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Tail dependence for two skew slash distributions
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Coefficients of tail dependence measure the dependencies
between extreme values. In this paper, the upper tail depen-
dence coefficients of two classes of skew slash distributions
are derived. The difference of tail dependence coefficients
between the two types skew slash distributions sheds light
on the model choice for random variables with asymptotic
dependence.
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1. INTRODUCTION

Let X = (X1, X2)
� be a bivariate random vector with

marginal distribution functions (dfs) F1 and F2, respectively
(� stands for transpose sign). The upper tail dependence
coefficient of X is defined by

λU = lim
u↑1

P (F1(X1) ≥ u|F2(X2) ≥ u)(1)

provided that the limit λU exists; see [23, 12]. This quantity
provides insight into the tendency for the distribution to
describe joint extreme events since it measures the strength
of dependence (or association) in the tail of a bivariate dis-
tribution. Generally, X is said to have asymptotic upper
tail dependence if λU is positive. In particular, trivial val-
ues λU = 1 and λU = 0 correspond to full dependence and
independence, respectively.

Tail independence of bivariate normal distributions was
first addressed by Sibuya [27] (see also [12]) while the tail
dependence of symmetry t-distributions was established by
[10]. Their skew-versions were further considered by [5, 13].
The skew t-distributions are more popular and useful since
they provide tail dependence of some extent as well as skew-
ness and heavy tails compared with (skew) normal distribu-
tions. For more related studies see, e.g., [17, 14, 24], and
references therein.
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In recent years, the multivariate skew slash distributions
alternatively (see (2) and (3) below for the precise defini-
tions) have received considerable attention in theoretical
studies for their numerous stochastic properties and in ap-
plied studies for robust statistical modeling of datasets in-
volving distributions with skewness and heavy tails; see, e.g.,
conditional distributions, moments and applying skew slash
distributions to fit AIS and glass-fiber data ([28]) and char-
acteristics functions ([19]) for skew slash distributions in (3),
and parameters estimation procedure such as the EM based
on MLE in [3, 7, 8], MLE in [22], and empirical Bayes esti-
mations in [30] for the skew slash distributions in (2). For
more details see, e.g., [15, 25], and references therein.

Recently, tail dependence has been discussed in finan-
cial applications related to market or credit risk; see, e.g.,
[26, 11]. A generalized tail dependence measure, namely
tail quotient correlation coefficient, was proposed by [31]
where new test statistics of tail independence were de-
veloped; see [29] for more related studies. In this paper,
we shall investigate the tail dependence coefficient for two
classes of skew slash distributions. The first class is de-
fined by the normal variance-mean method. Specifically, a
random vector X = (X1, X2)

� is called skew slash dis-
tributed random vector with parameters (λ,θ,R), denoted
by X ∼ SS(λ,θ,R), if X has the following stochastic rep-
resentation (see [2, 3])

X =
θ

V
+

Z√
V
,(2)

where θ = (θ1, θ2)
� ∈ R

2 and V ∼ Beta(λ, 1), λ > 0
with probability density function (pdf) f(x) = λxλ−1, x ∈
(0, 1), independent of Z ∼ N2(0,R), a bivariate nor-
mal distribution with mean 0 and correlation matrix R
with correlation entry ρ ∈ (−1, 1). This skew slash dis-
tribution introduces randomness into the variance and
mean of a normal distribution via a beta random vari-
able so that it is more flexible and can provide useful
asymmetric and heavy-tailed extensions of their symmet-
ric counterparts (θ = 0) for robust statistical modeling
of datasets. For more related studies on model (2) see,
e.g., generalized hyperbolic skew t-distributions in [20],
skew grouped t-distributions in [5] and skew t-distributions
in [14].

The second class of skew slash distributions is defined as
the scale-mixed skew-normal distribution (see [4]). A ran-
dom vector X is called the second type skew slash distribu-
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tion, denoted by X ∼ ASS(λ,θ,R), if X is given by

X =
Z√
V
,(3)

where V ∼ Beta(λ, 1), λ > 0, independent of Z =
(Z1, Z2)

� ∼ SN2(θ,R), a bivariate skew normal distribu-
tion with pdf

2φ2(z,R)Φ(θ�z),

where φ2(·,R) is the bivariate normal density function with
mean 0 and correlation matrix R, and Φ(·) is the standard
normal distribution function. For more related studies on
model (3) see, e.g., [19, 21] for other scaled positive vari-
able V .

The goal of this paper is to establish the limit of the
conditional distributions and to derive the upper tail de-
pendence coefficient of X given by (2) and (3), respectively.
Comparison with the findings of tail independence of bi-
variate normal ([27, 12]), skew-bivariate normal ([6]); tail
dependence of two skew t-distributions ([13, 6]), the tail de-
pendence of the first class of skew slash distributions exists
with trivial values 0 or 1 for some special cases (Theorem
3.1), while the second class has wider region of tail depen-
dence (Theorem 3.2).

The rest of the paper is organized as follows. The main
results are provided in Section 3. All proofs are postponed
to Section 4.

2. PRELIMINARIES AND NOTATION

In this section, we first introduce some important func-
tions with their asymptotic properties established in Lemma
2.1, and then give Lemma 2.2 for the distribution proper-
ties of the skew slash random vector X given by (2) via the
normal variance-mean mixture.

Let Kτ (x;ω), x ≥ 0, ω > 0 be the incomplete modified
Bessel function of the third kind with index τ ∈ R defined
by

Kτ (x;ω) =
1

2

∫ ∞

x

tτ−1 exp
(
−ω

2

(
t+ t−1

))
dt.(4)

It follows from (7.5) in [18] that for τ ∈ R and sufficiently
large ω

Kτ (0;ω) =

√
π

2ω
e−ω

(
1 +

4τ2 − 1

8ω
+ o

(
1

ω

))
.(5)

Define further Pτ (a; b) and Qυ(x; a), respectively by

Pτ (a; b) =

∫ 1

0

tτ−1 exp

(
−1

2

(
a2t+

b2

t

))
dt(6)

and

Qυ(x; a) =

∫ x

−∞

∫ a

0

tυ−1e−(1+u2)t dtdu, x ∈ R,(7)

where τ > 0, a, b ≥ 0 and υ ≥ 1. For simplicity, we write
Γ(·) for the Euler gamma function.

The following result is about the asymptotic behaviors of
both Pτ (a; b) and Qυ(x; a).

Lemma 2.1. Let Pτ (a; b) and Qυ(x; a) be those defined as
in (6) and (7). Then for τ > 0 and some ω > 0

Pτ (a; b)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(
2

a2

)τ

Γ(τ)(1 + o(1)), b = 0, a → ∞;

bτ−1/2

aτ+1/2

√
2πe−ab(1 + o(1)), b > 0, a → ∞;

2

(
b

a

)τ

Kτ (0;ω)(1 + o(1)), b → 0, ab → ω,

and for v ≥ 1, x ∈ R and a → ∞

Qυ(x; a) → Γ(υ)

∫ x

−∞
(1 + u2)−υ du =: Qυ(x;∞).(8)

Recall that λU is equivalent to

λU = lim
x1→∞

P
(
X2 ≥ F−1

2 (F1(x1))|X1 = x1

)
+ lim

x2→∞
P
(
X1 ≥ F−1

1 (F2(x2))|X2 = x2

)
(9)

provided that the marginal distributions are continuous (cf.
[23], p. 11, 36). In the following we derive the marginal dis-
tribution and the conditional distribution of X given by (2).

Lemma 2.2. For X ∼ SS(λ,θ,R) given by (2), denote by
f2(·) and f1.2(·|x2) the pdfs of X2 and X1.2 := (X1|X2 =
x2), respectively. Then, with Pτ (a; b) given by (6)

f2(x2) =
λeθ2x2

√
2π

Pλ+1/2(|x2|; |θ2|)

f1.2(x1|x2) =
eβ(x1−ρx2)√
2π(1− ρ2)

Pλ+1

(√
x

′2
1 + x2

2;
√

θ
′2
1 + θ22

)
Pλ+1/2(|x2|; |θ2|)

,

where β(1 − ρ2) = θ1 − ρθ2, x
′
1

√
1− ρ2 = x1 − ρx2 and

θ′1
√
1− ρ2 = θ1 − ρθ2. Furthermore, for θ �= 0

Ee−sX1.2 =
Pλ+1/2

(
|x2|;

√
θ22 + 2β(1− ρ2)s− (1− ρ2)s2

)
Pλ+1/2(|x2|; |θ2|)eρx2s

,

where s ∈ β ±
√

θ�R−1θ
1−ρ2 .

Remark 2.1. Let F2(·) be the df of X2 for X = (X1, X2)
�

defined as in (2). Then, using Lemma 2.1 and Lemma 2.2,
we have as x2 → ∞

1− F2(x2)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
θ2/x2

)λ
(1 + o(1)), θ2 > 0;(

λ̃/x2

)2λ
(1 + o(1)), θ2 = 0;

λ

2

|θ2|λ−1

xλ+1
2

e−2|θ2|x2(1 + o(1)), θ2 < 0,

(10)
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with

λ̃ =

(
2λ−1Γ(λ+ 1/2)√

π

)1/(2λ)

.(11)

3. MAIN RESULTS

In this section, we provide the main results on the upper
tail dependence coefficient λU of two classes of skew slash
distributions given by (2) and (3), respectively.

Theorem 3.1. Let X ∼ SS(λ,θ,R) be defined as in (2),
and let T2λ+1(·) be the student’s t distribution function (df)

with 2λ+ 1 degrees of freedom. Then, with λ̃ given by (11)

(1). for θ1 = θ2 = 0,

λU = 2

(
1− T2λ+1

(√
(2λ+ 1)(1− ρ)

1 + ρ

))
;

(2). for θ1 > 0, θ2 > 0, λU = 1;
(3). for θ1 > 0, θ2 = 0 or θ1 = 0, θ2 > 0,

λU =

∫ 1

0

(
1− Φ

(
λ̃u1/(2λ)

))
du

− 1

2λ+ 1

∫ 1

0

u d
(
1− Φ

(
λ̃u1/(2λ)

))
;

(4). for the remaining cases, λU = 0.

From (10) and Theorem 3.1, we see that the skew slash
random vectorX has asymptotic upper tail dependence pro-
vided that both of their marginals posses power laws, i.e.,
θ1, θ2 ≥ 0; see also [13] for the two skew t-distributions.
Therefore, regular varying tails play an important role in the
presence of tail dependence. Theorem 3.1 shows that tail de-
pendence of the first class of skew slash distributions exists
with trivial values 0 or 1, which implies that it has extremal
tail behavior (independence and full dependence), contrary
to the second class of skew slash distributions showing that
the tail dependence has nontrivial values.

In order to state our next theorem, we need to define

gθ1,θ2(z) = f2λ+1(z)Qλ+3/2

⎛⎝θ2

√
1−ρ2

2λ+1z + θ1 + ρθ2√
1 + z2

2λ+1

;∞

⎞⎠ ,

(12)

with z ∈ R and (θ1, θ2) ∈ R
2, and

h(μ) =

(∫ μ

−∞
(1 + u2)−(λ+1) du

) 1
2λ

, μ ∈ R,(13)

where f2λ+1(·) is the probability density function (pdf) of
student’s t distribution with 2λ+ 1 degrees of freedom and
Qλ+3/2(·;∞) is given by (8).

Theorem 3.2. Let X ∼ ASS(λ,θ,R) be defined as in (3).
Then

λU =
Γ(λ+ 1/2)

Γ(λ+ 1)

(
1

Qλ+1 (μ1;∞)

∫ ∞

z′
0

gθ1,θ2(z) dz

+
1

Qλ+1 (μ2;∞)

∫ ∞

z0

gθ2,θ1(z) dz

)
,

where Qλ+3/2(·;∞), gθ1,θ2(·) are given by (8) and (12), re-
spectively. And

μ1 =
θ1 + ρθ2√

1 + θ22(1− ρ2)
, z0 =

(
h(μ1)

h(μ2)
− ρ

)√
2λ+ 1

1− ρ2
;

μ2 =
θ2 + ρθ1√

1 + θ21(1− ρ2)
, z′0 =

(
h(μ2)

h(μ1)
− ρ

)√
2λ+ 1

1− ρ2
.

4. PROOFS

Proof of Lemma 2.1. First we consider Pτ (a; b). We will
consider the following three cases in turn: (1) b = 0, a → ∞;
(2) b > 0, a → ∞ and (3) b → 0, ab → ω > 0.

Case (1) as b = 0 and a → ∞. Using integration by sub-
stitution we have as a → ∞

Pτ (a; 0) =

(
2

a2

)τ ∫ a2

2

0

tτ−1e−t dt =

(
2

a2

)τ

Γ(τ)(1 + o(1))

since
∫∞
x

tτ−1e−t dt = xτ−1e−x(1 + o(1)) as x → ∞, the
claim for Pτ (a; 0) follows.

Case (2) as b > 0 and a → ∞. Using Kτ (·; ·) given by (4)
we rewrite Pτ (a; b) as

Pτ (a; b) = 2

(
b

a

)τ (
Kτ (0; ab)−Kτ

(a
b
; ab

))
.(14)

Noting that

Kτ

(a
b
; ab

)
=

1

2

(
2

ab

)τ ∫ ∞

a2

2

tτ−1 exp

(
−
(
t+

a2b2

4t

))
dt

and

exp

(
−a2b2

4t

)
= e−

b2

2

∞∑
n=0

(
u

u+ 1

)n (
b2

2

)n

, u =
2t

a2
− 1,

we have ∫ ∞

a2/2

tτ−1 exp

(
−
(
t+

a2b2

4t

))
dt

=

(
a2

2

)τ

exp

(
−a2 + b2

2

) ∞∑
n=0

(
b2

2

)n

dn,

with

dn =
1

n!

∫ ∞

0

un(u+ 1)τ−n−1 exp

(
−a2

2
u

)
du

=: U(n+ 1; τ + 1; a2/2),
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where U is the confluent hypergeometric function and U(n+
1; τ + 1; a2/2) = (a2/2)−n−1(1 + o(1)) as a → ∞ (cf. [9]).
Hence,

Kτ

(a
b
; ab

)
=

aτ−2

bτ
exp

(
−a2 + b2

2

)
(1 + o(1)).

This together with (5) yields that

Kτ

(
a
b ; ab

)
Kτ (0; ab)

=

√
2

π

aτ−3/2

bτ−1/2
exp

(
ab− a2 + b2

2

)
(1 + o(1)),(15)

which tends to zero as a → ∞. Consequently, the claim for
Pτ (a; b) as b > 0, a → ∞ follows.

Case (3) as b → 0, a → ∞ and ab → w > 0. The proof is
similar to that of Case (2), and thus the details are omitted
here.

Next, we consider Qυ(x; a). Note that for all x ∈ R

Qυ(x; a) = Γ(υ)

∫ x

−∞
(1 + u2)−υ du

−
∫ x

−∞

∫ ∞

a

tυ−1e−(1+u2)t dtdu.(16)

Further, recalling that υ ≥ 1 we have

0 ≤
∫ x

−∞

∫ ∞

a

tυ−1e−(1+u2)t dtdu

≤
(∫ x

−∞
(1 + u2)−υ du

)(∫ ∞

a

tυ−1e−t dt

)
,

which tends to 0 as a → ∞. It follows thus that∫ x

−∞

∫ ∞

a

tυ−1e−(1+u2)t dtdu → 0, a → ∞.

Therefore, for all x ∈ R and υ ≥ 1

Qυ(x; a) → Γ(υ)

∫ x

−∞
(1 + u2)−υ du as a → ∞.

The proof is complete. �

Proof of Lemma 2.2. Recall that X|V = t ∼
N2(θ/t,R/t) with t ∈ (0, 1) given. It follows from the to-
tal probability formula that, the pdf of X defined as in (2),
denoted by fX(·), is

fX(x) =
λeθ

�R−1x

2π
√

1− ρ2

∫ 1

0

tλ+1−1

× exp

(
−1

2

(
x�R−1xt+

θ�R−1θ

t

))
dt,

with x = (x1, x2)
� ∈ R

2. Hence, the pdf of X2, denoted by
f2(·), satisfies

f2(x2) =
λeθ2x2

√
2π

∫ 1

0

tλ+1/2−1 exp

(
−1

2

(
x2
2t+

θ22
t

))
dt.

Consequently, the conditional density of X1.2 := X1|X2 =
x2, denoted by f1.2(·|x2), is

f1.2(x1|x2) =
fX(x)

f2(x2)

=
eβ(x1−ρx2)√
2π(1− ρ2)

Pλ+1

(√
x

′2
1 + x2

2;
√

θ
′2
1 + θ22

)
Pλ+1/2(|x2|; |θ2|)

,

with β(1 − ρ2) = θ1 − ρθ2, x
′
1

√
1− ρ2 = x1 −

ρx2, θ
′
1

√
1− ρ2 = θ1 − ρθ2. Therefore, we have with s′ =√

1− ρ2s

Ee−sX1.2 = e−ρx2sEe−s′(X1.2−ρx2)/
√

1−ρ2

and

Ee−s′(X1.2−ρx2)/
√

1−ρ2
=

Pλ+1/2 (|x2|; |θ′2|)
Pλ+1/2(|x2|; |θ2|)

,

with θ
′2
2 = θ

′2
1 + θ22 − (θ′1 − s′)2 and s′ satisfying θ

′2
1 + θ22 −

(θ′1 − s′)2 > 0, i.e.,

θ
′2
2 = θ22 + 2β(1− ρ2)s− (1− ρ2)s2, s ∈ β ±

√
θ
′2
1 + θ22
1− ρ2

.

The proof is complete. �

Proof of Theorem 3.1. For θ = 0, the skew slash
random variable X is symmetry and has the same marginal
distributions with regular varying tail index 2λ (see (10)),
and thus the claim follows by Theorem 1 (i) in [1] (see also
[16] for the multivariate copula extensions). Next, we derive
the remaining cases, i.e., θ �= 0.

To this end, we need to derive the asymptotic distribution
of W (x2) where

W (x2) = x
−1/2
2

(
X1.2 −

(
ρx2 +

β(1− ρ2)

|θ2|

√
x2
2 + 2λ

))
for θ2 �= 0; otherwise x−2

2 X1.2. It follows from Lemma 2.2
that Ee−sW (x2) as θ2 �= 0 equals

exp

⎛⎝ρx2 +
β(1−ρ2)

|θ2|
√

x2
2 + 2λ

√
x2

s

⎞⎠E exp

(
− s√

x2
X1.2

)

= exp

(
β(1− ρ2)

|θ2|

√
x2 +

2λ

x2
s

)
Pλ+1/2

(
|x2|;

√
g̃(x2)

)
Pλ+1/2(|x2|; |θ2|)

,
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which, in view of Lemma 2.1, is asymptotically equal to

exp

(
β(1− ρ2)

|θ2|

√
x2 +

2λ

x2
s

)(
g̃(x2)

θ22

)λ
2

× exp
(
|θ2|x2 −

√
g̃(x2)x2

)
= exp

(
β(1− ρ2)

|θ2|

√
x2 +

2λ

x2
s

)

× exp

(
|θ2|x2

[
1−

(
1 +

2β(1− ρ2)s

θ22
√
x2

− (1− ρ2)s2

θ22x2
x2

) 1
2

])

∼ exp

(
− (1− ρ2)(θ

′2
1 + θ22)

2|θ2|3
s2 +O

(
1√
x2

))

→ exp

(
− (1− ρ2)(θ

′2
1 + θ22)

2|θ2|3
s2

)
, x2 → ∞,

where g̃(x2) = θ22 + 2β(1−ρ2)s√
x2

− (1−ρ2)s2

x2
and θ′1 = (θ1 −

ρθ2)/
√

1− ρ2. Therefore, by the Laplace inverse transform,
we have the following convergence in distribution (denoted

by
d→ )

W (x2)
d→ Z1 ∼ N

(
0,

(1− ρ2)(θ
′2
1 + θ22)

|θ2|3

)
(17)

as x2 → ∞. For θ2 = 0, and thus θ1 �= 0. It follows from
Lemma 2.1 and Lemma 2.2 that as x2 → ∞

Ee−sW (x2) →
2(
√
2θ1s)

λ+1/2Kλ+1/2(0;
√
2θ1s)

2λ+1/2Γ(λ+ 1/2)
,

which is the Laplace transform of θ1/Y where Y ∼ Γ(1/2+
λ, 1/2), a Gamma distributed random variable with param-
eters 1/2 + λ, 1/2. Therefore

W (x2)
d→ θ1

Y
, x2 → ∞.(18)

Further, we need the asymptotic expression of the function
c(x2) = F−1

1 (F2(x2)). In view of Lemma 3.1 in [5] we have
for θ1 > 0 with t(θ1, θ2) = ((2|θ2|)/(λ+ 1))1/λθ1/|θ2|

c(x2)=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

θ1
θ2

x2(1 + o(1)), θ2 > 0;

θ1
˜λ2
x2
2(1 + o(1)), θ2 = 0;

t(θ1, θ2)x
1+ 1

λ
2 exp

(
2|θ2|x2

λ

)
(1 + o(1)), θ2 < 0

(19)

as x2 → ∞, where λ̃ is given by (11).

Next, we give the proofs of assertions (2)–(4).

Assertion (2) as θ1 > 0, θ2 > 0. Using (17), (19) and β(1 −
ρ2) = θ1 − ρθ2, we have

lim
x2→∞

P
(
X1 ≥ F−1

1 (F2(x2))|X2 = x2

)
= lim

x2→∞
P

⎛⎝W (x2) ≥
c(x2)−

(
ρx2 +

β(1−ρ2)
|θ2|

√
x2
2 + 2λ

)
√
x2

⎞⎠
= P (Z1 ≥ 0) = 1/2.

Similarly, limx1→∞ P
(
X2 ≥ F−1

2 (F1(x1))|X1 = x1

)
= 1/2.

Therefore, in view of (9), we have

λU = lim
x2→∞

P
(
X1 ≥ F−1

1 (F2(x2))|X2 = x2

)
+ lim

x1→∞
P
(
X2 ≥ F−1

2 (F1(x1))|X1 = x1

)
= 1.

Assertion (3) as θ1 > 0, θ2 = 0 and θ1 = 0, θ2 > 0. For this,
we only present the proof of θ1 > 0, θ2 = 0 since another
case follows by the similar arguments. Using (18) and (19)
we have

lim
x2→∞

P
(
X1 ≥ F−1

1 (F2(x2))|X2 = x2

)
= lim

x2→∞
P

(
W (x2) ≥

c(x2)

x2
2

)
= P

(
Y ≤ λ̃2

)
,

where Y ∼ Γ(1/2+λ, 1/2) and λ̃ is defined by (11). Similarly

lim
x1→∞

P
(
X2 ≥ F−1

2 (F1(x1))|X1 = x1

)
= lim

x1→∞
P

⎛⎝X2.1 −
(
ρx1 +

β′(1−ρ2)
θ1

√
x2
1 + 2λ

)
√
x1

≥
λ̃
√

x1

θ1
−
(
ρx1 +

β′(1−ρ2)
θ1

√
x2
1 + 2λ

)
√
x1

⎞⎟⎠
= P

(
Z ′
1 ≥ λ̃√

θ1

)
,

where

β′(1− ρ2) = θ2 − ρθ1, Z ′
1 ∼ N

(
0,

(1− ρ2)θ�R−1θ

θ31

)
.

(20)

Therefore, using integration by parts, we have

λU = 1− Φ(λ̃) + P

(
Y ≤ λ̃2

)
=

∫ 1

0

(
1− Φ(λ̃u1/(2λ))

)
du

− 1

2λ+ 1

∫ 1

0

u d
(
1− Φ(λ̃u1/(2λ))

)
.

Assertion (4) as θ1θ2 < 0 and θ1 < 0, θ2 < 0. Here, we only
present the proof of θ1 > 0, θ2 < 0. The other cases follow
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by similar arguments and thus are omitted here. Using (17),
(19) and x−1

2 c(x2) → ∞, we have

lim
x2→∞

P
(
X1 ≥ F−1

1 (F2(x2))|X2 = x2

)
= lim

x1→∞
P
(
X2 ≥ F−1

2 (F1(x1))|X1 = x1

)
= 0.

Consequently, λU = 0 for θ1 > 0, θ2 < 0. The proof is
complete. �

Proof of Theorem 3.2. Note that X|V = t is skew
normal distributed with pdf 2φ2(x;R/t)Φ(

√
tθ�x) with t ∈

(0, 1) given. It follows from the total probability formula
that the pdf of X, denoted by fX(x),x �= 0, is

fX(x) =
2λ

(2π)3/2|R|1/2
∫ 1

0

∫ θ�x

−∞
tλ+1/2

(21)

× exp

(
−x�R−1x+ u2

2
t

)
dudt

=
2λ

(2π)3/2|R|1/2
2λ+3/2

(x�R−1x)λ+1

×
∫ θ�x√

x�R−1x

−∞

∫ x�R−1x
2

0

tλ+1/2 exp
(
−(1 + u2)t

)
dtdu

=
2λ+1λ

(π3|R|) 1
2 (x�R−1x)λ+1

Qλ+ 3
2

(
θ�x√

x�R−1x
;
x�R−1x

2

)
.

Consequently, the pdf of Xi, denoted by fi(·), is given by

fi(x) =
λ

π

2λ+1

|x|2λ+1
Qλ+1

(
μisign(x);x

2/2
)
, i = 1, 2,(22)

with

μ1 =
θ1 + ρθ2√

1 + θ22(1− ρ2)
, μ2 =

θ2 + ρθ1√
1 + θ21(1− ρ2)

.

Hence we have by Lemma 2.1 (recall h(·) given by (13))

1− F2(x2) ∼
x2

2λ
f2(x2) ∼

Γ(λ+ 1)

π

2λ

x2λ
2

h(μ2)

as x2 → ∞. Consequently, as x2 → ∞

c(x2) = F−1
1 (F2(x2)) =

h(μ1)

h(μ2)
x2(1 + o(1))(23)

and the pdf of X1|X2 = x2, denoted by f1.2(·|x2), satisfies

f1.2(x1|x2) =
Γ(λ+ 1/2)

Γ(λ+ 1)

f2λ+1 ((x1 − ρx2)/s(x2))

s(x2)

×
Qλ+3/2

(
θ1x1+θ2x2√

x′2
1 +x2

2

;
x′2
1 +x2

2

2

)
Qλ+1

(
μ2sign(x2);

x2
2

2

) ,

where f2λ+1(·) is the pdf of student’s t with 2λ+ 1 degrees
of freedom and

x′
1

√
1− ρ2 = x1 − ρx2, s(x2) =

√
(1− ρ2)x2

2

2λ+ 1
.

It thus follows by the dominated convergence theorem and
Lemma 2.1 that

lim
x2→∞

P
(
X1 ≥ F−1

1 (F2(x2))|X2 = x2

)
=

Γ(λ+ 1/2)

Γ(λ+ 1)

1

Qλ+1 (μ2;∞)

∫ ∞

z0

gθ2,θ1(z) dz,(24)

where gθ2,θ1(·) is given by (12) and

z0 = lim
x2→∞

c(x2)− ρx2

s(x2)
=

(
h(μ1)

h(μ2)
− ρ

)√
2λ+ 1

1− ρ2
.

Similarly

lim
x1→∞

P
(
X2 ≥ F−1

2 (F1(x1))|X1 = x1

)
=

Γ(λ+ 1/2)

Γ(λ+ 1)

1

Qλ+1 (μ1;∞)

∫ ∞

z′
0

gθ1,θ2(z) dz,(25)

with

z′0 =

(
h(μ2)

h(μ1)
− ρ

)√
2λ+ 1

1− ρ2
.

The desired result follows by (24) and (25). �
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