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A class of goodness-of-fit tests for spatial
extremes models based on max-stable processes

IvAN KoJADINOVIC*, HONGWEI SHANG, AND JUN YAN

Parametric max-stable processes are increasingly used
to model spatial extremes. Starting from the fact that
the dependence structure of a max-stable process is com-
pletely characterized by an extreme-value copula, a class of
goodness-of-fit tests is proposed based on the comparison
between a nonparametric and a parametric estimator of the
corresponding unknown multivariate Pickands dependence
function. Because of the high-dimensional setting under con-
sideration, these functional estimators are only compared at
a specific set of points at which they coincide, up to a mul-
tiplicative constant, with estimators of the extremal coeffi-
cients. The nonparametric estimators of the Pickands depen-
dence function used in this work are those recently studied
by Gudendorf and Segers. The parametric estimators rely on
the use of the pairwise pseudo-likelihood which extends the
concept of pairwise (composite) likelihood to a rank-based
context. Approximate p-values for the resulting margin-free
tests are obtained by means of a one- or two-level parametric
bootstrap. Conditions for the asymptotic validity of these re-
sampling procedures are given based on the work of Genest
and Rémillard. The finite-sample performance of the tests
is investigated in dimension 10 under the Smith, Schlather
and geometric Gaussian models. An application of the tests
to rainfall data is finally presented.
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1. INTRODUCTION

The measurement of extremes, especially in the environ-
ment, is often spatial in nature as variables such as precipi-
tation, temperature, pollutant concentration, or wind speed,
are recorded over time at a network of sites. As rare events
that occur at multiple locations simultaneously or within a
short time period can cause extensive damage, the model-
ing of spatial dependence in the analysis of extremes appears
crucial from a risk management perspective. In contrast to
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univariate extreme-value theory which is rather mature and
has been applied to a variety of fields (see e.g. Coles, 2001,
for an overview), spatial extremes analysis gained sharp-
ened focus only relatively recently (see e.g. Blanchet and
Davison, 2011; Davison and Gholamrezaee, 2012; Davison,
Padoan and Ribatet, 2012; Fuentes, Henry and Reich, 2013;
Padoan, Ribatet and Sisson, 2010; Ribatet, 2013; Schlather,
2002; Schlather and Tawn, 2003; Smith, 1990).

One natural approach for modeling spatial extremes con-
sists of using maz-stable processes as the latter stem from
an extension of multivariate extreme-value theory to the
process setting. Several parametric models were derived
from so-called spectral representations of max-stable pro-
cesses (see e.g. de Haan, 1984; de Haan and Pereira, 2006;
Schlather, 2002). Among the most frequently encountered
models, one finds the Smith, the Schlather and the class
of Brown-Resnick models. The recent literature suggests to
base the inference about the parameters of these models on
the pairwise likelihood because the full likelihood is typically
intractable (see e.g. Davison and Gholamrezaee, 2012; Gen-
ton, Ma and Sang, 2011; Padoan, Ribatet and Sisson, 2010,
for more details on this matter).

The quality of the fit of a spatial model based on a para-
metric max-stable process seems to have been essentially
investigated by means of graphical tools. Smith (1990) pro-
posed to compare nonparametric with parametric estimates
of pairwise and higher-order extremal coefficients. The lat-
ter coefficients describe the spatial dependence among the
sites as explained for instance in Schlather and Tawn (2003).
When restricted to pairs of sites, the approach proposed by
Smith (1990) consists of standardizing, for each pair of sites,
the difference between a nonparametric and a parametric
estimate of the corresponding pairwise extremal coefficient
by the jackknife standard error of the nonparametric es-
timate. The standardized differences for all pairs of sites
can be plotted against the corresponding parametric esti-
mates of the pairwise extremal coefficients or against the
distances between the sites. This provides a visual check
similar to a residual plot for linear regression. An alterna-
tive graphical approach was used in Padoan, Ribatet and
Sisson (2010) and Davison and Gholamrezaee (2012) who
assessed the fit of models for various subsets of sites with
a particular quantile-quantile plot. Specifically, for a given
subset of sites, the annual maximum over the subset was
obtained for each of the observed years, forming the sample


http://www.intlpress.com/SII/
http://arxiv.org/abs/1202.0514

quantiles of the annual maxima for that subset. These sam-
ple quantiles were then plotted against population quantiles
approximated from a large number of datasets generated
from the fitted model. The described approach is a multi-
variate extension of the graphical diagnostic tool used in the
analysis of univariate extremes (see e.g. Coles, 2001).

In the case of a clear departure from the hypothesized
model, such graphical approaches are known to be useful
tools that can help a user better understand the underly-
ing characteristics of the data. Deciding to reject (or not) a
model on the basis of the available graphs can however turn
out to be a very subjective process as, among other things,
the perceived departure from the hypothesized model de-
pends on the sample size. For that reason, it is frequently ad-
vised to use such graphical tools in conjunction with formal
testing procedures (see e.g. the discussion in D’Agostino,
1986).

To the best of our knowledge, no formal goodness-of-
fit tests have been developed for spatial models based on
max-stable processes. The purpose of this work is to fill
this gap. Starting from the well-known fact that the depen-
dence structure of a max-stable process is uniquely char-
acterized by an extreme-value copula (see e.g. Davison,
Padoan and Ribatet, 2012; Gudendorf and Segers, 2010;
Ribatet and Sedki, 2013), it would seem natural to base
goodness-of-fit tests for the spatial models under considera-
tion on goodness-of-fit tests for copulas. The latter tests re-
ceived considerable attention in the recent literature (see e.g.
Genest and Rémillard, 2008; Genest, Rémillard and Beau-
doin, 2009; Kojadinovic, Yan and Holmes, 2011). They were
adapted to deal specifically with bivariate extreme-value
copulas by Genest et al. (2011) who derived test statis-
tics from the empirical process comparing a nonparamet-
ric estimator with a parametric estimator of the so-called
Pickands dependence function uniquely defining the under-
lying extreme-value copula (see e.g. Gudendorf and Segers,
2010). A straightforward extension of these bivariate tests
to the current large-dimensional setting does not however
appear computationally feasible.

The tests proposed in this work exploit the idea initially
proposed by Smith (1990) consisting of comparing nonpara-
metric estimators of extremal coefficients with parametric
estimators to assess the fit of a model. Because extremal
coefficients can be expressed in terms of the Pickands de-
pendence function, the derived tests can also be cast in the
framework considered by Genest et al. (2011). More specif-
ically, the tests are based on the absolute or squared dif-
ferences between nonparametric and parametric rank-based
estimators of extremal coefficients. The rank-based nature of
the estimators implies that the tests are margin-free, which
is a desirable feature. The nonparametric estimators are the
two multivariate rank-based estimators of the Pickands de-
pendence function recently studied by Gudendorf and Segers
(2012). The parametric estimators rely on the estimation of
the parameters of the hypothesized model using the pair-
wise pseudo-likelihood which extends the concept of pairwise
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(composite) likelihood considered for instance in Padoan,
Ribatet and Sisson (2010) and Davison and Gholamrezaee
(2012) to the current rank-based setting. If closed form ex-
pressions for the parametric extremal coefficients exist, ap-
proximate p-values for the tests can be obtained using a clas-
sical (one-level) parametric bootstrap. If such expressions do
not exist for the hypothesized model, the parametric estima-
tors are obtained by applying the nonparametric estimators
to a large sample generated from the fitted model and a two-
level parametric bootstrap is used to compute approximate
p-values. In both cases, the asymptotic distribution of the
test statistics under the null is obtained and technical condi-
tions under which the previous testing procedures are valid
in the sense of Theorems 1 and 2 of Genest and Rémillard
(2008) are derived. Although the finite-sample performance
of the tests is only investigated in the case of three frequently
encountered models, the derived procedures can in principle
be used to assess the fit of most other parametric max-stable
processes.

The paper is organized as follows. Section 2 contains a
brief and partial overview of spatial models based on max-
stable processes and recalls the connections between ex-
tremal coefficients and copulas. The third section is devoted
to a detailed presentation of the proposed testing proce-
dures. Section 4 partially reports the results of a Monte
Carlo experiment involving 10 sites and 50, 100 or 200 ob-
servations per site. The last section presents the application
of the tests to the Swiss rainfall data analyzed in Davison,
Padoan and Ribatet (2012).

2. SPATIAL MODELS BASED ON
MAX-STABLE PROCESSES

2.1 Max-stable processes

Let X be a contiguous subset of R? containing o = (0, 0)
and representing a spatial domain of interest. For conve-
nience, we shall focus on stochastic processes on X that have
unit Fréchet margins. A process from this class will be de-
noted by Z and regarded as a random function Z : X — R
as we continue. We therefore have that, by definition, for
any site x € X,

Pr{Z(z) < z} = exp(—1/2), z > 0.
A process Z on X with unit Fréchet margins is mazx-
stable if it satisfies the max-stability property, i.e., for any
{x1,...,24} C X and any integer k > 0,

Pr{Z(xz1) < z1,...,Z(xq) < zq4}

=Pr{Z(x,) < kz1,...,Z(xq) < kza}*, 21,...,24 > 0.

The max-stability property implies that the higher-order
marginal distributions of Z belong to the class of multivari-
ate extreme-value distributions; see for instance Davison,



Padoan and Ribatet (2012), Ribatet (2013) and the refer-
ences therein for a more detailed introduction.

Families of parametric max-stable processes used in appli-
cations were derived from so-called spectral representations.
A first such representation is due to de Haan (1984) (see also
e.g. Ribatet, 2013, Section 2) and states that, for any sta-
tionary max-stable process Z on X with continuous sample
paths and unit Fréchet margins, there exists a non-negative
continuous function f on R* satisfying two conditions to be
given below, such that Z has the same distribution as the
process on X defined by

(1)

x — sup S, f(x, Lj),

j=1
where (S1, L), (S2, La), . .. are the points of a Poisson pro-
cess on (0,00) x R? with intensity ds/s* x d€. The func-
tion f in (1) satisfies [p, f(2,y)dy = 1 for all € R* and
fR2 Sup,cx f(x,y)dy < oo for all compact sets K C X.

A class of rainfall storm models is obtained by defining f
in (1) as f(x,y) = g(x —y), where g is a bivariate probabil-
ity density function (p.d.f.) on R2. In this model, S;g(x—L;)
can be interpreted as the impact at location @ of a storm of
intensity S; centered at location Lj, and sup;~, Sjg(z—L;)
as the impact of the strongest such episode experienced at .
The case when g is taken equal to ¢(22 ), the bivariate normal
p.d.f. with mean zero and covariance matrix 3, was con-
sidered by Smith (1990) and is therefore frequently referred
to as the Smith model (see also e.g. Coles, 1993; de Haan
and Pereira, 2006; Padoan, Ribatet and Sisson, 2010). The
process in (1) being stationary, its bivariate marginal distri-
butions are fully described by the cumulative distribution
function (c.d.f.) of (Z(0),Z(x)), where o € X is the origin
and x is an arbitrary site in X'. From Smith (1990) (see also
Padoan, Ribatet and Sisson, 2010, Appendix A.3), we have
that, for any 21,29 > 0,

(2) Pr{Z(o) < z1,Z(x) < z3}

exp{lfI) (aJrllogzz) — i‘b <a + 1log21>},

21 2 a 21 29 2 a 29
where ® is the univariate standard normal c.d.f. and a? =
x! T lz.

A second key spectral representation is due to Schlather
(2002). Following Davison, Padoan and Ribatet (2012) and
Ribatet (2013, Section 2), let Si,S2,... be the points of a
Poisson process on (0, 0) of intensity ds/s?. Then, for any
stationary max-stable process Z on X with continuous sam-
ple paths and unit Fréchet margins, there exists a positive
stochastic process W on R? with continuous sample paths
and E{W(z)} = 1 for all z € R? such that Z has the same
distribution as the process on X defined by

3)

x — sup S;W;(x),
j=>1

where W7, W, ... are independent copies of W.

Starting from (3), another spatial model frequently en-
countered in the literature was proposed by Schlather (2002)
and consists of defining W; as W;(z) = max{0, v2me;(z)},
where €1, €5, . .. are independent copies of a stationary Gaus-
sian process € on R? with unit variance and correlation func-
tion p. For this model, frequently referred to as the Schlather
model, we have, for any 21,z > 0, that

(4) Pr{Z(o) < z,Z(x) < 22}

1/1 1 2p(x) + 1} 220 ]
_GXP{ 2(Zl+22><1+|:1 (21+22)2 :| >}
As is well-known, a drawback of this model is that it cannot
model spatial independence between sites. Extensions of the
Schlather model are discussed for instance in Davison and
Gholamrezaee (2012) and in Ribatet (2013).
A third spatial model that shall be considered in this work

is the so-called geometric Gaussian process. It is obtained by
defining W; in (3) as

(5)

where o > 0 and €1, €5, ... are independent copies of a sta-
tionary Gaussian process € on R? with unit variance and cor-
relation function p. For this model, the c.d.f. of (Z(0), Z(x))
is given by (2) but with a? = 202{1 — p(x)}. Note that this
process is a particular Brown-Resnick process (Davis and
Resnick, 1984; Kabluchko, Schlather and de Haan, 2009).
We did not consider the latter class of models in our Monte
Carlo experiment as random number generation from these
processes can be tricky as discussed for instance in Rib-
atet (2013, Section 7) (see also Oesting, Kabluchko and
Schlather, 2012).

W;(x) = exp{oe;(x) — 02/2},

2.2 Extremal coefficients

As explained for instance in Schlather and Tawn (2003) or
Davison and Gholamrezaee (2012), a natural way of measur-
ing dependence among spatial maxima modeled by a max-
stable process Z on X with unit Fréchet margins consists
of examining the distribution of sup,cy Z(x), which can be
expressed as

Pr{igg Z(x) < 2} = exp(—€x/2),

z >0,

in terms of the extremal coefficient 1 of the set X (see e.g.
Davison and Gholamrezaee, 2012, for more details). If £x is
close to one, then the distribution of sup,cy Z(x) is close,
for any « € X, to that of the random variable Z(x) (which is
unit Fréchet by definition), thereby indicating almost per-
fect dependence between the spatial maxima. Weaker de-
pendence between the maxima yields larger values of £y.
Similarly, with the notation D = {1,...,d}, the extremal
coefficient of a set of locations {x; : i € D} C X, d > 2, is
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defined through the following equation:

(6)
Pr {maxZ(:nj) < z} =Pr{Z(x1) < z,...,Z(xq) < z}

JjE€D
(7)

It is easy to verify that independence among the maxima
measured at x1,...,xy yields £p = d, while perfect depen-
dence gives £p = 1. More generally, £p € [1,d].

The extremal coefficient £p can be expressed in terms
of the so-called Pickands dependence function of the ran-
dom vector (Z(x1),...,Z(x4)). Indeed, the random vector
(Z(x1),. .., Z(xq)) having continuous margins, its c.d.f. can
be uniquely expressed (Sklar, 1959) as

(8) C{F(z1),...,F(za)},

where F'is the c.d.f. of the unit Fréchet distribution and C'is
a copula that is of the extreme-value type (see e.g. Gudendorf
and Segers, 2010). The copula C' is simply the c.d.f. of the
random vector (F{Z(x1)},...,F{Z(xq)}). Because it is of
the extreme-value type, C' can in turn be expressed as

=exp(—¢&p/z), z > 0.

215524 > 0,

d
(9) C(u)=-exp Zlog u;

(g e )
Zj:l log u; Zj:l log u;

foru € (0,1]9\{(1,...,1)}, where A: Ay_; — [1/d, 1] is the
Pickands dependence function and Ag—y = {(w1,...,wq) €
[0,1]971 s wy + -+ + wg = 1} is the unit simplex (see e.g.
Gudendorf and Segers, 2012, for more details).

Combining expression (9) with (8) and equating it to (6),
one obtains that £p = dA(1/d,...,1/d). More generally, it
can be verified that the extremal coefficient of any subset of
sites {@; : ¢ € B} with B C D, |B| > 2, can be expressed as

s = |B|A(wp),

where wp is the vector of Ay_; such that wp,; = 1/|B| if
i € B and wp,; = 0 otherwise. Thus, the set of extremal
coefficients {g, B C D, |B| > 2, merely corresponds to the
scaled values of the Pickands dependence function A at the
points wg, B C D, |B| > 2, of Ag_1. As is well-known, it
therefore clearly appears that the set of extremal coefficients
¢, B C D, |B| > 2, does not fully characterize the extreme-
value copula C'. Properties of the set of extremal coefficients
are studied in Schlather and Tawn (2003).

3. GOODNESS-OF-FIT TESTS BASED ON
EXTREMAL COEFFICIENTS

Let the random variables X7, ..., Xy represent the max-
ima of a quantity of interest (such as temperature or precip-
itation) at the d locations in {z1,..., x4} ={®;: 1 € D} C

(10)
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X over a period T (typically a year), and assume that the
unknown c.d.f. of the random vector (Xi,...,Xy) belongs
to the class of multivariate extreme-value distributions. It
follows that, for any j € D, the unknown univariate c.d.f.
F}; of X; belongs to the class of generalized extreme-value
distributions and that Z; = —1/log{F;(X;)} has a unit
Fréchet distribution.

Consider further a parametric class Z = {Zy : 8 € O}
of max-stable processes on X with unit Fréchet margins,
where O is an open subset of RP for some integer p > 0.
We then know from the previous section that there exists
a parametric family of copulas C = {Cp : 8 € O} such
that, for any 8 € O, Cy is the copula of the random vec-
tor (Zg(x1), ..., Zg(xq)). Because C is a family of extreme-
value copulas, C can be defined from a parametric fam-
ily of Pickands dependence functions A = {Ag : 0 € O}
through (9).

Let C be the unknown extreme-value copula of
(X1,...,X4) and let A be the corresponding unknown
Pickands dependence function. Having at hand n indepen-
dent copies (X1,1,...,X1.4),---5 (Xn1,...,Xn,q) of the ran-
dom vector (X1, ..., X ), we wish to test
(11)

Hy:CeC(ie., A€ A) against H; : C ¢ C (ie., A& A).

The rejection of Hy will be interpreted as evidence in the
data that the family of max-stable processes Z does not
constitute an appropriate model.

As discussed in Genest et al. (2011), a seemingly natu-
ral approach to the goodness-of-fit problem stated in (11)
consists of comparing a nonparametric estimator fln of
the Pickands dependence function A with a paramet-
ric estimator of A under the null, both computed from
(X11,--sX1.4)s---» (Xn1,.-,Xn,q) The null hypothesis
implies that there exists an unknown 6y € O such that
A = Ag,. Given an estimator 0,, of 0y, a natural estimator of
A under the null is therefore simply Aén' Such an approach
was adopted in a bivariate context by Genest et al. (2011)
who considered Cramér—von Mises test statistics derived
from empirical processes on A; of the form v/n(A,, — Ag )

Because spatial problems usually involve a large number
of sites d, a direct extension of the previous approach does
not appear practically feasible as it would involve numerical
integration over Agy_;. Instead of comparing A,, with Aén
over the whole of A;_1, one possibility, as suggested by (10),
consists of considering a finite number of points in A;_1 such
as the points wg, B C D, |B| > 2 and in defining
(12)

Spn = Vn|B||Au(wp) — 4, (wp)],

n

BcCD,|B|>2.

For a subset B C D with |B| > 2, Sp, is nothing else
than the scaled absolute difference between a nonparametric
estimator of the extremal coefficient {5 and a parametric
estimator of the latter under the null. If the null hypothesis



defined in (11) holds, then, clearly, so does the hypothesis
Hop : {p € {{p,0 = |B|Ag(wp) : 6 € O}.

The converse is however false in general. It follows that tests
based on S, will not be consistent with respect to the
hypotheses given in (11).

In our simulations whose results will be partially
reported in Section 4, we focused on test statis-
tics of the following form: } p-p 5_o{SBn}",

ZBCD,|B\:3{SB,n}a, SD,m ZBcD,\B|:{2,3,d}{SB,n}a
and > -pcp pif2.3,ay 198, /|B[}, for a € {1,2}. The first
four are based on the comparison of a nonparametric and
a parametric estimator of extremal coefficients of various
subsets of sites, while the last, through the division by |B],
compares the corresponding estimators of the unknown
Pickands dependence function.

3.1 Nonparametric estimators of the
Pickands dependence function

In the realistic situation where the margins Fi, ..., Fy of
(X1,...,X4) are unknown, two nonparametric estimators
of the unknown Pickands dependence function A were re-
cently derived by Gudendorf and Segers (2012) as exten-
sions of those proposed by Genest and Segers (2009) in
the bivariate case. They are the rank-based versions of two
well-known estimators of A, namely the Pickands estimator
(Pickands, 1981) and the Capérad-Fougeres—Genest estima-
tor (Capéraa, Fougeres and Genest, 1997). The latter will
be abbreviated as CFG in the sequel.

Let U; = (Uin,...,Uiq), i € {1,...,n}, be pseudo-
observations computed from the available data by U;; =
R;;/(n + 1), where R;; is the rank of X,; among
X1,,-..,Xn,;. The pseudo-observations can equivalently be
rewritten as U, j = nFj(X;;)/(n + 1), where Fj is the em-
pirical c.d.f. computed from X ;,..., X, ;, and where the
scaling factor n/(n + 1) is classically introduced to avoid
problems at the boundary of [0, 1]%.

Let

d ~
Glw) = \ 28l

w
j=1 J

wE Ag_q, 1e{l,...,n},

where A denotes the minimum. The rank-based version of
the Pickands and CFG estimators are then respectively de-
fined by

AP /1t - ¢
Anw) =1/ 3G,
ATFC (w) = exp [—5 - %Zlogfi(w) , WEAg-,
=1

where 8 = — [Flog(z)e *dz ~ 0.577 is the Euler—

Mascheroni constant.

From the above definitions, it is easy to verify that
AP(e)) = ... = AP(ey) and that ACFG(e;) = ... =
ASFG’(ed)7 where ey, ...,eq are the standard basis vectors
of R%. To ensure that the endpoint constraints AF(e;) =
ACFG(e;) =1, j € D, are satisfied, the previous estimators
can be corrected as

1/14576(’[1)) = ]./AE(’UJ) - 1/145(61) + ]-, w e Adflv
and
log AS}ZG(’UJ) = log ASFC (w)—log ASTC (e,), we Ag_q,

respectively. These corrections were suggested in Gudendorf
and Segers (2012) as natural extensions of those proposed
in the case of known margins for d = 2 by Deheuvels (1991)
and Capérad, Fougeres and Genest (1997), respectively.

In the bivariate case, the above corrected versions were
found to behave better than the uncorrected versions in
small samples in Genest and Segers (2009) and Genest et al.
(2011). As verified in Gudendorf and Segers (2012), AP and
/15)0 (resp. ASFG and ASIZG) become indistinguishable as n
Ao

tends to infinity. Also, was found, overall, to outper-

form fll; . in several bivariate Monte-Carlo experiments (see
e.g. Genest and Segers, 2009; Kojadinovic and Yan, 2010).
The same empirical conclusion was obtained by Gudendorf
and Segers (2012) in dimension three.

A second corrected version of the Pickands estimator is
obtained when considering, in the current rank-based con-
text, the estimator initially proposed by Hall and Tajvidi
(2000) for d = 2 and known margins. It is given by

AT (w) = A7 (w)/ A (e1), we Ag.

By analogy with (10), for any B C D, |B| > 2, these three
corrected estimators give three estimators of the extremal
coefficient &g as

(13) &pn = |BIAL (ws), &5%, = |BIA)T (ws),

and £55C = |BJASEC (wp).
Note that a multivariate rank-based version of the es-
timator suggested by Smith (1990) can be expressed as

|B|AF (wp) with our notation. The estimator 511;’” =

|B |A57C(w p) considered in this work is therefore merely a
corrected version of the latter. Furthermore, the estimator
Ag?; is nothing else than the so-called naive estimator pro-
posed by Schlather and Tawn (2003) with threshold z = 0
when computed from the transformed pseudo-observations
—1/log 0,-73', 1€ {l,...,n}, j € B. To see this, it suffices to
start from the log likelihood given in Schlather and Tawn
(2003, Section 4.2), set its derivative to zero and solve for
the extremal coefficient.

The fact that the estimators of 5 given in (13) are de-
fined from corrected estimators of the Pickands dependence
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function does not ensure that they are restricted to the range
[1,|B]|]. Hence, as suggested in Schlather and Tawn (2003),
it might be necessary to truncate them to the range [1, |B]]
in the case of small samples. In our experiments however,
we have not observed the need for such a truncation.

From a practical perspective, note finally that the estima-
tors AE’C, AET and ASFCG were implemented and are avail-
able in the copula package (Hofert et al., 2013) of the R
statistical environment (R Development Core Team, 2013)

3.2 Estimators of the Pickands dependence
function under the null

Recall that C denotes the unknown copula of
(X4,...,X4) and that the null hypothesis states that there
exists By € O such that C = Cy,. As proposed by Genest,
Ghoudi and Rivest (1995), a natural way of estimating 6
under the null in the rank-based context under consideration
would be to maximize the log pseudo-likelihood

6(0) = ilOgCQ ((A]i’l7 ey Ui,d) , 0 € O,
i=1

where cg is the p.d.f. associated with Cy and where the
term pseudo in pseudo-likelihood refers to the fact that the
p-d.f. is evaluated at the pseudo-observations (71, .. .,lA]n.
However, because of the extreme-value nature of the copula
Cy, a combinatorial explosion occurs when one attempts to
compute cg = 8dC9/8u1 ...0uq (see e.g. the discussion in
Davison and Gholamrezaee, 2012, end of Section 2.1). It
follows that, for most parametric max-stable processes of
practical interest in spatial statistics, the maximization of
the log pseudo-likelihood is practically unfeasible for d > 4
(see Genton, Ma and Sang, 2011, for recent results concern-
ing the Smith model). As discussed for instance in Davison
and Gholamrezaee (2012) or Padoan, Ribatet and Sisson
(2010), an alternative consists of using a composite likelihood
approach (Lindsay, 1988), which, in the pseudo-likelihood
context under consideration, yields the pairwise log pseudo-
likelthood

(14) Z(@) = Z Z 1OgC‘(9j’k) (Ui)j, Ui,k) R 0 c O,
i=1{j,k}CD
where céj ) is the p.d.f. of the copula of the bivariate ran-

dom vector (Zg(x;), Zg(xi)) for a pair of sites {x;,xy}.
Note that the efficiency of the maximum pairwise pseudo-
likelihood estimator might be increased by restricting the
expression above to pairs of sites that are closer than a spec-
ified threshold as empirically illustrated in Padoan, Ribatet
and Sisson (2010) in the case of the maximum pairwise like-
lihood estimator.

For any 6 € O, recall that Ag denotes the Pickands de-
pendence function associated with the extreme-value copula
Cy. Furthermore, let 6,, be the maximizer of (14). An esti-
mator of the Pickands dependence function under the null
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Apg, is then given by A, . For a given B C D, |B| > 2,
it follows that an estimator of the extremal coefficient {5
under the null is given by
(15) ¢po, = |BlAg, (wp).

The previous estimator can however only be computed if
a closed form expression for Ag is available. If it is not the
case, £g can be estimated provided one knows how to gen-
erate a random sample from Cy. For some fixed real v > 0
(typically much greater than one), let m = |yn]| and let
Vit s Via)y. oo, (Vinas ..., Vin,a) be a random sample of
size m from Cén’ independent of the available data condi-

tionally on 0,. T hen, an estimator of g is

(16) fB,émm = |B|A7n(w3)a
where A,, is one of the three corrected nonparametric esti-
mators of the Pickands dependence function defined in Sec-
tion 3.1 computed from the pseudo-observations obtained
from (V1,17 ey ‘/1’d), ey (Vm,h ey Vm,d)-

To illustrate the use of the two estimators of £ under the
null discussed above, we first consider the situation when
Z ={Zp : 0 € O} corresponds to the Smith model, and
then, for instance, to the Schlather model. Clearly, the esti-
mator given in (16) has the highest applicability across mod-
els as it mostly relies on the availability of random number
generation routines.

3.2.1 The case of the Smith model

For the Smith model, it is known (see e.g. Schlather and
Tawn, 2003, page 147) that Cg is a d-dimensional Hiisler—
Reiss copula (Hisler and Reiss, 1989). The dependence in
this model is controlled by the covariance matrix 3 of the
bivariate standard normal p.d.f. ¢>(22) which determines the
elliptical contour of a typical storm. In other words, 8 = X.

Starting from (2), one recovers that the Pickands depen-
dence function of the random vector (Zg(x;), Zo(x)), for
a pair of sites {x;, z1}, is given by

agj,k} 1 w1>
17) Ag(w) = w;® [ ——+ + ——log —
(1) Agfuw) =t (15 4~

: 1
+ wo® (—%’k} +—
2 agj.k}

log %> , w € Ay,
w1

where @ is the standard normal c.d.f. and a%jvk} = (z; —

x)" X7 (z; — o). The previous expression can be used
to obtain the expression of the bivariate Hiisler—Reiss cop-
ula through (9), and the expression of the bivariate p.d.f.
0(9] *) needed in (14). As one can see, the dependence is con-
trolled by the distance ay; 1} between sites «; and @y, which
depends on 8 = 3.

The c.d.f. of the d-dimensional Hiisler—Reiss copula was
recently expressed in a convenient form by Nikoloulopoulos,



Joe and Li (2009) using as parameter a symmetric d x d
matrix with off-diagonal elements d;;, > 0 and 5;-1 =0, such
that any (d—1) x (d—1) matrix I'; with element (¢, k) given
by
62462 -062
1] kj ik . .
T ke D\{j}
1 —1 ) 2y ’
20, 6y

is a correlation matrix. Let <I>£ﬂdj_1) be the c.d.f. of the (d—1)-

dimensional standard normal distribution with correlation
matrix I';. From the work of Nikoloulopoulos, Joe and Li
(2009), we have that the Pickands dependence function of
the d-dimensional Hiisler—Reiss copula parametrized by the
matrix (5ij)i,j€D is

d
— _ 51 wy . .
Amm—ij@%”<%l%;ma;weD\uQ,

j=1

for w € Ag_q. Setting all but two w; to zero to obtain a
bivariate Pickands dependence function and comparing the
resulting function with (17), we see that it is necessary to
set 0;; = 2/ag; 5y, {4,7} C D, for As to be the Pickands
dependence function of (Zg(x1), ..., Ze(xq)). Writing As =
Ag, it follows that the extremal coefficient of the sites in
{z; : i € D} for this model is

d
¢p = dAo(1/d,...,1/d) = Y (% e D\{j}).

j=1
More generally, for any B C D with |B| > 2,
(18)
p = |BlAg(wy) =) @

jeB

Qis s
Py (e B\ (5)),
where T'; g is the (|B| — 1) x (|B| — 1) matrix obtained from
I'; be removing rows and columns whose index is not in B.
The previous expression can be computed provided one can
compute the c.d.f. of the multivariate normal distribution.
In R, this can be done using the excellent mvtnorm package
(Genz et al., 2011).

Hence, once (14) has been maximized, the resulting esti-
mate can be plugged into (18) to obtain the estimate of £p
under the null given by (15).

3.2.2 The case of the Schlather model

For the Schlather model, the dependence is controlled by
the correlation function p, i.e., p = pg, and, as for most max-
stable processes, the expression of Cy is available in closed
form only in dimension two. Starting from (4), one obtains
that the Pickands dependence function of the random vector
(Zo(xj), Zo(xr)), for a pair of sites {x;, z1}, is given by

(19) Ag(w) = 5 (141 = 2{p(w; — ax) + Lwyw,]?),

| =

for w € A;. The previous expression can be used to ob-
tain the expression of the p.d.f. céj’k) needed in (14), and
the expression of the extremal coefficient of §(; ), which is
simply
1_ o 1/2

Sy =1+ { 5

Because of the unavailability of the expression of the
Pickands dependence function in dimension three or greater,
we do not have a closed form expression for {5 = |B|Ag(wp)
under the Schlather model for B C D, |B| > 3. However,
from the work of Schlather (2002), we know how to gener-
ate a random sample from Cy, which enables us to use the
estimator given in (16).

3.3 Asymptotic distribution of the test
statistics under the null

For a subset B C D with |B| > 2, let éBm denote one
of the three nonparametric estimators of £5 defined in (13),
and recall that & B.6, and f B.6, m ATe the estimators under
Hy of g = €pg, defined in (15) and (16), respectively.
Finally, let SB,Q be the gradient of £ ¢ with respect to 6.

The following proposition is a consequence of the delta
method and the continuous mapping theorem.
Proposition 1. Assume that Hy holds, that \/ﬁ(éBm —

€B.0,,0n — 00) converges in distribution to (Ap,®) and
that 0 — Ep g is differentiable at 6y. Then, the test statis-
tic Sp,n = |Vn(€sn — Ep g, )| converges in distribution to
A —£5 6,0

The convergence in distribution of \/E(EB,R —&B.g,) OC-
curs if Conditions 2.1 and 4.1 of Segers (2012) are satisfied.
These smoothness conditions concern the first and second-
order partial derivatives of Cp,. If they are satisfied, the
limiting random variable can be expressed in terms of the
weak limit of the empirical process v/n(A, — Ag,) estab-
lished in Theorem 1 of Gudendorf and Segers (2012) (see
also Genest and Segers, 2009, Theorem 3.2), which in turn
depends on the weak limit of the empirical copula process
(see e.g. Segers, 2012).

In dimension three or higher, the verification of Condi-
tions 2.1 and 4.1 of Segers (2012) seems impossible for the
Schlather and geometric Gaussian models as a closed form
expression of Cp, is not available in those cases, and ap-
pears very tedious for the Smith model. In dimension two,
Segers (2012) showed that the aforementioned smoothness
conditions are satisfied if the function f(t) = Ag,(t,1 — 1),
t € [0,1], is twice continuously differentiable on (0, 1), and
if sup,e(o,1){t(1 —t)f”(t)} < oo. The latter conditions on f
appear to hold for the Smith model, the Schlather and the
geometric Gaussian models.

Regularity conditions under which \/ﬁ(f Bn—&B.00s 0, —
0y) converges in distribution still need to be established. A
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preliminary task would be to obtain regularity conditions for
the asymptotic normality of the maximum pairwise pseudo-
likelihood estimator. Such regularity conditions are investi-
gated in Genest, Ghoudi and Rivest (1995) for the maximum
pseudo-likelihood estimator and in Padoan, Ribatet and Sis-
son (2010) for the maximum pairwise likelihood estimator.

Let us now state an analogue of Proposition 1 for the test
statistic Spn,m = [V(lp,n—Ep4, m)| B C D, |B| > 2. For
any 0 € O, recall that cg is the density associated with Cy,
and denote by ¢g and Cp the gradients with respect to 8 of
cg and Cy, respectively. The following technical conditions
are considered:

(A1) The family of copulas {Cp : @ € O} satisfies the regu-
larity conditions stated in Definition 1 of Genest and
Rémillard (2008) (see also Genest et al., 2011, Ap-
pendix B (a)) as well as Conditions 2.1 and 4.1 of
Segers (2012).

For every 8 € O, ¥ — £p g is differentiable at 6.

For every 6 € O and every w € A,_1, there exists a
neighborhood N of 8 and Lebesgue integrable func-
tions h, g : (0,1) — R such that

Co(u®)

u

Co(u®)

Y ulog(u)

veEN

< h(u) and sup
deN

< g(u),

for all u € (0,1), where ©u® = (u™1,...,u").

Finally, let (U11,...,U1,4),---,(Un1,-..,Unq) be the un-
observable random sample obtained from the available one
by Ui,j = Fj(Xi,j)v i€ {]., ey n}, j € {1, ceey d} The fol-
lowing result is then essentially a consequence of Theorem 2
of Genest and Rémillard (2008). Its proof is given in the
appendix.

Proposition 2. Assume that (A1)-(A3) and Hy hold, and
that

(21)

(\/ﬁ(éBm - 53,90)7 \/ﬁ n

690 i 1,...7U7;7d)
\/_ZCQO Uzl,---an,d)>

converges in distribution to (A, ®, W),

Then, the test statistic S pm = |\/ﬁ(§cBn — fB 6. )]s with
m = |yn], converges in distribution to |Ap —y~V/2Ay —
§g’go®|, where Ay is an independent copy of Ap.

From the previous proposition, we see that the limiting
distribution of Sp ;, »», under Hy contains the additional term
7*1/2/\35 compared with that of Sg , given in Proposition 1.
The influence of that term can be made arbitrarily small by
taking  sufficiently large.

3.4 The goodness-of-fit procedures

The weak limits established in Propositions 1 and 2 are
unwieldy and cannot be used to compute asymptotic p-
values for the test statistics. For a subset B C D with
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|B| > 2, approximate p-values for Sg,, and Sg . m can how-
ever be obtained using a one-level and a two-level parametric
bootstrap, respectively. These two procedures are described
in the forthcoming two subsections. In the rank-based con-
text under consideration, these resampling techniques were
studied by Genest and Rémillard (2008), who derived tech-
nical conditions for their asymptotic validity. When adapted
to the current setting, these conditions are almost exactly
those used in Proposition 2: If (A1)—(A3) hold and if, under
Hy, (21) holds with E(@W ) = I, where I is the p x p iden-
tity matrix, then the one- and two-level parametric boot-
strap procedures given below are asymptotically valid in
the sense of Theorems 1 and 2 of Genest and Rémillard
(2008). As a consequence, under the validity conditions and
Hy, each test statistic and its bootstrap replicates converge
jointly in distribution to independent copies of the same
limit. As already mentioned, related validity conditions can
be found in Genest et al. (2011, Appendix B).

As we continue, N and m are large integers and corre-
spond to the number of bootstrap replicates and to the size
of the second-level bootstrap sample, respectively.

3.4.1 A one-level parametric bootstrap for the test based
on Spn

1. Compute én as a maximizer of (14) and EB,n from the
available sample. R

2. Compute the test statistic S, = [vn(Bn

3. For every k € {1,...,

- 5 B,0, ) ‘

N}, repeat the following steps:

(a) Generate a random sample (U1(,k1)» cee Ul(kd)), ce
(Uv(Lkl), cee Ufﬁ) from Cy and compute the corre-
spondlng pseudo-observations.

(b) Let 6% and f(k) be the versions of 6,, and 5.,

computed from the pseudo-observations obtained
in Step (a).

(¢) Form an approximate realization of Sp,, under the

null as SBn_|\F( fBg(k))|

4. An approximate p—value for
N7 (8], = Spa).

3.4.2 A two-level parametric bootstrap for the test based
on Sp.n.m

Spn is given by

1. Compute 6,, as a maximizer of (14) and éB’n from the
available sample.

2. Generate a random Vit Via)s. .o,
(Vin1s.+, Vina) from Cp, , and compute fB 6, m from
the corresponding pseudo-observations usiné (16)

3. Compute the test statistic Spnm = |\/ﬁ(é}3n —

sample

§B,é,1,m)"

4. For every k € {1,..., N}, repeat the following steps:

(a) Generate a random sample (Ul(fcl), ceey Ul(,kd))’ cey
(U(k)

N 1,...,UT(LIZ) from Cén and compute the corre-
spondlng pseudo-observations.



(b) Let 0A7(lk) and égc)n be the versions of 6,, and éB,n
computed from the pseudo-observations obtained
in Step (a).

(¢) Generate a random sample (Vl(ﬁ), ceey ‘/'1(712))7 ceey

(k) (k) £ (k)
Vit m’d) from C'égc), and compute §B7é£f)7m
from the corresponding pseudo-observations us-

ing (16).
(d) Form an approximate realization of Sg ., under

the null as SJ(Bk,)n,m = |v/n( Ag“’)n _ égf) ).
given by

,éfl’”,m
5. An approximate p-value for
NN 1Y) > Sp.,).

B,n,m

SB,n is

4. MONTE CARLO EXPERIMENT

As already mentioned in Section 3, test statistics of the
following form were considered in the simulations:

Elzag% = Z {SB7n}’a7

BCD

(22) EFL =" {Spa},

BCD

|B|=2 |B|=3
SD,'ru Er[fj]2737d: Z {SB,n}a7
BCD
|B|=2,3,d
and Pl = > {Sea/IBI}",  ae{12},
BCD
|B|=2,3,d

where Sp p, is defined in (12). The first type of test statistic
can be seen as focusing on the difference between a nonpara-
metric and a parametric estimator of the Pickands depen-
dence function on the boundary of the unit simplex Ag_1,
while the third one considers this difference in the center
of Ay_1. The difference between ELO‘]QS 4 and Pr[logg 4 is that
the former sums differences of extremal coefficients while the
latter sums differences of Pickands dependence functions. By
setting « to 2, one obtains Cramér—von Mises-like statistics.
Three versions of each test statistic can be computed, de-
pending on which of the three nonparametric estimators of
the extremal coefficients defined in (13) is used. Recall that
the latter can be the Pickands estimator, the Hall-Tajvidi
estimator or the Capéraa—Fougeres—Genest estimator.

The finite-sample performance of the tests was investi-
gated in a computationally intensive Monte Carlo experi-
ment using [0, 10]? as study region and d = 10 sites. The fac-
tors of the experiment are the locations of the sites, the data
generating model, the hypothesized model, the strength of
the spatial dependence and the sample size n (typically cor-
responding to the number of years in a real dataset). To
avoid increasing an already very high computational bur-
den, only isotropic models with one real parameter 6 > 0
were considered. The first model, abbreviated by Sm-Iso,
was obtained by parametrizing the covariance matrix 3 in
the Smith model as X = 0I5, where I, is the 2 x 2 iden-
tity matrix. The second model, abbreviated as Sc-Exp, was

obtained by choosing the correlation function p parametriz-
ing the Schlather model to be of the exponential type with
range parameter 4, i.e.,

(23) Pexp(x) = exp(—||z|/0), xR

The last model, a particular geometric Gaussian model ab-
breviated as GG-Exp, was obtained by fixing the parameter
o%in (5) to 8 and by using the exponential correlation func-
tion given by (23). For each of the three models, three values
of 6 were considered for random number generation. They
were chosen so that the bivariate extremal coefficient {y; ;3
of two fictitious sites x; and x; equals 1.5 when the dis-
tance between x; and x; equals 1, 5, and 10, respectively.
The latter distance will be denoted by d; 5 as we continue.
The sample size n was taken in {50,100,200}. To investi-
gate the influence of the locations of the d = 10 sites, three
different sets of sites were generated. These are represented
in Figure 1. A larger number of site configurations was not
considered for computational reasons.

Samples from the Sm-Iso, Sc-Exp and GG-Exp mod-
els were generated using the excellent SpatialExtremes R
package (Ribatet, Singleton and R Core team, 2013). Note
that 02 was set to 8 in the model GG-Exp because ran-
dom number generation for the geometric Gaussian model
in SpatialExtremes is apparently unreliable when o2 > 10.
For each set of sites, each of the three models and each value
of #, 1,000 samples were produced. For each generated sam-
ple, the goodness of fit of the models Sm—Iso, Sc—Exp and
GG-Exp was tested. The bootstrap sample size N was set
to 1,000 and all tests were carried out at the 5% significance
level. For the tests based on ET[LO‘% defined in (22), the one-
level parametric bootstrap of Section 3.4.1 was used as a
closed-form expression of the bivariate extremal coefficient
is available for all three models considered in the simula-
tions (as for most models). To avoid the use of the more
costly two-level parametric bootstrap of Section 3.4.2 for the
tests based on the other statistics given in (22), we “precom-
puted” reasonably accurate approximations of the mappings
0 — &£ g for all three sets of sites displayed in Figure 1, all
three models and all B C D, |B| € {3,d}. This was done
using the procedure described in detail in Appendix B and
enabled us to save a lot of computing time. Note that the
use of the two-level parametric bootstrap will be presented
in the illustration of Section 5, where it will be also com-
pared with the results of the one-level parametric bootstrap
when assessing the fit of the Smith model.

The obtained rejection percentages of Hy for the d = 10
sites represented in the left (resp. middle, right) plot of Fig-
ure 1 are given in Table 1 (resp. 2, 3). The values of 6 used
for data generation are given in the third column of the
tables, while the second column recalls the corresponding
value of dy 5 (the distance between two sites for their ex-
tremal coefficient to be equal to 1.5). The tables only report
the rejection percentages for the tests based on the statistics
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Figure 1. The three different sets of d = 10 sites used in the simulations.

n (22) when based on the CFG estimator of the unknown
Pickands dependence function. Indeed, with a very few ex-
ceptions, the use of the CFG estimator led to substantially
more powerful tests. The results for the test statistics with
« = 2 are not reported as the corresponding tests did not
appear more powerful than those with o = 1. A final gen-
eral remark is that the results appear to be qualitatively
identical for the three sets of sites.

By considering the empirical levels of the tests given in
italic in the tables, we see that, overall, the tests seem to
hold their level reasonably well for 6 values corresponding
to a pairwise extremal coefficient of 1.5 at distance 5 or 10
(i.e., d1.5 € {5,10} in the tables). They appear however too
liberal when d; 5 = 1, although the agreement with the 5%
nominal level clearly improves when n increases from 50 to
200.

From the first vertical block of the tables, we see that,
when assessing the fit of the model Sm—Iso, the tests have
overall high power, and that it is the test based on E,[L1 ]2
(resp. Sp,,) that seems the most (resp. least) powerful.
When testing the fit of the model Sc—Exp, we see, from
the second vertical block of the tables, that it is the test
based on E,[L1 ]2 that is the most powerful when data are gen-
erated from the model Sm—Iso. When GG-Exp is used as a
data generating model and d; 5 € {1,5}, the test based on
Sp,n displays overall the highest rejection rates, while when
dy5 = 10, it is either ELI}2 or E7[L17]3 Finally, the rejection
rates reported in Tables 1-3 suggest that the most power-
ful tests overall for assessing the fit of the model GG-Exp
are EE}Q (when data are generated from Sm-Iso) and Sp
(when data are generated from Sc—Exp).

Note that, for dy5 = 1, in most situations, very high
rejection rates are observed when the model Sc—Exp is in-
volved. This is unsurprising since, as already mentioned, the
Schlather model cannot model spatial independence. In a
somehow related way, we see, from the second horizontal
block of the tables that the rejection percentages are very
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close (if not equal) to 100% when data are generated from
the model Sc-Exp and when the fit of one of the two other
models is assessed.

Given the large number of factors influencing the power of
the tests, it is not surprising that no test appears uniformly
better. From a practical perspective, we suggest to at least
consider the tests based on ELl]z and Sp,, since, having in
mind the interpretation of the statistics given below (22),
these tests can be used to identify on which “regions” of
Ag_1 the estimated model does not fit.

5. ILLUSTRATION

As an illustration, the tests were applied to the Swiss
rainfall data analyzed by Davison, Padoan and Ribatet
(2012). The data consist of summer maximum daily pre-
cipitation for the years 1962-2008 at 51 weather stations in
the Plateau region of Switzerland. Among the eleven models
fitted in Davison, Padoan and Ribatet (2012) to the max-
ima measured at a subset of 35 stations, we restricted our
attention to the best Smith, Schlather and geometric Gaus-
sian models in terms of composite likelihood information
criterion (CLIC) (see Davison, Padoan and Ribatet, 2012,
Table 5). We considered in particular the Smith model with
anisotropic covariance matrix ¥ = (X;;) (abbreviated as
Sm-Ani in the sequel), the Schlather model with exponential
correlation function given by (23) (abbreviated as Sc-Exp),
and two geometric Gaussian models with Whittle-Matérn

correlation function. The latter correlation function is de-
fined by

1
pwm(x) = m(HmH/G)HKn(HmHM), x € R,
where k > 0 is a smoothing parameter, # > 0 is the range pa-
rameter, K, is the modified Bessel function of order x and I"
is the gamma function. The parameters of the first geometric
Gaussian model, denoted by GG-WMI1, are o2 (see (5)) and
K, while 6 is fixed to 700 as in Davison, Padoan and Ribatet
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Table 1. Percentage of rejection of Hy computed from 1,000 samples of size n generated from the models Sm—Iso, Sc—Exp and GG—Exp with parameter value
0 for the d = 10 sites represented in the left plot of Figure 1

Model di5 0 n Ho : Sm-Iso Hy : Sc-Exp Hy : GG-Exp

1 1 1 1 1 1 1 1 1 1 1 1
SD,TL EL,]s E’r[z,]Q ET[L,]z,:a,d P’r[l,]Q,S,d SD,n EL,]3 EL,]Q EL,]2,3,(1 PT[L,]2,3,d SD,n Er[z,]3 ET[L,]z Ey[L,]z,s,d P, ]2,3,(1

7,

Sm-Iso 1 0550 50 11.2 124 11.8 122 124 100.0 100.0 99.9 100.0 1000 1.9 0.6 4.1 0.8 1.2
100 59 56 5.0 5.7 57 100.0 100.0 100.0  100.0 1000 0.8 7.7 16.1 6.9 8.8
200 5.1 58 4.9 5.5 5.2
5 1374 50 4.9 55 47 5.3 52 53 453 704 521 554 4.6 80.5 967  86.8  89.5
100 65 7.3 5.7 7.0 6.6 74 993 1000 999 1000 1.4 100.0 100.0  100.0  100.0
10 5495 50 2.1 2.8 2.5 2.3 2.2 02 58 303 84 102 1.2 856 936 891  90.0
100 34 29 37 3.0 %1 1.1 89.1 1000  96.7 978 1.3 100.0 100.0  100.0  100.0
Sc-Exp 1 1443 50 100.0 100.0 100.0  100.0 1000 6.1 82 6.9 8.0 7.8 100.0 100.0 985  100.0  100.0
100 100.0 100.0 100.0  100.0  100.0 52 7.6 7.9 7.8 7.7 100.0 100.0 100.0  100.0  100.0
200 53 7.0 6.3 7.1 6.9
5 7.213 50 100.0 100.0 100.0  100.0  100.0 4.7 3.5 2.7 3.3 8.1 977 981 839 980  97.2
100 99.6 100.0 100.0  100.0  100.0 4.6 4.6 4.7 4.9 4.6 100.0 100.0 99.8  100.0  100.0
10 1443 50 99.7 100.0 100.0  100.0 1000 52 4.1 3.4 3.6 8.6 915 927 885 929 929
100 99.0 100.0 100.0  100.0  100.0 4.1 2.9 8.0 2.5 2.8 99.6 100.0 100.0  100.0  100.0
GG-Exp 1 8282 50 765 992 992 993 993 938 509 302 517 492 9.7 7.8 89 8.1 8.1
100 927 99.9 100.0 999 999 100.0 883 739 902 873 87 67 5.9 7.3 7.1
200 58 81 1.7 8.1 8.0
5 41.41 50 69.8 100.0 100.0  100.0  100.0 7.8 43 1.4 3.7 31 52 36 38 3.9 4.0
100 89.1 100.0 100.0  100.0  100.0 159 19.7 27.1 203 217 4.9 44 5.4 4.4 4.5
10 82.82 50 80.4 100.0 100.0  100.0 1000 3.1 19.0 29 159 145 3.8 3.0 8.6 3.3 3.4

100 96.7 100.0 100.0 100.0 100.0 23 752 789 76.4 77.9 4.5 4.8 5.0 4.7 4.4
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Table 2. Percentage of rejection of Hy computed from 1,000 samples of size n generated from the models Sm—Iso, Sc—Exp and GG—Exp with parameter value

0 for the d = 10 sites represented in the middle plot of Figure 1

Model dis 0 n Hy : Sm-Iso Hy : Sc-Exp Hy : GG-Exp
Sp,n ET[Ll,]s Ea[:,]z EE,]Q,S,d P7[L1,]2,3,d Sp,n Erlzlls Er[g,]z Eg}z,&d P7[11,12,3,d Sp,n Er[LlA,]:a ET[Ll,]Q E7[L1,]2,3,d PT[Ll,]Q,S,d
Sm—Iso 1 0.550 50 11.0 11.1 9.0 11.8 11.2 100.0 100.0 99.9 100.0 100.0 3.0 0.6 1.8 0.6 0.6
100 7.0 5.7 5.0 5.5 5.8 100.0 100.0 100.0 100.0 100.0 1.1 0.4 4.6 0.3 0.6
200 6.7 5.5 5.0 5.8 5.5
5 13.74 50 4.8 6.5 4.8 6.5 6.2 3.2 414 80.6 50.6 55.7 15.6 68.0 95.6 81.2 84.4
100 4.6 5.7 5.0 5.9 5.9 4.3 97.1 100.0 99.3 99.5 184 99.4 100.0 100.0 100.0
10 54.95 50 3.2 3.0 2.7 2.9 2.8 5.5 9.0 48.8 16.2 19.6 6.3 81.8 95.3 88.2 89.0
100 3.2 3.5 3.8 3.3 8.8 259 94.4 100.0 98.8 99.5 129 99.9 100.0 100.0 100.0
Sc—Exp 1 1.443 50 100.0 100.0 100.0 100.0 100.0 4.2 9.6 7.0 9.3 9.3 99.9 99.8 98.5 99.9 99.8
100 100.0 100.0 100.0 100.0 100.0 3.6 6.3 5.7 6.5 6.5 100.0 100.0 100.0 100.0 100.0
200 2.5 5.6 6.3 5.4 5.3
5 7.213 50 100.0 100.0 100.0 100.0 100.0 4.9 4.8 4.2 4.6 4.6 976 972 835 97.4 96.3
100 100.0 100.0 100.0 100.0 100.0 5.9 4.6 4.5 4.6 4.8 100.0 100.0 994 100.0 100.0
10 14.43 50 99.8 100.0 100.0 100.0 100.0 4.8 4.3 3.8 3.5 8.8 945 94.3 89.2 94.9 94.4
100 100.0 100.0 100.0 100.0 100.0 4.3 4.7 4.6 4.4 4.0 99.6 999 999 99.9 99.9
GG-Exp 1 8282 50 44.3 92.0 91.7 92.4 92,5 84.0 24.2 209 27.5 24.6 11.1 9.8 8.0 8.8 8.9
100 585 99.6 99.7 99.6 99.6 99.7 76.9 824 80.6 79.6 81 11.8 9.5 10.9 10.7
200 6.7 7.3 7.4 7.6 7.5
5 41.41 50 32.7  99.6 100.0 99.6 99.6 11.1 3.0 3.0 2.7 2.5 5.8 3.9 5.2 4.5 4.6
100 43.2 100.0 100.0 100.0 100.0 194 10.2 21.5 12.4 13.9 3.8 4.6 5.6 4.5 4.5
10 82.82 50 32.2 100.0 100.0 100.0 100.0 2.1 16.1 3.6 13.4 12.2 4.1 3.0 4.8 3.5 3.6
100  33.9 100.0 100.0 100.0 100.0 3.1 588 67.4 60.5 63.0 5.1 3.9 4.7 4.2 4.6
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Table 3. Percentage of rejection of Hy computed from 1,000 samples of size n generated from the models Sm—Iso, Sc—Exp and GG—Exp with parameter value
0 for the d = 10 sites represented in the right plot of Figure 1

Model di5 0 n Ho : Sm-Iso Hy : Sc-Exp Hy : GG-Exp

1 1 1 1 1 1 1 1 1 1 1 1
SD,TL EL,]s E’r[z,]Q ET[L,]z,:a,d P’r[l,]Q,S,d SD,n EL,]3 EL,]Q EL,]2,3,(1 PT[L,]2,3,d SD,n Er[z,]3 ET[L,]z Ey[L,]z,s,d P, ]2,3,(1

7,

Sm-Iso 1 0550 50 17.0 16.7 174 17.1 16.9 100.0 100.0 100.0 100.0 100.0 1.5 0.4 4.6 0.5 0.5
100 7.0 7.8 7.9 7.5 7.7 100.0 100.0 100.0 100.0 100.0 0.2 7.2 183 5.8 8.1
200 5.0 4.9 4.8 5.0 5.0
5 13.74 50 4.8 5.1 3.9 4.8 5.0 8.7 558 TT.7 61.7 64.3 11.1 756 959 83.5 85.2
100 5.2 6.6 6.1 6.1 6.0 224 99.0 99.9 99.8 99.8 9.8 99.8 100.0 99.9 99.9
10 54.95 50 4.8 2.8 3.4 2.9 3.0 0.7 7.8 38.2 11.8 14.6 3.6 831 95.7 91.5 92.4
100 2.8 3.4 3.7 3.3 3.2 1.8 92.5 100.0 98.0 99.0 1.3 100.0 100.0 100.0 100.0
Sc-Exp 1 1.443 50 100.0 100.0 100.0 100.0 100.0 6.8 9.7 8.0 9.7 9.9 999 100.0 99.5 100.0 100.0
100 100.0 100.0 100.0 100.0 100.0 5.8 7.9 7.3 7.9 7.6 100.0 100.0 100.0 100.0 100.0
200 4.7 6.9 5.8 6.8 6.6
5 7.213 50 100.0 100.0 100.0 100.0 100.0 5.6 3.7 4.2 3.7 8.9 975 969 82.6 97.0 96.4
100 100.0 100.0 100.0 100.0 100.0 5.0 3.4 3.8 3.2 8.8 100.0 100.0 99.8 100.0 100.0
10 14.43 50 100.0 100.0 100.0 100.0 100.0 5.7 3.1 2.8 2.8 2.7 96.1 93.5 87.6 94.4 94.0
100 100.0 100.0 100.0 100.0 100.0 3.6 4.8 4.6 4.8 4.1 99.9 100.0 100.0 100.0 100.0
GG-Exp 1 8282 50 788 98.6 9838 98.4 98.6 96.9 649 37.5 66.7 62.6 9.7 9.1 8.2 9.6 8.9
100 96.3 100.0 100.0 100.0 100.0 100.0 95.8 85.8 96.6 95.2  12.0 8.0 6.0 8.2 7.5
200 5.7 6.9 7.1 6.6 7.0
5 4141 50 744 99.9 100.0 99.9 100.0 10.3 2.3 2.5 2.2 2.6 5.9 3.6 4.8 3.8 4.0
100  90.9 100.0 100.0 100.0 100.0 22.6 8.7 16.8 9.7 10.2 5.0 4.0 4.2 3.5 3.6
10 82.82 50 81.9 100.0 100.0 100.0 100.0 2.6 16.1 2.5 12.7 11.6 3.5 8.1 3.8 8.1 3.2
100  95.5 100.0 100.0 100.0 100.0 23 604 68.1 61.7 63.8 6.1 3.9 4.8 4.2 4.1




Table 4. Summary of the max-stable models fitted to the Swiss rainfall data using the SpatialEztremes R package

Model o%( se ) 6( se ) k( se ) loglik CLIC
GG-WM1  8.571(2.256)  700( — )  0.368(0.030) —231488 463286
GG-WM2 8.571( — ) 700( — ) 0.368( 0.011) —231488 463180
Sc-Exp —( — ) 42.004(6.643) —( — ) —232167 464563
Model 311( se ) Y12( se ) Yoo( se ) loglik CLIC
Sm-Ani 351.680(6.110) 37.364(4.177) 312.435(12.856) —236437 472964

Table 5. Approximate p-values and execution times of the goodness-of-fit tests for the max-stable models fitted to the Swiss
rainfall data. The two lines for the model Sm—Ani correspond to the two- and the one-level parametric bootstrap, respectively.
The timings are in hours and were obtained on a Linux machine with a 3.4GHz CPU

Model Sp. BV EY, EY,., P, Time (h)
GG-WM2 0206 0.114 0.050  0.111  0.112 7.6
Sc-Exp 0.001 0.804 0330 0773  0.784 4.1
Sm-Ani (2-level)  0.563 0.000 0.000  0.000  0.000 4.3
Sm-Ani (I-level) 0.582 0.000 0.000  0.000  0.000 7.9

(2012, Table 5). The only parameter of the second geomet-
ric Gaussian model, denoted by GG-WM2, is «, 02 and 0
being fixed to 8.571 and 700, respectively. The latter model
was introduced based on the results given in Table 4 be-
cause the fit of the model GG-WMI1 could not be assessed.
Indeed, as already mentioned, random number generation
for the geometric Gaussian model in the SpatialExtremes
package is apparently only reliable for o2 < 10, and per-
forming a parametric bootstrap for GG-WM1 turned out to
produce estimates of o2 frequently larger than 10. Similarly,
the goodness of fit of the Brown—Resnick models considered
in Davison, Padoan and Ribatet (2012) was not assessed
because we had no access to efficient random number gen-
eration in the 2-dimensional case.

Our model fitting was different from Davison, Padoan
and Ribatet (2012) in two aspects: first, we used all 51 sites,
including the 16 sites left out for validation in Davison,
Padoan and Ribatet (2012); second, the fitting was based
on the maximization of the pairwise log pseudo-likelihood
given in (14) thereby avoiding the necessary step of esti-
mating marginal parameters in trend surfaces and the risk
of misspecification. This explains why the results of the fit-
ting given in Table 4, although similar, do not coincide with
those of Davison, Padoan and Ribatet (2012).

As a next step, we assessed the goodness of fit of the
models GG-WM2, Sc-Exp and Sm—Ani. For the first two
models, the two-level parametric bootstrap of Section 3.4.2
was used to obtain an approximate p-value with N = 1,000
and m = 2,500. For the third model, both the one- and the
two-level parametric bootstraps were used.

From the plots giving the bivariate extremal coefficients
versus site distance under the four fitted models (which
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are very similar to the plots given in Figure 9 of Davison,
Padoan and Ribatet, 2012), it appears that the distance at
which the bivariate extremal coefficients become equal to 1.5
is somewhere between 30 to 40 km. Since the study region is
approximately a 70km by 80km rectangle, the spatial de-
pendence in the data seems, up to a scale factor, similar to
the spatial dependence corresponding to the settings with
di1.5 = b in the simulation study reported in Section 4. We
have therefore no reason to believe that the goodness-of-fit
tests will be too liberal in the setting under consideration.
Table 5 gives the approximate p-values of the tests based
on the statistics in (22) with @ = 1 and the Pickands de-
pendence function estimated by the CFG estimator. The
two lines for the model Sm—Ani correspond to the two-
and the one-level parametric bootstrap, respectively. As ex-
pected, the results are similar, but maybe slightly surpris-
ingly, the two-level parametric bootstrap is approximately
twice as fast. This may be explained by the cost of the
evaluation of the multivariate normal c.d.f. and the form of
the closed-expression of the extremal coefficients under the
Smith model; see (18). As many tests are performed, the
significance level should be adjusted before interpreting the
results. For simplicity, we arbitrarily propose to reason at
the 1% level. From the last two lines of Table 5, we see that
the model Sm—Ani is rejected by all the tests except the one
based on Sp,,. In other words, under the Sm—Ani model,
we have very strong evidence that the parametric and non-
parametric estimates of the Pickands dependence function
differ significantly on the boundary of Agz_1, while there is
no evidence of disagreement in the center of A;_1. On the
contrary, for the model Sc—Exp, there is some evidence of
disagreement between the nonparametric and parametric es-



timates in the center of A;_; only. Finally, we see that the
GG—-WM2 model was not rejected by any test.
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APPENDIX A. PROOF OF PROPOSITION 2

Let (Wle RN Wl,d)7 RN (Wm71, ey Wm,d) be a ran-
dom sample of size m = |yn| from Cg, indepen-
dent of the available data. Furthermore, let A,, be one
of the three corrected nonparametric estimators of the
Pickands dependence function considered in Section 3.1
computed from the pseudo-observations obtained from
(Wlllv ey Wl,d)7 ey (VVmJ7 ey Wm,d), and let §B,m =
|B| A, (wp) be the corresponding estimator of £p g,. Then,
from the assumptions, we have that

Wi, Wia)
117'-'7Wi,d)

1 K éoy(
T 2 et

converges in distribution to (Az, W’), an independent copy
of (Ap,W). It follows that
co, (Wi, ..., Wia)
90 Zlv“’vWi,d)

(\/_(53 m §B 00

m
. éoy(
(24) (ﬁ(&g,m §n.0)): ;
converges in distribution to (y~1/2A’;,y'/?W’). Hence, by
independence, we have that (21) and (24) converge jointly in
distribution to (Ag, ®, W,y~1/2A% 41/2W’). Consequently,
the assumptions of the first part of Theorem 2 of Gen-
est and Rémillard (2008) are satisfied and we have that
\/ﬁ(éB,n —£B.00s éB’émm—fB)go) converges in distribution to
(Ap,y 2N+ E(y P Ay PWT)O) = (Ap, v~ /2A +
E(AgWT®).

Now, let us decompose Sg.n,m as SBnm = \\/ﬁ(égn —
¢B.0,) — \/ﬁ(gB,én,m —&B.6,)|- By the continuous mapping
theorem, it follows that Sg . converges in distribution to
|Ap — V2N —E(AgWT)O|.

It thus remains to verify that E(ApW) = £ .6, We shall
only consider the case £, = 53 ., the case ép,, = §CFG
being similar. Since Conditions 2. 1 and 4.1 of Segers (2012)
are assumed to hold, from Theorem 1 of Gudendorf and
Segers (2012), we have that

1
d
— |B|A3, (wp) / Cluws)
0

u

where C is the weak limit of the empirical copula process
(see e.g. Segers, 2012), and u®8 = (u™81,... u*5.4). Then,

B(ApW) = ~1B143, (ws) [ BLC@™ W,

Now, from Genest and Rémillard (2008, page 1108), we have
that E{C(u)W} = Cp, (u) for all u € [0, 1]¢. It follows that

1
. d
B(ApW) = ~1B145, (wp) [ Co,(wen) T

du
—_ wpB
— |BI43, (ws) a6,{/ cotwrn 2 h

where the last equality is a consequence of the continuity
of @ — Co, (A3) and Lebesgue’s dominated convergence
theorem. Finally, from Lemma 1 of Gudendorf and Segers
(2012) (see also Genest and Segers, 2009, Lemma 3.1), we
have that fol Co(u¥s)u~tdu = 1/4g(wp), from which we
obtain that E(AgW) = |B|Ag, (wp) = £5.0,- |

APPENDIX B. REDUCING THE
COMPUTATIONAL COST OF
THE PARAMETRIC
BOOTSTRAP

The parametric bootstrap is clearly a computationally in-
tensive statistical procedure. Besides the fact that random
number generation and fitting of the hypothesized model
are necessary at each iteration, its high cost may addition-
ally come from the cost of the evaluation of the estimate
of the quantity of interest under the null. A strategy for
speeding-up the procedure then consists of precomputing a
reasonably accurate approximation of the function mapping
the parameter vector to the quantity of interest under the
null.

To fix ideas, let us focus on the algorithm given in Sec-
tion 3.4.1. From Step 3 (c), we see that, for every k €
{1,..., N}, once 6\ is computed by fitting the hypothe-
sized model to the data generated in Step 3 (a), EB,égc) needs
to be evaluated so that S](Bk,)n can be computed. The last step
is not necessarily straightforward even if a closed-form ex-
pression for the map 8 — {p ¢ is available. A good example
of the latter fact is when the Smith model is hypothesized as
the evaluation of (18) turns out to be very costly. In such a
situation, the speed of the parametric bootstrap procedure
can be increased by precomputing a reasonably accurate ap-
proximation of the map @ — £p g. It is however important
to note that, in the context of max-stable processes, this last
step may only be of interest in the framework of a simula-
tion study as the map to be precomputed depends on the
location of the d sites.

A similar strategy can actually be used even if a closed-
form expression for the map 6 — {p ¢ is unavailable. Let
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Figure 2. The left (resp. middle, right) plot represents the graph of the precomputed approximation of the mapping 6 — &£p o
based on the CFG estimator for each of the three models in the case of the set of sites represented in the left (resp. middle,
right) plot of Figure 1.
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Figure 3. The left (resp. middle, right) plot compares the graphs of the mappings based on closed-form expressions (solid
lines) with those of the corresponding precomputed approximations (dashed lines) based on penalized splines for the Sm—Iso
(resp. Sc—Exp, GG—Exp) model. The top (resp. middle, bottom) pair of curves corresponds to fictitious sites at distance 1
(resp. 4, 8).

us illustrate the proposed approach in the case of the sim-
ulations that produced Tables 1-3. For each of the three
site configurations represented in Figure 1, each set B C D,
|B| € {3,d} and each of the three models Sm—Ani, Sc-Exp
and GG-Exp parametrized by 6 > 0 as explained in Sec-
tion 4, a grid of 6 values was created as 6 = arctan(mu/2)
for u € {0.001,0.002,...,0.999}. For each 6 value on the
grid, a sample of size m = 2,500 was generated under the
model and the value of £ ¢ was estimated by |B|Am(w3),
where flm is one of the three corrected nonparametric esti-
mators of the Pickands dependence function defined in Sec-
tion 3.1. The relationship between the 6 values and the cor-
responding £p ¢ values was approximated using penalized
splines as implemented in the pspline R package (Ramsey
and Ripley, 2013) and stored for future use. An an example,
the precomputed approximations of the mappings 6 — £p g
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when the CFG estimator is used for A,, are represented in
Figure 2 for each of the three sets of sites represented in
Figure 1.

Note that, although the precomputing step has some sim-
ilarity with the second level of the algorithm of the two-level
parametric bootstrap given in Section 3.4.2, the simulation
procedure based on the precomputed approximations is in-
deed a one-level parametric bootstrap as the use of the latter
does not bring in any additional variability.

For |B| = 2, the mappings 6 — £p ¢ were computed using
the closed-form expressions available for all three models.
The latter were also used to empirically validate the accu-
racy of the procedure producing the approximations of the
precomputed mappings. As an illustration, Figure 3 com-
pares the graphs of the mappings based on closed-form ex-
pressions with those of the corresponding precomputed ap-



proximations based on penalized splines for the three mod-
els used in the simulations. As one can see, the approxi-
mations appear reasonably accurate except when 6 is very
large.
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