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Spatial aggregation and high quantile estimation
applied to extreme precipitation∗

Ana Ferreira

When estimating high quantiles and tail probabilities re-
lated to the distribution of a spatially aggregated continuous
stochastic process, one needs to account for spatial depen-
dence. A way to tackle this problem uses the areal coefficient
recently analysed in [8] Ferreira, de Haan and Zhou (2012).
We present new ways to estimate this spatial parameter
and obtain asymptotic normality of the resulting quantile
and tail probability estimators. Note that only consistency
for the tail probability estimator was achieved in [8] mainly
due to theoretical difficulties with the estimator of the areal
coefficient therein considered.

Moreover, we evaluate the effect of the areal coefficient
on return values, by an application to three case studies on
precipitation extremes: North Holland, Venice Bay in Italy
and Northwest Portugal. The proposed estimators seem to
be a compromise, in the sense of being easier at a theoret-
ical level and to apply but seem less effective in their per-
formance when compared to the only existing alternative
from [8].

In all we intend to draw attention to the areal coefficient.
Though it is a unique number characterizing spatial depen-
dence, it helps to explain in a simple way the differences
usually observed when estimating quantiles (or tail proba-
bilities) locally and from spatially aggregated data.

AMS 2000 subject classifications: Primary 60G70,
62G32, 62M30; secondary 62P12 .
Keywords and phrases: Extreme quantile and tail prob-
ability estimation, Generalized Pareto distribution, Spatial
dependence, Spatial aggregation, Areal coefficient, Extreme
precipitation.

1. INTRODUCTION

Let daily rainfall over the space be represented by a con-
tinuous stochastic process X on some compact space S,
i.e. X = {X(s)}s∈S . We want to study estimation of ex-
treme events on the basis of independent and identically
distributed (i.i.d.) observations of this process, and of spe-
cial concern are quantities related to the tail probability of
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/112770 /2009; EXPL/MAT-STA/0622/2013 and PEst-
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the process spatially aggregated. The aggregation of precip-
itation over space corresponds then to

∫
S
X(s)ds, the total

amount of daily rain over S. When estimating (e.g. 100-year)
return values one may consider local estimates on the basis
of univariate extreme value theory, but also important is the
estimation of return values for the total amount of rain over
the whole region S.

To tackle the aggregated problem, a parameter account-
ing for the effect of spatial aggregation, called the areal co-
efficient, was introduced in [2]. Subsequently, [8] justified it
in practical terms, relating it with the appropriate domain
of attraction condition, and analysed its estimation. Though
with a very practical interpretation, the introduced estima-
tor for the areal coefficient relies heavily on the underlying
theoretical framework. Perhaps this explains why it has not
been exploited so much. We present an alternative way to
estimate this parameter and obtain asymptotic normality of
resulting estimators.

We consider extreme value theory. Let X be a stochastic
process defined in the space of continuous functions, X ∈
C(S), with S some compact subset of R2. Throughout we
assume the domain of attraction condition of max-stable
processes [10]:

Let X1, X2, . . . be i.i.d. random elements of C(S). Sup-
pose there exist normalizing functions an = {an(s) > 0}s∈S

and bn = {bn(s)}s∈S in C(S) such that,

(1)

{
max
1≤i≤n

Xi(s)− bn(s)

an(s)

}
s∈S

→ η, n → ∞,

weakly (or in distribution) and in C(S) with η = {η(s)}S ∈
C(R) a stochastic process with non-degenerate marginals.
Then it is well known that the limiting process is a max-
stable process ([9]; cf. also [11]): for η1, η2, . . ., i.i.d. copies
of η, there are real continuous functions cn = {cn(s) > 0}s∈S

and dn = {dn(s)}s∈S such that,

max
1≤i≤n

ηi − dn
cn

d
= η for all n = 1, 2, . . . .

The process is called simple if its marginal distributions are
standard Fréchet.

Under the domain of attraction condition (and some fur-
ther natural assumptions) the tail distribution of

∫
S
X(s)ds

is asymptotically generalized Pareto (GP) [8]. One of the
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important applications of extreme value theory is the esti-
mation of high quantiles and the GP tail is a key approxi-
mation. Under our framework one has to additionally deal
with the estimation of the areal coefficient. We aim at ex-
ploiting new ways to estimate it, and justify the procedure
both theoretically and in practice.

The outline of the paper is as follows. In Section 2 we
present the theoretical results, namely asymptotic normal-
ity of the resulting estimators for the areal coefficient, high
quantiles (‘high’ means, as usual in extreme value theory,
that we are specially interested in values beyond the sample
information) and tail probabilities. In Section 3, the results
are applied to spatial daily precipitation data over three
different regions: Northwest Portugal, North Holland and
Venice Bay in Italy. We focus mainly on return value estima-
tion as being commonly used when evaluating precipitation
extremes. Our results seem to be a compromise with the
results from [8], in the sense that they are easier to handle
both theoretically and in practice but, on the other hand,
show larger variance or bias.

2. ESTIMATORS AND ASYMPTOTIC
NORMALITY

2.1 Definition of estimators

Denote by η̄ = {η̄(s)}s∈S any simple max-stable process
in C+(S) = {f ∈ C(S) : f ≥ 0}. Any max-stable process
η = {η(s)}s∈S in C(S) can be represented by

(2) η =
η̄γ − 1

γ
,

for some η̄ and a continuous function γ = {γ(s)}s∈S called
the extreme value index function.

For any simple max-stable process, there exists a finite

measure ρ on C
+

1 (S) = {f ∈ C(S) : f ≥ 0 , sups∈S f = 1},
called the spectral measure such that

(3)

∫
C

+
1 (S)

f(s) dρ(f) = 1

for all s ∈ S and for m = 1, 2, . . ., K1,K2, . . . ,Km compact
sets in S and x1, x2, . . . , xm > 0

− logP (η(s) ≤ xj , for s ∈ Kj , j = 1, 2, . . . ,m)

=

∫
C

+
1 (S)

max
1≤j≤m

(
x−1
j sup

s∈Kj

g(s)

)
dρ(g);

cf. [9].

For completeness we state next a result from [8], estab-
lishing the limiting tail probability of

∫
S
X(s)ds, which is

our main motivation.

Theorem 2.1. Suppose (1)–(2) hold with constant γ ≡
γ(s), s ∈ S, and that for some positive functions at and
A(s),

(4) sup
s∈S

∣∣∣∣at(s)at
−A(s)

∣∣∣∣ → 0, as t → ∞,

(then one can take at =
∫
S
at(s)ds which implies∫

S
A(s)ds = 1); for γ = 0 require at(s) = atA(s) for all t

and s ∈ S. Additionally, if γ ≤ 0 require ρ{g ∈ C̄+
1 (S) :

infs∈S g(s) = 0} = 0; if γ > 0 require that X is non-
negative.

Then,
(5)

lim
t→∞

tP

(∫
S
X(s)ds−

∫
S
bt(s)ds

at
> x

)
= θγ(1 + γx)−1/γ

for all x with 1 + γx > 0 where

(6) θγ =

∫
C̄+

1 (S)

(∫
S

A(s) gγ(s) ds

)1/γ

dρ(g).

For γ = 0 the right-hand side of (5) should be
read as θ0e

−x and the right-hand side of (6) as∫
C̄+

1 (S)
exp(

∫
S
A(s) log g(s) ds)dρ(g).

The extra parameter θγ appearing in the limit (5) is the
areal coefficient, completely specified in (6). In general it
follows that (cf. [8]):

1. 0 < θγ ≤ 1, for γ ≤ 1,
2. θγ ≥ 1, for γ ≥ 1.

Particular situations are: θγ = 1 in case of total dependence
and θ1 = 1.

A direct consequence of the above theorem is that the
distribution of

∫
S
X(s)ds is in the domain of attraction of

some max-stable distribution. This follows from standard
univariate extreme value theory and the fact that

θγ(1 + γx)−1/γ =

(
1 + γ

x− (θγγ − 1)/γ

θγγ

)−1/γ

.

That is, in the right-hand side of (5) we have a GP distri-
bution. Hence,

Corollary 2.1. Under the conditions of Theorem 2.1,

(7) lim
t→∞

tP

(∫
S
X(s)ds− b̃t

ãt
> x

)
= (1 + γx)−1/γ ,

for all x with 1 + γx > 0, γ ∈ R, and the normalizing
constants ãt and b̃t can be taken as

(8) ãt = θγγat and b̃t =

∫
S

bt(s)ds+ at
θγγ − 1

γ
,

with at =
∫
S
at(s)ds and bt(s) from (5).
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Solving both equations in (8) in θγ , motivates the esti-
mators for the areal coefficient:

(9) θ̂1 ≡ θ̂(1)γ =

(̂̃an/k
ân/k

)1/γ̂n/k

and

θ̂2 ≡ θ̂(2)γ =

⎛⎝1 + γ̂n/k

̂̃
bn/k −

∫
S
b̂n/k(s)ds

ân/k

⎞⎠1/γ̂n/k

,

for suitable estimators γ̂n/k, ̂̃an/k, ̂̃bn/k, ân/k and b̂n/k =∫
S
b̂n/k(s)ds of γ, ãn/k, b̃n/k, an/k and bn/k =

∫
S
bn/k(s)ds

respectively.
We aim at establishing asymptotic normality of θ̂1 and

θ̂2 and, for that we need asymptotic normality of all the
intermediate estimators. Assume throughout the conditions
of Theorem 2.1.

2.2 Asymptotic normality of γ̂n/k, ̂̃an/k,̂̃
bn/k, ân/k and b̂n/k

As it is usual in extreme value theory, we need second or-
der conditions. We shall impose conditions on U·, the inverse
function of 1/P (

∫
S
X(s)ds > x), and on U·(s), the marginal

inverse functions of 1/P (X(s) > x), i.e. for each s ∈ S.
We start with the former. Assume there exists a func-

tion αt, positive or negative with |αt| regularly varying with
index ρ ≤ 0 and limt→∞ αt = 0 such that

(10) lim
t→∞

Utx−
∫
S
bt(s) ds

at
− (θγx)

γ−1
γ

αt
= θγγHγ,ρ(x), x > 0

with

Hγ,ρ(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
ρ

(
xγ+ρ−1
γ+ρ − xγ−1

γ

)
, ρ 	= 0 	= γ

1
γ

(
xγ log x− xγ−1

γ

)
, ρ = 0 	= γ

1
ρ

(
xρ−1

ρ − log x
)

, ρ 	= 0 = γ

1
2 (log x)

2 , ρ = 0 = γ.

The above second order condition is the standard one related
to the limit (7) ([13]; cf. also [11] Sect. 2.3) but rewritten
in terms of the normalizing functions at and bt(s) from (5)
and using the relations (8). Note that it provides a relation
between the functions Ut and

∫
S
Ut(s)ds.

Then it is well known (cf. [11] Sect. 4.2) that there are

estimators ̂̃an/k and
̂̃
bn/k on the basis of an i.i.d. sample of

size n, for which
(11)

√
k

⎛⎝̂̃an/k
ãn/k

− 1,
̂̃
bn/k − bn/k

ãn/k

⎞⎠ →d
(
Nã,Nb̃

)
, n → ∞,

with k = kn an intermediate sequence (i.e. k → ∞ and
k/n → 0) such that

√
kαn/k → λ ≥ 0, as n → ∞, and

(Nã,Nb̃) are jointly normal random variables. In the given
framework, i.e. from i.i.d. replicates of

∫
S
X(s)ds, estimators

for γ are also standard to obtain. Indeed we shall need to
estimate γ but a better estimator for γ is introduced next.

On the other hand, similarly as in [8], one can define
estimators for γ, at(s) and bt(s) such that for convenient
rates

√
k

(
γ̂n/k − γ,

∫
S
ân/k(s)

an/k
− 1,

∫
S
b̂n/k(s)− bn/k(s)ds

an/k

)(12)

→d (Nγ ,Na,Nb) , n → ∞,

with (Nγ ,Na,Nb) jointly normal random variables. This can
be obtained under the following marginal second order con-
ditions: there exist functions αt positive or negative with
|αt| regularly varying of index ρ ≤ 0 and limt→∞ αt = 0
and, β(s) positive or negative and bounded, such that

(13) lim
t→∞

Utx(s)−Ut(s)
at(s)

− xγ−1
γ

αtβ(s)
= Hγ,ρ(x), x > 0

holds uniformly for s ∈ S.

Then, (11) and (12) hold for an intermediate sequence
verifying

√
kαn/k → λ ≥ 0 and

(14)
√
k sup

s∈S

∣∣∣∣an/k(s)an/k
−A(s)

∣∣∣∣ → Δ ≥ 0.

The joint limiting distributions in (11) and (12) can be
very general. Note that they depend on the underlying struc-
ture of the limiting max-stable process. As far as we know
very little on this is available, and characterizations of the
random variables Nγ , Na, Nb are fully known only for the
moment estimators [7]. More specific characterizations are
beyond the scope of this work.

2.3 Asymptotic normality of θ̂1 and θ̂2

Theorem 2.2. Let k be an intermediate sequence, i.e. k =
k(n) → ∞, k(n)/n → 0, as n → ∞, such that:

1. For γ 	= 0 and for suitable estimators γ̂n/k, ̂̃an/k and
ân/k,
(15)
√
k

(
γ̂n/k − γ,

̂̃an/k
ãn/k

− 1,
ân/k

an/k
− 1

)
→d (Nγ ,Nã,Na) ,

as n → ∞, with (Nγ ,Nã,Na) jointly normal random
variables. Then,
(16)
√
k

(
θ̂1
θγ

− 1

)
→d 1

γ
(Nã −Na − (log θγ)Nγ) , n → ∞.
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2. For suitable estimators γ̂n/k, ̂̃an/k, ̂̃
bn/k, ân/k and

b̂n/k =
∫
S
b̂t(s)ds,

(17)

√
k

⎛⎝γ̂n/k − γ,
ân/k

an/k
− 1,

̂̃
bn/k − b̃n/k

ãn/k
,
b̂n/k − bn/k

an/k

⎞⎠
→d

(
Nγ ,Na,Nb̃,Nb

)
, n → ∞ ,

with (Nγ ,Na,Nb̃,Nb) jointly normal random variables.
Then, for γ 	= 0,

√
k

(
θ̂2
θγ

− 1

)
(18)

→d

(
1− θ−γ

γ

γ
− log θγ

)
1

γ
Nγ −

1− θ−γ
γ

γ

1

γ
Na

+
(
Nb̃ − θ−γ

γ Nb

)
,

as n → ∞, and, for γ = 0,

(19)
√
k

(
θ̂2
θ0

− 1

)
→d Nb̃ −Nb − (log θ0)Na,

as n → ∞.

Proof. 1. First note that by (9) and (15),

̂̃an/k
ân/k

= θγγ
̂̃an/k
θγγan/k

an/k

ân/k

= θγγ

(
1 +

Nã −Na√
k

(1 + op(1))

)
.

Hence,

√
k

(
θ̂1
θγ

− 1

)
=

√
k

⎛⎝ (
̂̃an/k

ân/k
)1/γ̂n/k

θγ
− 1

⎞⎠
=

√
k
(
θ

γ
γ̂n/k

−1

×
{
1 +

Nã −Na√
k

(1 + op(1))

}1/γ̂n/k

− 1

)

=
√
k

({
1− Nγ

γ
√
k
log θγ(1 + op(1))

}
×

{
1 +

1

γ

Nã −Na√
k

(1 + op(1))

}
− 1

)
=

1

γ
(Nã −Na −Nγ log θγ) (1 + op(1)).

2. First note that (10) with x = 1 implies

Ut −
∫
S
bt(s) ds

at
=

θγγ − 1

γ
+ o(αt).

Then by (17),

̂̃
bn/k − b̂n/k

ân/k
=

an/k

ân/k

×

⎛⎝̂̃
bn/k − b̃n/k

ãn/k

ãn/k

an/k
−

b̂n/k − bn/k

an/k
+

b̃n/k − bn/k

an/k

⎞⎠
=

{
θγγNb̃ −Nb√

k
(1 + op(1)) +

θγγ − 1

γ
(1 + o(αn/k))

}
×

{
1− Na√

k
(1 + op(1))

}
=

θγγ − 1

γ
(1 + o(αn/k))

+

(
θγγ

Nb̃√
k
− Nb√

k
−

θγγ − 1

γ

Na√
k

)
(1 + op(1)).

Hence,

1 + γ̂n/k

̂̃
bn/k −

∫
S
b̂n/k(s)ds

ân/k

= θγγ +
(
θγγ − 1

)
o(αn/k)

+
1√
k

(
(Nγ −Na)

θγγ − 1

γ
+ γθγγNb̃ − γNb

)
(1+op(1)).

Therefore, by similar calculations as in the previous
case, for γ 	= 0,

√
k

(
θ̂2
θγ

− 1

)
=

(
1− θ−γ

γ

γ
− log θγ

)
1

γ
Nγ

−
1− θ−γ

γ

γ

1

γ
Na +

(
Nb̃ − θ−γ

γ Nb

)
+ op(1).

The case γ = 0 follows similarly.

2.4 Quantile and tail probability estimation

We proceed with the asymptotic normality of estima-
tors for high quantiles xn = U (1/pn) and tail probabili-
ties pn = P (

∫
S
X(s)ds > xn), for given pn and xn respec-

tively where, as usual in high quantile estimation, pn → 0
or xn → U(∞), as the sample size n → ∞. Note that only
consistency for a tail probability estimator was obtained in
[8], due to theoretical difficulties with the estimator for θ
therein considered. Moreover it needed a consistent estima-
tor of the limiting spectral measure whereas we do not need
it here.

Define the quantile estimator as

(20) x̂pn = b̂n/k + ân/k
( θ̂k
npn

)γ̂n/k − 1

γ̂n/k
,
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and the tail probability estimator by

(21) p̂n =
k

n
θ̂

(
1 + γ̂n/k

xn − b̂n/k

ân/k

)−1/γ̂n/k

+

,

with θ̂ = θ̂i, i = 1 or 2 from (9) and x+ = max(0, x).

Theorem 2.3. Assume the conditions of Theorem 2.1. Sup-
pose for some function αt, positive or negative with |αt|
regularly varying with index ρ ≤ 0 and limt→∞ αt = 0,
the second order condition (10) with ρ < 0, or ρ = 0 if
γ < 0, holds. Let k be an intermediate sequence such that√
kαn/k → λ ∈ R, npn = o(k), log(npn) = o(

√
k) (n → ∞)

and the conditions of Theorem 2.2 are satisfied. Then:

1.
(22)
√
k

x̂n − xn

an/kqγ(dn)
→d Nγ + (γ−)

2Nb − γ−Na − λ
θγγγ−

γ− + ρ
;

2. For γ > −1/2,

(23)

√
k

d−γ
n qγ(dn)

(
p̂n
pn

− 1

)
→d Nγ + (γ−)

2Nb − γ−Na − λ
θγγγ−

γ− + ρ
;

as n → ∞, with dn = θγk/(npn), γ− = min(0, γ) and

qγ(t) =
∫ t

1
sγ−1(log s)ds for t > 1.

The following Lemma is needed for the proof of Theo-
rem 2.3.

Lemma 2.1. If (10) holds with ρ < 0 or ρ = 0 and γ < 0
then

lim
t→∞

x=x(t)→∞

U(tx)−U(t)
a(t)

γ
(θγx)γ−1 − 1

α(t)
= − θ

γ−
γ

ρ+ γ−
.

Proof. It follows by similar arguments as in the proof of
Lemma 4.3.5 [11] and, note that

θγγHγ,ρ(x)
γ

(θx)γ − 1
∼ − θ

γ−
γ

ρ+ γ−
, as x → ∞.

Proof of Theorem 2.3. 1. Note that

(24) qγ(dn) ∼

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
γ d

γ
n log dn , γ > 0

1
2 (log dn)

2 , γ = 0

1/γ2 , γ < 0.

Then, similarly as in the one-dimensional case ([12], cf.

[11] Sect. 4.3),

√
k

x̂n − xn

an/kqγ(dn)

=
√
k
b̂n/k − bn/k

an/k

1

qγ(dn)

+
ân/k

an/k

⎧⎨⎩
√
k

qγ(dn)

⎛⎝ ( θ̂k
npn

)γ̂n/k − 1

γ̂n/k
− d̃γn − 1

γ

⎞⎠⎫⎬⎭
+
√
k

(
ân/k

an/k
− 1

)
dγn − 1

γqγ(dn)

−
√
k

qγ(dn)

{
U
(
n
k dn

)
− U(nk )

an/k
− dγn − 1

γ

}
.

The first and third terms are easily seen to converge
to (γ−)

2Nb and (γ−)Na, respectively. For the second
term, note that

√
k

qγ(dn)

( θ̂k
npn

)γ̂n/k − d
γ̂n/k
n

γ̂n/k

=
dγn

qγ(dn)γ̂n/k
d
γ̂n/k−γ
n

√
k

⎧⎨⎩
(
θ̂

θ

)γ̂n/k

− 1

⎫⎬⎭
= op(1)

and

√
k

qγ(dn)
=

(
d
γ̂n/k
n − 1

γ̂n/k
− dγn − 1

γ

)
∼

√
k
(
γ̂n/k − γ

)
,

hence it converges to Nγ . Finally, for the last term, by

Lemma 2.1 it converges to −λγ−
θ
γ−
γ

ρ+γ−
. Combining all

terms the result follows.
2. It follows by the reasoning on tail probability estima-

tion in the one dimensional case ([4], cf. [11] Sect.

4.4) adapted to the inclusion of the estimator θ̂, in a
way similar to the previous proof for quantile estima-
tion.

3. CASE STUDIES

The estimators discussed in the previous sections are ap-
plied to three data sets of daily surface precipitation (mm).
The data was collected at rain-gauge stations corresponding
to three different regions in Europe: Northwest Portugal,
Venice Bay in Italy and North Holland. In the Appendix we
give a spatial representation of the stations (cf. Figures 7–
9), where the stations are identified by their ID-numbers as
provided in the original data sets from the Institutes.

Precipitation data usually exhibits some temporal depen-
dence and our methods are developed under the i.i.d. as-
sumption for the stochastic processes in the maximum do-
main of attraction. There are some univariate approaches
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Table 1. Characteristics of observed regions and corresponding data sets

Region Time Period N. of Years Sample size N. of Stations Total area (Km2)

NW Portugal 1950–2008 59 5369 31 3,754.0
Venice Bay 1940–1994 55 5005 24 3,074.3

North Holland 1971–2000 30 2730 32 2,009.6

Figure 1. Diagnostic plots (from library ismev, R software) for
the marginal GP-fit of observed daily precipitation at Station

56, NW Portugal.

that try to clean univariate serial data for short-range de-
pendence, for example the declustering method but results
are frequently not too sensitive in this respect [15]. Addi-
tionally it is also known that many of the univariate meth-
ods hold under β-mixing dependence conditions though with
more complicated asymptotic properties ([5], [6]). On the
other hand, our framework is not univariate but spatial,
hence more complicated to deal with. Therefore, to our pur-
poses we found it reasonable to consider daily data (as op-
posed to e.g. hourly data expected to show stronger time
dependence) and only the fall season i.e. the observation pe-
riod September-October-November, the latter to overcome
long-range dependence effects giving a total of 91 observa-
tions per year and, consequently, treat the data as being
(approximately) independent; note that this same approach
was taken in [8] and [17].

A brief summary of characteristics of the three data sets
is given in Table 1.

Marginal analysis

One has first to proceed with marginal estimation. In
general, a reasonable Pareto fit is obtained for the tails (i.e.
for the highest values at each station) for all stations and

for the three regions. In Figure 1 is a typical fit, with the
diagnostic plots from library ismev, from R software.

Throughout we use the moment estimators ([3] and [7]).
In Figure 2 are marginal estimates of shape and scale param-
eters ranked with the number of the stations. In particular,
we do not identify any remarkable non-homogeneous pattern
from the shape estimates. This is important for the results
to be consistent with the theory.

Regarding the results, it is interesting to see similar mag-
nitudes for the shape parameter throughout all the regions
but very different magnitudes of the scale estimates. In what
regards the shape, NW Portugal has a tendency for slightly
lower values and Venice for slightly higher values, with NW
Portugal and Venice presenting higher variability (cf. also
Figure 6 in Appendix A). Note that the NW Portugal region
varies much geographically, especially in altitude. Overall,
the majority of the shape estimates correspond to low but
positive values, around 0.05–0.2, what is typically observed
for precipitation data (e.g. cf. [14], [15], [17]). In what re-
gards the scale (and location) estimates, NW Portugal have
the highest values and North Holland the lowest (cf. also
Figure 6 in Appendix A).

Return value estimation and the spatial aggregation effect

We proceed with the estimation of the 100-year return
value (averaged by the total area) for each of the three re-
gions. Loosely, the N -year return value is that value that
is expected to occur once in N -years. Hence, for N large
it is basically an extreme quantile of the precipitation dis-
tribution and, as discussed earlier, the asymptotic theory
suggests the estimator,

(25) r̂v100 =

∫
S

b̂n/k(s)ds+

∫
S

ân/k(s)ds
( 9100 k θ̂

n )γ̂n/k − 1

γ̂n/k

with

(26) γ̂n/k =
1

|S|

∫
S

γ̂n/k(s) ds,

with n the sample size and k such that k → ∞ and k/n → 0,
as n → ∞. Recall that we consider 91 observations per year.

In Figure 3 are shown 100-year return value estimates
with different estimators for θ (θ̂1 and θ̂2 from (9) and the
estimator from [8]), and θ estimates, with k. For the perfor-
mance of the estimators, the ones from [8], in the following
FHZ, seem to be the best. In what regards θ estimation, the
estimates from θ̂1 are somehow close to the ones from FHZ,
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Figure 2. Marginal estimates of shape and scale parameters with k = 200 ranked with the number of the stations, with
approximate 95% confidence intervals.

Figure 3. 100-year return value (mm) and θ estimates with k (FHZ – black line, ‘simple aggregation’ – dashed, θ̂1 – dotted,

θ̂2 – dashed and dotted).

but with higher variability. The instability of θ̂1 for small
values of k is due to estimates of γ close to zero for small
values of k. For θ̂2, this estimator is systematically biased

most notably in the North Holland case. By comparing the
results for return values and θ estimation, it is clear the im-
portance of having a good estimation of θ, with a clearly
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Figure 4. Estimates of the shape, scale and location parameters from (25)–(26) (black line), compared with the ones by
‘simply aggregating’ the data (dashed), with k.

visible influence in the corresponding return value. We also
compare the return value results with the 100-year return
value estimates obtained from ‘simply aggregating’ the data
through the region and applying the univariate methods, i.e.
discarding any spatial effect.

In Figure 4 are the corresponding shape, scale and loca-
tion estimates used in both situations, i.e. when taking into
account the spatial effect or not. Note that the aggregation
smooths out the shape, scale and location estimates. On the
contrary in the case of ‘simply aggregating’ the data (i.e.
based on aggregating the data over the region and apply-
ing standard univariate extreme value theory) it is visible
the influence of the gamma estimates in the corresponding
return value estimates. That is, as expected the shape es-
timates obtained from (26) are very stable in all cases, at
least when compared with the ‘simple aggregation’ proce-
dure. Similar comments apply to the results on scale (and
location) estimation though less visible (in the Appendix we
add extra boxplots showing the influence of scale and loca-
tion estimates in the marginal quantile estimates which is
in agreement with what should be expected from standard
univariate approach, cf. Figure 6).

In Figure 5 are the four curves of 100-year return value
estimates, i.e. by using θ̂1, θ̂2, θ̂ from FHZ and the standard
univariate approach as seen in Figure 3 but in a wider range
of k. The univariate approach (i.e. by ‘simply aggregating’
the data) shows clearly the typical strong bias for large val-
ues of k. The spatial approach shows smoother curves, spe-
cially when using the estimates from FHZ and θ̂2. In all, it is

difficult to find a stability zone for picking up ‘the best k’, a
more frequent feature when estimating high quantiles than
shape parameter. On the other hand, if some stability zone
is found, this is typically for slight higher value of k than
when estimating the shape. Altogether from all the curves
and graphics and given the many similar patterns through-
out the different estimators and data sets, if to choose some
stability zone for k we would suggest around 300 to 400, but
closer to 300. In Table 2 are the 100-year return value and
theta estimates with k = 300. Curiously with the same data
set but based on a specific max-stable process (hence via a
parametric approach) [1] estimated a 100-rv of 58.8 mm for
the North Holland region.

In summary, accordingly to what has been observed in
the marginal analysis there are substantial differences in
the magnitudes of the return values for the three regions:
NW Portugal have the highest magnitudes and variability,
then Venice Bay and the lowest and more stable results are
for North Holland. On the other hand, the magnitudes for
theta are very similar throughout the three regions, around
0.2–0.3, and North Holland with a tendency for higher val-
ues.

From the quantile estimator (25), estimates for γ and
θ positive but small should imply that the aggregation ef-
fect lowers the magnitudes of return value estimates. In
Figure 5 we compare the 100-year return value estimates
represented in Figure 3, with the marginal 100-year return
value estimates from the first 4 stations of each region.
Indeed, we see the influence of aggregating data and the
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Figure 5. Comparison of marginal 100-year return value estimates (mm) for the first 4 stations of each region (extra 4 grey
lines) with the ones from Figure 3, with k.

Table 2. Estimates with k = 300: the estimates for 100-year return values (mm) are calculated using the respective estimates
of θ

Region r̂v100 γ̂ ân/k b̂n/k

NW Portugal 149.8 144.2 168.4 0.13 18.3 30.0

(θ̂FHZ = .23) (θ̂1 = .19) (θ̂2 = .39)

Venice Bay 97.7 112.8 116.4 0.16 10.9 13.9

(θ̂FHZ = .27) (θ̂1 = .50) (θ̂2 = .57)

North Holland 57.8 59.9 70.7 0.11 5.9 9.1

(θ̂FHZ = .33) (θ̂1 = .40) (θ̂2 = .96)

Figure 6. Boxplots of local estimates of the shape, scale and location parameters with k = 200, and the corresponding
100-year return values (mm) with k = 300.

role of the areal coefficient. Though being a unique num-
ber characterizing spatial dependence, the areal coefficient
helps to explain the observed differences in quantiles when
estimated locally and when based on spatially aggregated
data.
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APPENDIX A

In Figure 6 are boxplots of the local (or marginal) esti-
mates of the shape, scale and location parameters (for the
shape and scale these are the same represented in Figure 2)
with k = 200 and, additionally, the local estimates of 100-
year return values with k = 300. That is, basically apply
simply univariate estimation by using at each site (20) with
θ = 1 and with the corresponding marginal shape, scale and
location estimates; note that each 100 year return value es-
timate uses the marginal estimates with k = 300 and not
with k = 200. With the former there are slight increases in

Figure 9. Spatial representation of the 32 precipitation
stations from North Holland with a total area of

approximately 2,010 Km2.

variability and/or bias on the results but the overall picture
is very similar. In particular, it is clear the influence of the
scale and location estimates (and their variability) on the
marginal 100-year rv estimates.

In Figures 7–9 we represent the sations over the space
for the three regions, NW Portugal in Figure 7, North Hol-
land in Figure 9 and Venice Bay in Italy in Figure 8. All
stations are identified with their ID-numbers as provided in
the original data sets from the Institutes.
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