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Kernel-type estimator of the mean for a heavy
tailed distribution

Abdelaziz Rassoul

In this paper, we focus on the reduced bias of the mean es-
timator for a heavy-tailed distribution. It is well known that
the classical mean estimator introduced by Peng (2001) is
seriously biased under the second order regular variation.
To reduce bias, many authors have proposed estimators, for
both first and second order parameters of the distribution
tail. In this work, we define a kernel type estimator for the
mean and we propose a reduced bias estimator. The asymp-
totic distributional properties of our proposed estimators
are derived and we compared their performances with other
estimators.
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1. INTRODUCTION

Let X be a positive random variable (rv) with cumula-
tive distribution function (cdf) F . Throughout this paper we
shall assume that F is continuous and we note by F = 1−F
the tail of the cdf F . The mean of the rv X is then defined
by

(1) μ = E (X) =

∫ +∞

0

F (x) dx.

Note that we can also rewrite the above integral in terms of
the quantile function corresponding to the cdf F , as follows

(2) μ =

∫ 1

0

Q(s)ds,

where Q(t) = inf{x : F (x) ≥ t} for t ∈ [0, 1].
Now, assume that we have at our disposal a sample of

independent and identically distributed (iid) random vari-
ables X1, X2, . . . , Xn with the cdf F , and let X1,n < X2,n <
· · · < Xn,n be the corresponding order statistics.

One natural candidate for the empirical estimate of right
side of (2) is obtained by replacing the true quantile with
the sample quantile as follows

(3) μ̂n =

∫ 1

0

Qn(s)ds,

where Qn(s) is the empirical quantile function, which is
equal to the ith order statisticXi,n for all s ∈ ((i−1)/n, i/n],

for all i = 1, . . . , n. The asymptotic behavior of the es-
timator μ̂n has been known by the Central Limit The-
orem (CLT), provided that the second moment is finite
(E[X2] < ∞).

In this work we shall be concerned with heavy tailed dis-
tributions. In mathematical terms, a heavy-tailed distribu-
tion of a random variable X is defined as follows

(4) 1− F (x) = x−1/γL(x), for every x > 0,

where L(x) is a slowly varying function at infinity, that is
limt→∞ L(tx)/L(t) = 1 for all x > 0. This class includes
a number of popular distributions such as Pareto, general-
ized Pareto, Burr, Fréchet, Student, etc., which are known
to be appropriate models for fitting large insurance claims,
fluctuations of prices, log-returns, etc. (see, e.g., Beirlant et
al. (2001) [2]). In the remainder of this paper, we restrict
ourselves to this class of distributions. Moreover we focus
our paper on the case γ ∈ (1/2, 1) to ensure that the mean
is finite and since in that case the results of CTL cannot be
applied, because the second moment of X being infinite.

Indeed, recall that from (2), μ can be rewritten as

μ =

∫ 1−k/n

0

Q(s)ds+

∫ k/n

0

Q(1− s)ds

= μ1,n + μ2,n.

Peng (2001) [23] proposed an alternative estimator of μ for
a heavy tailed distribution as follows

(5) μ̃H
n,k =

∫ 1−k/n

0

Qn(s)ds+
(k/n)Xn−k,n
(1− γ̂H

n,k)
,

where γ̂H
n,k is the Hill estimator [21] of the tail index γ:

(6) γ̂H
n,k =

1

k

k∑
i=1

logXn−i+1,n − logXn−k,n.

Note that to estimate μ2,n we use a Weissman-type estima-
tor for Q [26]

(7) Q̂ (1− s) := Xn−k,n (k/n)
γ̂H
n,k s−γ̂H

n,k , s → 0.

We note that, Peng (2001) [23] defined his estimator with
γ = 1/α and he took the general situation where X is real
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(not necessarily non-negative) with lower and upper heavy
tails. He simultaneously took into account the regular vari-
ations of both tails of F and the balance condition

lim
t→∞

(1− F (t)) /(1− F (t)− F (−t)) = p ∈ [0, 1] .

In this paper, we only consider non-negative rv’s. Our moti-
vation comes from the actuarial risk theory where insurance
losses are represented by such rv’s. In this case, μ̃H

n,k may
be interpreted as an estimator of a risk measure called the
net premium. Note that in our case, we have F (x) = 0 for
x < 0, which gives p = 1 in the above balance condition.

The Hill estimation has been extensively studied in the
literature for an intermediate sequence k, such that k → ∞
and k/n → 0 as n → ∞.

More generally, Csörgő et al. (1985) [8] extended the Hill
estimator into a kernel class of estimators

(8) γ̂K
n,k =

1

k

k∑
i=1

K

(
i

k + 1

)
Zi,k,

where K is a kernel integrating to one and

Zi,k = i (logXn−i+1,n − logXn−i,n) , 1 ≤ i ≤ k < n.

Note that the Hill estimator corresponds to the particular
case where K = K := 1(0,1).

In this spirit, we propose a kernel-type estimator for the
mean. Thus, μ can be estimated by

(9) μ̃K
n,k =

∫ 1−k/n

0

Qn(s)ds+
(k/n)Xn−k,n
(1− γ̂K

n,k)
.

Asymptotic normality for μ̃K
n,k is obviously related to the

one of γ̂K
n,k. As usual in the extreme value framework, to

prove such type of results, we need a second-order condition
on the tail quantile function U, defined as

(10) U(z) = inf {y : F (y) ≥ 1− 1/z} , z > 1.

We say that the function U satisfies the second-order regular
variation condition with second-order parameter ρ ≤ 0 if
there exists a function A(t) which does not change its sign
in a neighbourhood of infinity with limt−→∞ A(t) = 0, such
that, for every x > 0,

(11) lim
t→∞

logU(tx)− logU(t)− γ log(x)

A(t)
=

xρ − 1

ρ
,

when ρ = 0, then the ratio on the right-hand side of equa-
tion (11) should be interpreted as log x. As an example of
heavy-tailed distributions satisfying the second order condi-
tion, we have the so called and frequently used Hall’s model
[20] which is a class of cdf’s, such that

(12) U (t) = ctγ (1 + dA(t)/ρ+ o (tρ)) as t → ∞,

where γ > 0, ρ ≤ 0, c > 0, and d ∈ R∗. For example, if we
consider the special case

1− F (x) = cx−1/γ
(
1 + dxρ/γ + o

(
xρ/γ

))
,

with c > 0, d ∈ R and ρ < 0, (11) holds and we may choose
A(t) = dγρtρ.

This sub-class of heavy-tailed distributions contains the
Pareto, Burr, Fréchet and t-Student, cdf’s usually used, in
insurance mathematics, as models for dangerous risks. For
statistical inference concerning the second-order parameter
ρ, we refer, for example, to Peng and Qi (2004) [24], Gomes
et al. (2007) [16], Gomes and Pestana (2007) [15]. In the
sequel, we assume that equation (11) holds with ρ < 0.

The remainder of this paper is organized as follows. In
Section 2, we study the asymptotic properties of the general
kernel estimator of the mean μ̃K

n,k. This result illustrates
the fact that this estimator can exhibit severe bias in many
situations. To solve this problem a reduced-bias approach is
also proposed. The efficiency of our method is shown on a
small simulation study in Section 3. All proofs are deferred
to section 4.

Note that throughout this paper, the standard notations
P→,

d→ and
d
= respectively stand for convergence in probabil-

ity, convergence in distribution and equality in distribution,
while N (a, b2) denotes the normal distribution with mean a
and variance b2.

2. MAINS RESULTS

For study of the asymptotic normality of the estimator of
μ̃K
n,k, we need some results and classical assumptions about

the kernel:

Condition (K): Let K be a function defined on (0, 1]

CK1. K(s) ≥ 0 whenever 0 < s ≤ 1 and K(1) = 0;
CK2. K(·) is differentiable, nonincreasing and right contin-

uous on (0, 1];
CK3. K and K ′ are bounded;

CK4.
∫ 1

0
K(u)du = 1;

CK5.
∫ 1

0
u−1/2K(u)du < ∞.

2.1 Asymptotic results for the mean
estimator

Theorem 2.1. Assume that F satisfies (11) with γ ∈
(1/2, 1). If further (K) holds and the sequence k satisfies
k → ∞, k/n → 0 and if

√
kA(n/k) → λ ∈ R, as n → ∞,

we have

√
k

(k/n)U(n/k)

(
μ̃K
n,k − μ

) d→ N (λABK (γ, ρ) ,ACK (γ, ρ)) ,
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where

ABK (γ, ρ)

=

(
1

(γ − 1) (γ + ρ− 1)
+

1

(1− γ)
2

∫ 1

0

K(s)

sρ
ds

)
;

and

ACK (γ, ρ) =
γ2

(1− γ)
2
(2γ − 1)

+
γ2

(1− γ)
4

∫ 1

0

K2 (s) ds.

Note that the result of Theorem 2.1 generalizes Theorem
1 in Peng (2001) [23] in case λ �= 0 and when we use a
general kernel instead of K.

In view of these results, μ̃K
n,k is an estimator of μ with an

asymptotic bias given by

(k/n)U(n/k)A(n/k)ABK (γ, ρ) .

For a specific kernel, the asymptotic bias and variance can be
computed. In the following remark we take the case K = K.

Remark 2.2. In the special case where K = K, Theo-
rem 2.1 is equivalent to

√
k
(
μ̃K
n,k − μ

)
(k/n)U(n/k)

d→ N
(
λ

γρ

(1− ρ) (γ + ρ− 1) (1− γ)
2 , σ

2
γ

)
,

(13)

where the asymptotic variance σ2
γ is given by the formula

σ2
γ =

γ4

(1− γ)4(2γ − 1)
.

Now, we want to propose a reduced-bias estimator of the
mean μ.

2.2 Bias-correction for the mean estimator

Recall that, from Theorem 2.1,

μ̃K
n,k − (k/n)U(n/k)A(n/k)ABK (γ, ρ) ,

is an asymptotically unbiased estimator for μ. Note that
γ, ρ, U(n/k) and A(n/k) are unknown quantities that we
have to estimate. Under the condition (11), from Feuerverger
and Hall (1999) [11] and Beirlant et al. (1999, 2002) [1][3]
proposed that, for k not too large the scaled logarithmic
spacings of order statistics

Zi,k := i(logXn−i+1,n − logXn−i,n), i = 1, ..., k,

can be modelled by the following generalised regression mod-
els:

(14) Zi,k ∼
(
γ +A(

n

k
)

(
i

k + 1

)−ρ
)

+ εi,k, 1 ≤ i ≤ k,

where εi,k are zero-centered error terms. We note that, if we
ignore the term A(n/k) in (14), we obtain the Hill estimator
[21] γ̂H

n,k by taking the mean of the left-hand side of (14). By
using a least-squares approach, formula (14) can be further
exploited to propose a reduced-bias estimator for γ in which
ρ is substituted by a consistent estimator ρ̂ = ρ̂(n, k) (see
for instance Beirlant et al. (2002) [3] and Fraga Alves et
al. (2003) [12] or by a canonical choice, such as ρ = −1
(see e.g. Feuerverger and Hall (1999) [11] or Beirlant et al.
(1999) [1]).

The least squares estimators for γ and A(n/k) are then
given by

γ̂L.S
n,k (ρ̂) =

1

k

k∑
i=1

Zi,k −
ÂL.S

n,k (ρ̂)

1− ρ̂
;

and

ÂL.S
n,k (ρ̂)

=
(1− 2ρ̂) (1− ρ̂)

2

ρ̂2
1

k

k∑
i=1

((
i

k + 1

)−ρ̂

− 1

1− ρ̂

)
Zi,k.

Note that γ̂L.S
n,k (ρ) can be viewed as the kernel estimator

γ̂
Kρ

n,k, where for 0 < u ≤ 1:

(15) Kρ (u) :=
1− ρ

ρ
K (u) +

(
1− 1− ρ

ρ

)
Kρ (u) ,

with K(u) = 1(0,1) and Kρ(u) = ( 1−ρ
ρ )(u−ρ − 1)1(0,1), both

kernels satisfying condition (K). On the contrary Kρ does
not satisfy statement (CK1) in (K). We refer to Gomes and
Martins (2004) [13] and Gomes et al. (2007) [16] for other
techniques of bias reduction based on the estimation of the
second order parameter.

We are now able to obtain a reduced-bias estimator for
the mean μ from equation (11) and using the above estima-
tors for the different unknown quantities:

μ̂K,ρ̂
n,k = μ̃K

n,k −
(
k

n

)
Xn−k,nÂ

L.S
n,k (ρ̂)ABK

(
γ̂L.S
n,k (ρ̂) , ρ̂

)
=

(
k

n

)
Xn−k,n

(
1

1− γ̂K
n,k

− ÂL.S
n,k (ρ̂)ABK

(
γ̂L.S
n,k (ρ̂) , ρ̂

))
+

∫ 1−k/n

0

Qn(s)ds.

The asymptotic normality of μ̂K,ρ̂
n,k is established in the

following theorem.

Theorem 2.3. Under the same assumptions of Theo-
rem 2.1, and if ρ̂ is a consistent estimator for ρ < 0, then,
we have

√
k
(
μ̂K,ρ̂
n,k − μ

)
(k/n)U (n/k)

d→ N
(
0, ÃCK (γ, ρ)

)
,
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Table 1. Comparison of the estimator μ̃K
n,k and the reduced-bias estimator μ̂L,S,ρ̂

n,k for 500 samples of size 400 and 1,000 of
Fréchet distribution with γ = 2/3 and ρ = −1 (The true value is 2.5553)

N 400 1,000

k 25 75 110 160 50 125 200 250

μ̃K
n,k 2.6602 2.7415 2.8075 2.9973 2.5163 2.6353 2.8207 3.1258

μ̃L,S,ρ̂

n,k 2.6459 2.6525 2.6357 2.6202 2.4951 2.5254 2.5293 2.5516

bias1 0.1049 0.1862 0.2522 0.4421 -0.0389 0.0800 0.2655 0.5706

bias2 0.0906 0.0973 0.0804 0.0650 -0.0601 -0.0299 -0.0259 -0.0037

mse1 0.0110 0.0347 0.0636 0.1954 0.0015 0.0064 0.0705 0.3255

mse2 0.0082 0.0095 0.0065 0.0042 0.0036 0.00089 0.00067 0.000013

where

ÃCK (γ, ρ) = ACK (γ, ρ) +
γ2

ρ2
(1− 2ρ) (1− ρ)

2 AB2
K (γ, ρ)

+
2γ2 (1− 2ρ) (1− ρ)

ρ2 (1− γ)
2

×
(
1− (1− ρ)

∫ 1

0

K(s)

sρ
ds

)
ABK (γ, ρ) .

We observe that, the estimator μ̂K,ρ̂
n,k has a null asymptotic

bias which was not the case for μ̃K
n,k equation (13), but with

an increase of the asymptotic variance.

Remark 2.4. In the special case K = K, the result of the
Theorem 2.3 becomes
√
k
(
μ̂K,ρ̂
n,k − μ

)
(k/n)U (n/k)

d→ N
(
0,

γ4 (γ − ρ)
2

(2γ − 1) (γ + ρ− 1)
2
(1− γ)

4

)
.

Now, in the special case where K = Kρ, as mentioned

in (15), the estimator γ̂
Kρ

n,k coincides with γ̂L.S
n,k (ρ).

The aim of the next corollary is to establish the asymp-

totic normality of the resulting mean estimator μ̂
Kρ,ρ̂
n,k , de-

noted by μ̂L.S,ρ̂
n,k , when the least squares approach is adopted.

Corollary 2.5. Under the same assumptions as in Theo-
rem 2.3 and in the special case where K = Kρ, we have

√
k
(
μ̂L.S,ρ̂
n,k − μ

)
(k/n)U (n/k)

d→ N
(
0, ÃCKρ (γ, ρ)

)
,

where

ÃCKρ (γ, ρ) =
γ2 (1− ρ)

2

ρ2 (1− γ)
4 +

γ2

(2γ − 1) (1− γ)
2

+
γ2 (1− 2ρ) (1− ρ) (γρ+ 2ρ+ γ − ρ− 1)

ρ2 (1− γ)
3
(γ + ρ− 1)

2 .

3. SIMULATION STUDY

In this section, we carry out a simulation study (by means
of the statistical softwareR, see Ihaka and Gentleman, 1996)

[22] to illustrate the performance of the biased estimator
μ̃K
n,k with the kernel K = K = 1(0,1) and the reduced-bias

estimator μ̃L,S,ρ̂
n,k , we compare the two estimators in terms

of the bias and the mean squared error (mse) at different
values of the fraction k, satisfies the condition: k → ∞ and
k/n → 0 as n → ∞. Through its application to sets of
samples taken from Fréchet distributions with tail of dis-
tribution F (x) = 1 − exp(−x−1/γ), x > 0 (with tail index
γ = 2/3 and γ = 3/4) and the second order parameter
ρ = −1, we generate 500 independent replicates of sizes 400
and 1,000 from the selected parent distribution. For each
simulated sample, we obtain an estimate of the estimators

μ̃K
n,k and μ̃L,S,ρ̂

n,k . The overall estimated mean is then taken as
the empirical mean of the values in the 500 repetitions. We
not that, the notations bias1 and bias2 represents the bias

of the estimators μ̃K
n,k and μ̃L,S,ρ̂

n,k respectively, and the nota-
tions mse1 and mse2 represents the mean squared error of

the estimators μ̃K
n,k and μ̃L,S,ρ̂

n,k respectively. To this end, we
summarize the results in Table 1 for γ = 2/3 and in Table 2
for γ = 3/4.

We conclude that in most cases the mean estimators gives

rise to a general better performance of the μ̃L,S,ρ̂
n,k relatively

to the estimator μ̃K
n,k, when both are considered at levels k,

especially for difficult distributions such as the Fréchet with
index γ ∈ (1/2, 1) when the second moment are infinite, we
remark that all the biases decrease when n increase, then
notes that, the bias and the mean squared error (mse) of

μ̃L,S,ρ̂
n,k are smaller than the corresponding ones of the μ̃K

n,k

estimator. We note that similar results can be obtained with
other distributions satisfies (11) with γ ∈ (1/2, 1).

4. PROOFS

Let Y1, ..., Yn be iid. rv’s from the unit Pareto distribu-
tion G, defined as G(y) = 1 − 1/y, y > 1. For each n ≥ 1,
let Y1,n ≤ ... ≤ Yn,n be the order statistics pertaining to

Y1, ..., Yn. Clearly Xj,n
d
= U(Yj,n), j = 1, ..., n. In order

to use results from Csörgő et al. (1986) [6], a probabil-
ity space (Ω,A,P) is constructed carrying an infinite se-
quence ζ1, ζ2, ..., ζn of independent random variables uni-
formly distributed on (0, 1) and a sequence of Brownian
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Table 2. Comparison of the estimator μ̃K
n,k and the reduced-bias estimator μ̂L,S,ρ̂

n,k for 500 samples of size 400 and 1,000 of
Fréchet distribution with γ = 3/4 and ρ = −1 (The true value is 3.2636)

N 400 1,000

k 25 75 110 160 50 125 200 250

μ̃K
n,k 3.3384 3.7606 4.4488 4.9647 3.1850 3.4628 3.9343 4.9052

μ̃L,S,ρ̂

n,k 3.2703 3.2545 3.1454 3.0733 3.1429 3.2356 3.2442 3.2684

bias1 0.0748 0.4969 1.1852 1.7011 -0.0786 0.1992 0.6706 1.6415

bias2 0.0067 -0.0092 -0.1182 -0.1903 -0.1207 -0.0281 -0.0194 0.0047

mse1 0.0056 0.2469 1.4046 2.8937 0.0062 0.0397 0.4497 2.6947

mse2 0.00004 0.00008 0.01398 0.03623 0.0146 0.00079 0.00038 0.00002

bridges {Bn(s), 0 ≤ s ≤ 1}. The resulting empirical quantile
is denoted by

βn(t) =
√
n (t− Vn (s)) , 0 ≤ t ≤ 1,

where

Vn (s) = ζj,n,
j − 1

n
≤ s ≤ j

n
, j = 1, 2, ..., n

and Vn(0) = ζ1,n, where ζ1,n ≤ ζ2,n ≤ ... ≤ ζn,n denote the
order statistics based on the sample ζ1, ζ2, ..., ζn.

Proof of the Theorem 2.1. Let us rewrite

(16)
(
μ̃K
n,k − μ

)
= An,1 +An,2,

where

An,1 =

∫ 1−k/n

0

(Qn(s)−Q(s)) ds,

and

An,2 =
k/n

1− γ̂K
n,k

Xn−k,n −
∫ 1

1−k/n

Q(s)ds.

We shall show below that there are Brownian bridges Bn

such that
(17) √

kAn,1

(k/n)U(n/k)
= −

∫ 1−k/n

0
Bn(s)dQ(s)

(k/n)1/2U(n/k)
+ oP(1) = Wn,3

and
(18)√

kAn,2

(k/n)U(n/k)
=

√
kA(n/k)ABK (γ, ρ) +W1,n +W2,n (K) ,

where

W1,n = − γ

1− γ

√
n

k
Bn

(
1− k

n

)
(1 + oP (1)) ;

W2,n (K) =
γ

(1− γ)
2

√
n

k

{∫ 1

0

1

s
Bn

(
1− sk

n

)
d (sK (s))

}
.

The proof of statement (17) is similar to that of Theorem
1 in Peng (2001) [23] and Theorem 2 in Necir et al. (2010)
[25], though some adjustments are needed since we are now
concerned with the mean. We therefore present main blocks
of the proof together with pinpointed references to Necir et
al. (2010) [25] for specific technical details.

Now, we show the statement (18), we have

An,2 =
(k/n)

1− γ̂K
n,k

U(Yn−k,n)−
∫ k/n

0

U(1/s)ds,

so
√
kAn,2

(k/n)U(n/k)
=

√
k

1

1− γ̂K
n,k

(
U(Yn−k,n)

U(n/k)
−

(
k

n
Yn−k,n

)γ)
+

√
k

1

1− γ̂K
n,k

((
k

n
Yn−k,n

)γ

− 1

)
+

1

(1− γ̂K
n,k) (1− γ)

√
k
(
γ̂K
n,k − γ

)
+

√
k

(
1

1− γ
−

∫∞
1

s−2U(ns/k)ds

U(n/k)

)
= Tn,1 + Tn,2 + Tn,3 + Tn,4.

We study each term separately.

For Tn,1: According to de Haan and Ferreira (2006, p. 60
and Theorem 2.3.9, p. 48) [19], for any δ > 0, we have

U(Yn−k:n)

U(n/k)
−
(
k

n
Yn−k,n

)γ

= A0

(n
k

){(
k

n
Yn−k,n

)γ (
k
nYn−k,n

)ρ − 1

ρ

}

+A0

(n
k

){
oP (1)

(
k

n
Yn−k,n

)γ+ρ±δ
}
,

where A0(t) ∼ A(t) as t → ∞.

Thus, since (k/n)Yn−k,n = 1 + oP(1) and γ̂K
n,k

P→ γ, it
readily follows that

Tn,1 = oP (1) .
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Term Tn,2: The equality Yn−k,n
d
= (1− ζn−k,n)

−1, yields

√
k

((
k

n
Yn−k,n

)γ

− 1

)
d
=

√
k
(
[(n/k) (1− ζn−k,n)]

−γ − 1
)

= −γ
√
k ([(n/k) (1− ζn−k,n)]− 1) (1 + oP (1))

= −γ

√
n

k
Bn

(
1− k

n

)
(1 + oP (1))

= −γ

√
n

k

(
Bn

(
1− k

n

)
+OP

(
n−v

)(k

n

)1/2−v )
(1 + oP (1)) ,

for 0 < v ≤ 1/2, by Csörgő et al. (1986) [7]. Thus, using

again that γ̂K
n,k

P→ γ, it follows that

Tn,2
d
= − γ

1− γ

√
n

k
Bn

(
1− k

n

)
(1 + oP (1)) = W1,n.

Term Tn,3: By the consistency in probability of γ̂K
n,k, we

have

√
k

(
γ̂K
n,k − γ −A

(n
k

)∫ 1

0

K(s)

sρ
ds

)
d
= γ

√
n

k

∫ 1

0

1

s
Bn

(
1− sk

n

)
d (sK(s)) + oP (1) ,

then, we obtain

Tn,3
d
=

1

(1− γ)
2

{√
kA

(n
k

)∫ 1

0

K(s)

sρ
ds

}
+

γ

(1− γ)
2

{√
n

k

∫ 1

0

1

s
Bn

(
1− sk

n

)
d (sK (s))

}
+ oP (1)

=

√
k

(1− γ)
2A

(n
k

)∫ 1

0

K(s)

sρ
ds+W2,n(K) + oP (1) .

Term Tn,4: A change of variables and an integration by
parts yield

Tn,4 =
√
k

(
1

1− γ
−

∫∞
1

s−2U(ns/k)ds

U(n/k)

)

= −
√
k

(∫ ∞

1

s−2

(
U(ns/k)

U(n/k)
− sγ

)
ds

)
.

Thus, Theorem 2.3.9 in de Haan and Ferreira (2006) [19]
entails that, for γ ∈ (1/2, 1)

Tn,4 = −
√
kA0

(n
k

)∫ ∞

1

sγ−2 s
ρ − 1

ρ
ds (1 + oP (1))

=
√
kA

(n
k

) 1

(γ − 1) (γ + ρ− 1)
(1 + oP (1)) .

Finally, combining statement (17) and statement (18), we
obtain

√
k

(μ̃K
n,k − μ)

(k/n)U(n/k)
d
=

√
kA

(n
k

)
ABK (γ, ρ) +W1,n +W2,n (K) +W3,n

+ oP (1) .

The sum
√
kA(

n

k
)ABK (γ, ρ) +W1,n +W2,n (K) +W3,n

is a Gaussian random variable. To calculate its expectation
and asymptotic variance, the computations are tedious but
quite direct. the classical Sultsky’s lemma completes the
proof of Theorem 2.1.

Proof of the Theorem 2.3. According to Theorem 2.1 and
equation (13), we have

√
k(μ̂K,ρ̂

n,k − μ)

(k/n)U(n/k)

d
= W1,n +W2,n (K) +W3,n +W4,n + oP (1) ,

where

W4,n =
√
k (A(n/k)ABK (γ, ρ))

−
√
k

(
ÂL.S

n,k (ρ̂)ABK

(
γ̂L.S
n,k (ρ̂) , ρ̂

) Xn−k,n

U(n/k)

)
= −ABK (γ, ρ)

√
k
(
ÂL.S

n,k (ρ̂)−A(n/k)
)

−
√
kÂL.S

n,k (ρ̂)
(
ABK

(
γ̂L.S
n,k (ρ̂) , ρ̂

)
−ABK (γ, ρ)

)
−

√
kÂL.S

n,k (ρ̂)ABK

(
γ̂L.S
n,k (ρ̂) , ρ̂

)(Xn−k,n

U(n/k)
− 1

)
d
= −ABK (γ, ρ) γ (1− ρ)

×
√

n

k

{∫ 1

0

1

s
Bn

(
1− sk

n

)
d (s (K (s)−Kρ (s)))

}
+ oP (1) .

By the result of Lemma 5 of Deme et al. (2013) [9], for any
consistent estimator ρ̂ of ρ, we have

√
k
(
γ̂L.S
n,k (ρ̂)− γ

) d
= γ

√
n

k

∫ 1

0

1

s
Bn

(
1− sk

n

)
d (sKρ (s))

(19)

+ oP (1) ,

and

√
k
(
ÂL.S

n,k (ρ̂)−A
(n
k

))(20)

d
= γ (1− ρ)

√
n

k

∫ 1

0

1

s
Bn

(
1− sk

n

)
d (s (K (s)−Kρ (s)))

+ oP (1) ,
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and by using the consistency and the inequality

|e
x − 1

x
− 1| ≤ e|x| − 1 for all x ∈ R.

Moreover, direct computations lead to the desired asymp-
totic variance which ends the proof of Theorem 2.3.

Prooof of Corollary 2.5. Recall that Kρ does not satisfy
condition (K) but it can be rewritten as formula (15) with
both K and Kρ satisfying (K). So, following the lines of
proof of Theorem 2.3 and using in particular the equa-
tion (19) and equation (20), Corollary 2.5 follows.
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