.g. Section 2 in
[15]) computed from the fitted residuals (cf. Figure 4) and
the estimation of ν on different marginals of the data set (cf.
Figures 5 and 6 in [26] for an assessment of the variability in
the estimation of ν). We did not find any indication which
contradicted the assumption.

Since we are interested in the dependence structure of
large losses, we will perform an extreme copula factor analy-
sis of the negative residuals, so that extreme dependence cor-
responds to (upper) tail dependence. A pairs plot of pseudo-
observations, computed from the negative residuals of some
of the indices, is shown in Figure 4. The empirical tail de-
pendence coefficients Tij(1, 1; 60) are given in the lower half
of the pairs plot.

The copula factor analysis is done by using the func-
tion cop.struc() from the R package Cop.Struc, which
is available on the first author’s web site. For the sixteen-
dimensional data set, the extreme copula factor model with
six factors can still be rejected at a chosen significance level
of 0.05, but the model with seven factors cannot be rejected.

We denote by R̂(7)
T the estimated extreme copula correla-

tion matrix corresponding to the optimal 7-factor model.
For comparison, we also carried out a robust copula fac-
tor analysis, where we estimate R by Kendall’s tau via (6).
In that case we obtained a model with nine factors. Analo-
gously, we denote by R̂(9)

τ the estimated robust copula corre-
lation matrix corresponding to the optimal 9-factor model.
Note that our data set combines three different types of
indices: equity, fixed income and commodity indices. The

Figure 5. Dependence explained by the optimal copula factor

models: (i) extreme dependence R̂(7)
T , (ii) robust dependence

R̂(9)
τ ; (iii) difference R̂(7)

T − R̂(9)
τ ; (iv) difference between

extreme and robust copula correlation R̂T − R̂τ .

fixed income indices can further be divided into German
government and Euro nation bonds with different matu-
rities and corporate bonds of Euro nations with different
ratings. Therefore, we would have guessed that we need at
least six factors to suitably represent the copula correlation
matrix.

Figure 5 shows estimates of the extreme copula correla-

tion matrix R̂(7)
T and of the robust copula correlation ma-

trix R̂(9)
τ in the top row. The estimator R̂(7)

T (which focuses
after all on extreme positive dependence) assigns slightly
less weight on the negative dependence between equity and

fixed income indices compared to the estimator R̂(9)
τ based

on Kendall’s tau. Further we see a slightly lower correla-

tion between fixed income and commodity indices in R̂(7)
T

than in R̂(9)
τ . In the second row of Figure 5 the estimated

differences R̂(7)
T − R̂(9)

τ and R̂T − R̂τ are depicted, where
the latter one is the difference between (10) and (6). The
main difference between the figures (iii) and (iv) is that the
extreme copula factor model assigns much more weight to
the dependence between the MSCI East Europe index and
the commodity index than the robust copula factor model.
This effect cannot be seen for the raw estimates R̂T and R̂τ .
Overall, the differences between the copula correlations vary
between −0.27 and 0.26 for the factor models, and between
−0.27 and 0.19 for the raw estimates.
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Finally we compare the estimated loadings for different

factors summarised in L̂(7)
T and V̂(7)

T , which define the esti-
mate of the extreme copula correlation

R̂(7)
T = L̂(7)

T L̂(7)�

T + V̂(7)
T .

The loadings, which are shown in Figure 6, are obtained
by applying the varimax method to the original loadings
ϑ̂T . Recall that the set of loadings is not unique with re-
spect to orthogonal transformations. The aim of the vari-
max method, originally introduced in [21] (see also Chapter
6.3 in [27]), is such that the transformed loadings are either
rather large or rather small in magnitude. For the investi-
gator such a set of loadings is then easier to interpret. Since
the set of possible orthogonal transformations is not lim-
ited to the varimax method, different methods may lead to
slightly different interpretations. But this is a general draw-
back of every factor analysis and will not be discussed here
any further.

For comparison, Figure 6 also depicts the factor loadings

summarised in L̂(9)
τ and V̂(9)

τ based on the robust copula cor-
relation estimator. The first three factors can be identified
as the fixed income, equity and commodity factors. For the
loadings of factor 4 we observe the first differences compar-

ing the loading of the extreme copula factor L̂(7)
T and the

robust copula factor L̂(9)
τ . Factor 4 puts weight on the eq-

uity and commodity indices for L̂(7)
T . Concerning the equity

indices there is special emphasis on the MSCI East Europe
index. The loadings for the commodity indices are much
larger for the extreme copula factor model than for the ro-
bust copula factor model. Therefore, for the given sample
the dependence between the MSCI East Europe index and
the commodity indices is larger, when focusing on common
large losses compared to considering all rank observations.
Factor 5 distinguishes between different times to maturity.
The short term bonds iBoxx-E-1-3 and iBoxx-E-3-5 get neg-
ative loadings and the mid term bond iBoxx-E-5-7 has a
loading of roughly zero, while the long term bonds iBoxx-
G-7-10 and iBoxx-E-10+ have positive loadings. The sixth
factor is again an equity factor. This time higher loadings
are given to DAX and STOXX50. We also see some relation
to the iBoxx-BBB index, which is not the case for factor 2.
The last two factors are hard to interpret. The loadings for
factor 7 are all very small. Therefore, one may argue that
a model with six factor may be sufficient when taking the
finite sample properties of our test statistic into account as
demonstrated in Figure 2.

6. PROOF OF THEOREM 3.13

In the bivariate case the following weak convergence re-
sult was shown in [36, Theorem 5] under the assumption
that the tail dependence function possesses continuous par-
tial derivatives:

√
k (T(x1, x2; k)− T (x1, x2))

(19)

w→B(x)− ∂

∂x1
T (x1, x2)B(x1,∞)− ∂

∂x2
T (x1, x2)B(∞, x2)

in B(R2

+) (see [36] for details on convergence in this space),
where B is a zero mean Wiener process with covariance
structure E(B(x1, x2)B(y1y2)) = T (x1 ∧ x2, y1 ∧ y2) for

x,y ∈ R
2

+. We need an extension of this result from the
bivariate to a d-dimensional setting. Using the arguments
in the proof of [36, Theorem 5] we get

√
k (T(x; k)− T (x))

w→ B(x)−
d∑

i=1

∂

∂xi
T (x)Bi(xi)

in B(Rd

+), where Bi(xi) = B(x) with xl = ∞ for l 	= i and
B is a zero mean Wiener process with covariance structure

E(B(x)B(y)) = T (x ∧ y) for x,y ∈ R
d

+. The same result is
also given in the proof of Theorem 1 in [29]. In particular,
this implies consistency of all bivariate empirical tail de-
pendence functions Tij and their distributional convergence
(centred and scaled) to a Gaussian limit. Recently Bücher
and Dette [4] have shown that the assumption of continu-
ous partial derivatives is unnecessarily restrictive and estab-
lished the same result as in [36, Theorem 5] under weaker
smoothness assumptions; see [4, Theorem 2]. The arguments
in their proof can also be extended to the d-dimensional set-
ting.

Since r̂T is the image of T under a certain map φ we
can again use an extended version of the classical delta-
method (see [38, p. 374] for details) to show the asymptotic
normality of r̂T . First, note that for all i 	= j and for T
defined in (3)

inf
θ∈Q∗

ij

∣∣∣∣ ∂∂ν T (x(θ), y(θ), ν, ρij)
∣∣∣∣ > 0,

inf
θ∈U∗

ij

∣∣∣∣ ∂∂ρT (x(θ), y(θ), ν, ρij)
∣∣∣∣ > 0

and

sup
θ∈U∗

ij

∣∣∣∣ ∂∂ν T←ρ(·|x(θ), y(θ), ν, ρij)
∣∣∣∣ < ∞.

Next, defineD as the set of all d-dimensional tail dependence
functions, which is a subset of the complete metric space

B∞(R
d

+); see [36, Definition 4]. Abbreviate for μ ∈ D, with
μij being the ij-th marginal of μ,

ν̃ij(θ, μ, ρ) := T←ν (μij(x(θ), y(θ)) |x(θ), y(θ), ρ)

and

ρ̃ij(θ, μ, ν) := T←ρ (μij(x(θ), y(θ)) | x(θ), y(θ), ν) .

Next, define for some correlation matrix R = (ρij)1≤i,j≤d
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Figure 6. Estimated factors (L̂T and L̂τ ) and specific (V̂T and V̂τ ) loadings.
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ν(μ,R)

:=
1

d(d− 1)

∑
i 	=j

1

W ∗(Q∗
ij)

∫
θ∈Q∗

ij

ν̃ij(θ, μ, ρij)W
∗(dθ),

ρij(μ,R) :=
1

W ∗(U∗
ij)

∫
θ∈U∗

ij

ρ̃ij(θ, μ, ν(μ,R))W ∗(dθ) .

Using this notation we get that r = φ(T,R) with φ : T →
vecp((ρij(T,R))1≤i,j≤d). Due to the chain rule ([38, Lemma
3.9.3]) φ is Hadamard-differentiable if ν(·,R) and ρij(·,R)
are Hadamard-differentiable. But ν(·,R) is Hadamard-
differentiable, since for tm → ∞ and hm → h ∈ D for
m → ∞, such that μ + hm/tm ∈ D for all m, we obtain
by Taylor expansion,

lim
m→∞

tm (ν(μ+ hm/tm,R)− ν(μ,R))

=
1

d(d− 1)

∑
i 	=j

1

W ∗(Q∗
ij)∫

θ∈Q∗
ij

hij(x(θ), y(θ))
∂
∂νT (x(θ), y(θ), ν(μ,R), ρij)

W ∗(dθ)

=: ν′μ(h),

which obviously is a linear map. Analogously, ρij(·,R) is
Hadamard differentiable; i.e.,

lim
m→∞

tm (ρij(μ+ hm/tm,R)− ρij(μ,R))

=
1

W ∗(U∗
ij)

∫
θ∈U∗

ij

(
hij(x(θ), y(θ))

∂
∂ρT (x(θ), y(θ), ν(μ), ρij)

+ ν′μ(h)
∂

∂ν
T←ρ (μij(x(θ), y(θ)) |x(θ), y(θ), ν(μ))

)
W ∗(dθ).

Define

r̂T (k, w
∗) = φ

(
T(·; k), R̂τ

)
.

Since R̂τ −R = op(1/
√
k), the delta method yields

√
k (r̂T (k, w

∗)− r)
d−→ φ′(B̃,R) ,

where B̃(x) := B(x) −
∑d

i=1
∂

∂xi
T (x)Bi(xi), x ∈ R

d

+. The
result then follows using

E

((
φ′(B̃,R)

)
ij

(
φ′(B̃,R)

)
kl

)
= σ1;ij,kl + σ2;ij,kl + σ3;ij,kl + σ4;ij,kl,

with σ1;ij,kl, σ2;ij,kl, σ3;ij,kl, σ4;ij,kl defined through (15)–
(17).
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106 C. Klüppelberg, S. Haug, and G. Kuhn

http://www.ams.org/mathscinet-getitem?mr=2324565
http://www.ams.org/mathscinet-getitem?mr=0783499
http://www.ams.org/mathscinet-getitem?mr=3129029
http://www.ams.org/mathscinet-getitem?mr=1821820
http://www.ams.org/mathscinet-getitem?mr=3000041
http://www.ams.org/mathscinet-getitem?mr=1619974
http://www.ams.org/mathscinet-getitem?mr=1632189
http://www.ams.org/mathscinet-getitem?mr=1071174
http://www.ams.org/mathscinet-getitem?mr=1918612
http://www.ams.org/mathscinet-getitem?mr=2156598
http://www.ams.org/mathscinet-getitem?mr=2830506
http://www.ams.org/mathscinet-getitem?mr=2088289
http://www.ams.org/mathscinet-getitem?mr=1918653
http://www.ams.org/mathscinet-getitem?mr=1929599
http://www.ams.org/mathscinet-getitem?mr=2557632
http://www.ams.org/mathscinet-getitem?mr=0269024
http://www.ams.org/mathscinet-getitem?mr=1087848
http://www.ams.org/mathscinet-getitem?mr=1079065
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