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Detecting change-points in extremes”

D. J. Duruisf, Y. SuN, AND Huixia Junpy WANG

Even though most work on change-point estimation fo-
cuses on changes in the mean, changes in the variance or in
the tail distribution can lead to more extreme events. In this
paper, we develop a new method of detecting and estimat-
ing the change-points in the tail of multiple time series data.
In addition, we adapt existing tail change-point detection
methods to our specific problem and conduct a thorough
comparison of different methods in terms of performance
on the estimation of change-points and computational time.
We also examine three locations on the U.S. northeast coast
and demonstrate that the methods are useful for identifying
changes in seasonally extreme warm temperatures.

AMS 2000 SUBJECT CLASSIFICATIONS: Primary 62G32;
secondary 62P12.

KEYWORDS AND PHRASES: Tail behavior, Quantile meth-
ods.

1. INTRODUCTION

We consider time series and are interested in estimating
the number and the location of change-points in such series.
The time series is described by an underlying distribution
or model, and a change-point is a point in time at which
the parameters of the distribution or the model abruptly
change. Finding change-points can also equivalently be seen
as the subdivision of a series into segments characterized
by homogeneous statistical features (e.g., mean and higher-
order moments) or identical underlying distributions.

Establishing the existence, and ultimately the number
and locations, of such change-points in climatic time se-
ries, for example, has received much attention over the
last 40 years as researchers seek irrefutable evidence of cli-
matic change and its link to anthropogenic activities. Be-
sides climate-related changes, other nonclimatic factors such
as relocation of weather stations and changes of instrumen-
tation are apt to cause sudden changes and these must be
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identified to properly analyze climatic time series; see e.g.
[17] and references therein. The detection of changes in vari-
ables other than temperature, on regional scales and in cli-
mate extremes, is also important for evaluating model sim-
ulations; see [7] for a list of these other variables and a dis-
cussion on their relevance.

Recent work on detecting mean shift in climatic series
includes [1, 18, 19, 28]. [28] also provided a good literature
review on the matter, while [25] provided a review and com-
parison of less recent techniques.

While most of the literature focuses on changes in the
mean that lead to changes in extreme events, changes in the
variance or in the tails can lead to more extreme events.
For example, if we consider temperature distributions, Fig-
ure 1, similar to those in climate reports like [11], shows how
changes in the probability of extreme events can also be the
result of a change in variability (center plot) or a change in
the tail (right plot), while keeping a fixed mean. Changes in
tail behavior are the focus of this paper.

It was shown as early as in [15] that prediction of such ex-
tremities as hot spells, droughts and deep freezes lies largely
in identifying changes in the variability (scale and/or shape)
of the climate conditions and to a lesser extent on scenarios
of changes in the average. However, identification of changes
in scale and/or shape has proven to be a difficult task for
environmental data sets. [13] outlined some of the problems
with applying change-point detection methods to environ-
mental data.

We need to distinguish between two different ideas: (1)
identifying change-points in the mean of extreme data, e.g.
in the location parameter of the generalized extreme value
(GEV) distribution fitted to annual maxima (or minima),
and (2) identifying change-points in the shape and/or scale
of the GEV or of the tail distribution of extreme data. The
former was first considered by [14], while the latter was first
considered by [12], and more recently by [2, 4, 5]. [14] pro-
posed test statistics for detecting a change in a location
parameter of annual maxima and annual minima series. [12]
tried to identify changes in the scale and shape parameters
of the Weibull distribution used to model monthly mini-
mum temperatures. [2] presented an empirical analysis fo-
cusing on the counts in extreme ranges of temperature, pres-
sure and precipitation variables. [4] developed a likelihood
approach for testing for changes in the scale or shape pa-
rameter of the generalized Pareto (GP) distribution used to
model the upper tail of temperature and precipitation vari-
ables. [5] presented a change-point analysis to detect the
time at which the crossing rate of a high threshold changes.
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Figure 1. Change in the probability of exceeding an extreme value as the mean (left), the variance (center), and tail (right),
changes from the solid density to the dashed density.

Beyond climate studies, there is also interest in economics
and finance for detecting changes in the tail behavior of time
series. [24] and [16] developed methods for detecting change-
points in the tail index parameter of a distribution. Both
methods are based on Hill’s tail index estimator and thus
are designed for heavy-tailed distributions.

In this paper, we focus on the detection of change-points
in the upper-tail of the distribution of the variable of interest
based on multiple cross sectional time series. For instance,
consider daily time series data from multiple years. Year
after year, the upper-tail of the distribution would change
at some point(s), for example due to a hurricane season or
a change in prevailing winds in the case of weather variables
or an earnings season in the case of stock market returns.
Even though there exists some work on tail change-point
detection, none of the available methodology can be applied
directly to multiple cross sectional time series, e.g., multiple-
year daily data where multi-year seasonal change-points are
sought.

Our contributions are three-fold. Firstly, we present a
new multinomial-based method of estimating the change-
points in the tail. Secondly, we adapt existing methods to
our specific problem of identifying change-points using mul-
tiple cross sectional time series and compare the latter ap-
proaches to our new method, both in terms of performance
and computational time. Computational time is an impor-
tant issue if the change-point methods are to be applied to
the massive simulations from climate models, for example.
Thirdly, we discuss the connections and differences among
all available methods.

The rest of the paper is organized as follows. In Section 2,
we present the methods for identification of change-points in
the tail of multiple time series data. In Section 3, we present
the results of simulation studies that target the performance
of these methods. We present an application to estimating
seasonal change-points in noise about means for daily max-
imum temperatures in Section 4.

2. IDENTIFICATION OF CHANGE-POINTS

We adopt a change-point model and aim to identify
change-points from multiple cross sectional time series. Sup-
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pose the data contain observations {Z;,i = 1,...,n,t =
1,...,T}, where ¢ is the index noting the individual (e.g.
year) and t is the index for time (e.g. day). Let m be
the unknown number of change-points resulting in m + 1
segments, and Ti,...,T,, be the corresponding unknown
change-points. For every i, assume that Z;; ~ f; for t €
[,-Tj—laTj); j = 1,...,m+ 1, where TO = ]., Tm+1 =T+ ].,
and f; are distributions such that f; differ from both f;_;
and f;y1 in the right tail.

We propose several methods for identifying change-points
across multiple time series, for instance, change-points that
mark the change of seasons during the year based on daily
data. The likelihood ratio, single and multiple quantiles, and
Kim and Lee approaches are adapted from the existing work
for single time series [4, 21, 16]. The multinomial approach
in Section 2.2 is a new development. We provide a brief de-
scription of each method in Sections 2.1-2.5, and discuss the
connections and distinctions of different methods in Section
2.6.

To avoid estimated segments that are too short, for all
the compared methods, we search for change-points over
the following set of possible partitions: Ac = {(T%,...,Tpn) :
T; —Tj—1 > €T, Ty > €I,T,,, < (1 —€)T}, where € > 0
is a small constant. In our numerical studies, we focus on
identifying seasonal change-points based on daily data from
multiple years with T" = 365, so we use ¢ = 0.082, which
ensures that the identified seasons are at least 30 days in
length.

2.1 Likelihood ratio test

Consider a random process {X;}. Suppose that the pro-
cess is stationary and has marginal distribution F' with up-
per end point z%. [22] showed that if the distribution of
excesses X; — u of a high threshold u, u < z¥, scaled as
a function of u, converges to a non-degenerate limiting dis-
tribution as u — =z, that distribution must be the GP
distribution. This derivation suggests that the GP distribu-
tion will be a practical family for statistical estimation when
examining excesses over the threshold wu, provided that u is
taken sufficiently high.



We adapt the likelihood ratio test proposed in [4] for sin-
gle time series to multiple time series. We consider the fol-
lowing tail model for Z;,

—1/&
(1) Pr(Zy > z4+ulZy > u) = <1 + %Z)
t

where 5, > 0 and & are the unknown scale and shape pa-
rameters, respectively, and a; = max (0,a). We define a
time t* to be a change-point if there is a change in either g;
or & before and after ¢*.

[4] built a test statistic to test whether f; and/or &
change over time. Their construction is based on likelihood
considerations and essentially implements the ideas of [3] to
the extreme value context.

To test the existence of change-points, we consider the
hypotheses Hy : (61,&1) = ... = (Br,&r) versus H, :
(B1,61) = ... = (B, &) # (B2, &0 41) = ... = (Br,&r)

for some t*. The likelihood ratio test statistic is defined as

(2)

+
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where log Ay = L(3,€) — L1(Ba), &) — L2(Be):&w@)
L(B,€) is the log-likelihood function for (1) based on the
positive excesses €¢; = Zj — u for all i« = 1,...,n and
t =1,...,7, and Li(B1),&n)) and La(B(2),&2)) are the
log-likelihood functions based on the samples up to and in-
cluding the point at time t* and the samples after time t*,
respectively. Similar to [4], we calculate the critical value by
the (1 — a)th quantile of y/sup.<,1_.{s(1 —s)}~1B3(s),
where Bs(s) is the sum of two Brownian bridges and « is
the significance level.

The method in [4] was designed for detecting a single
change-point. We extend the method to identify multiple
change-points using the following procedure. We first per-
form the above hypothesis testing using the entire sample. If
W does not exceed the critical value, we conclude there is
no change-point and terminate the procedure. On the other
hand, if the null hypothesis is rejected, we estimate the first
change-point by T} = arg maxy« (e, (1—)7)(—2log A+ ), and
obtain two segments. Then we repeat the above testing pro-
cedure for each segment data separately, using a nominal
level /2 for each test, and estimate the additional change-
points if the hypothesis of no change-points in the segment
is rejected. The process is continued in an analogous fash-
ion until the test fails to reject the null in every identified
segment or the shortest segment defined by adding another
new change-point is shorter than €T

2.2 Bernoulli and multinomial approaches

The method in Section 2.1 is based on approximating
the distribution of the exceedances over a high threshold
by the GP distribution. [6] developed an exact approach for
finding MLE of the change-points 7},j = 1,...,m, and the

within-segment parameters, when the functional form of the
hypothesized within-segment distribution f;,¢=1,...,m+
1 is within the general exponential family. Since the GP
distribution is not within the general exponential family,
the [6] approach cannot be applied directly.

[5] considered reducing the tail data to Bernoulli vari-
ates By = I(Z;; > u): that is, the exceedance (success)
or non exceedance (failure) of the observation over a high
threshold w. Then the variables By with T;_; <t < Tj fol-
low a Bernoulli model with parameter ¢;. ML and the dy-
namic programming (DP) approach in [6] are used to iden-
tify Ty, ..., Ty

As reducing the tail data to Bernoulli variates may be too
crude an approximation, we propose to extend the idea by
examining changes in the probability of exceeding multiple
high thresholds. In our implementation, we consider three
high thresholds u; = ¢g.05, U2 = qo.908 and u3z = ¢g.g9. For
any given observation Z, there are four mutually exclusive
outcomes

C1: Z is below all three thresholds;
Cy: Z exceeds up only;

Cs: Z exceeds up and us only;

Cy: Z exceeds all three thresholds,

and we consider the categorical variate X with sample space
{C1,...,C4}. Letting X = (X1, ..., X4)T where X}, denotes
the number of times that outcome C}, is observed, X has
a multinomial distribution with parameters n =1 and p =
(P1,- .- pa)T with p, > 0 and 3y, pr, = 1.

Instead of choosing change-points based on MLE for a
binomial likelihood as in [5], we use MLE for a multi-
nomial likelihood. If the Xj41,...,X,, are an indepen-
dent sequence of multinomial variates with parameter n =
1 and p = (p1,p2,p3,p4), the MLE of px is pp =
(m—h)"" S, Xk The maximized log-likelihood ob-
tained by substituting py for pix, k = 1,...,4, can be easily
calculated as

L(p;h,m) o (m — h){p2log(p2) + D3 log(ps) + pslog(pa)
+ (1 — P2 — p3s — Pu) log(1 — pa — b3 — Du) }-

We reduce the tail data to multinomial variates X,;. Ob-
served X with Ty <t < T} follow a multinomial model
with parameter p;. ML and the DP approach in [6] can then
be used to identify T71,..., Ty,.

[6] discussed testing for the number of change-points. The
DP algorithm does not find the optimal number of change-
points, but rather the optimal m change-points for a fixed m.
We do not fix m a priori and initially allow for an arbitrary
number of change-points, but we stop adding change-points
when one of the segments that they define is shorter than
el

2.3 Single quantile approach

Rather than focusing on the probability that Z;; exceeds
a large value, we can examine the upper quantile of Z;; itself.
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The single quantile method is a modification of the change-
point estimation method proposed in [21]. The method fo-
cuses on identifying changes in the 7th quantile of Z;;, where
7 € (0,1) is a prespecified high quantile level. [21] esti-
mated change-points by fitting alternative models, which
requires estimating the quantiles for T(T + 1)/2 partitioned
samples. To reduce the computational cost, we modify the
procedure by estimating the change-points with the maxi-
mizers of the score-type statistic proposed in [23]. Suppose
M is the prespecified maximum number of change-points.
Our modified procedure requires estimating quantiles only
M(M + 1)/2 times, and thus greatly improves the compu-
tational efficiency.

For j > 1, let G, ; be the (1 — a)th quantile of G(z),
where G(-) is the distribution function of sup, . ;_. |B(s)|,
and B is a Brownian bridge. The detailed procedure is as
follows.

Step 1. Test Hy: there is no change-point versus H,: there
is one change-point. Define SQ, 1 as

(3)
max
eT<t*<(l—e

. {r (1 =)} 2 {Sp(4r) = t* /TS ()}
where Si-(¢;) = (nT)"V2 50, L {7 — 1(Zu <
gr-)} and ¢, is the 7th sample quantile of {Z;,i =
1,...,n,t = 1,...,T}. If SQ;1 < Gq,1, we declare
there is no change-point and terminate the proce-
dure. Otherwise we reject Hy and estimate the first
change-point by 71 = argmax.r<i<(1—e)1 |Se (¢r) —
t*/TSt(§,)| and proceed.

Step 2. Start from j = 1. Suppose that in the previous
stage, 7 + 1 segments have been formed by change-
points 77, . . . ,Zf’j. We now test Hy: there are j change-
points versus H,: there are j + 1 change-points. For
each k£ = 1,...,7 + 1, calculate the within-segment
test statistic SQ,; and its corresponding maximizer
ti as in Step 1 by using data from the kth segment.
Let SQr = maxi<p<jy15Qrk. If SQr < Gajt1,
we stop the procedure. Otherwise, we reject Hy and
estimate the new change-point as follows. For each
k =1,...,5 + 1, the candidate change-point t; and
the existing change-points {71, ... ,Zf’]} form j + 2 seg-
ments. Let §-x,k = 1,...,7 + 2 be the correspond-
ing segment-wise T7th sample quantile. The new change-
point TjH is taken to be the t; that gives the smallest
quantile loss, defined as Y ;- ; ZtT:I p+(Zit—qr.t), where
pr(u) = {7 — I(u < 0)}u is the quantile loss function
and §r; = §r if ¢ falls into the kth segment. Finally
increase the value of j.

Step 3. Repeat Step 2 until the test fails to reject the null
or when j reaches M, the prespecified maximum num-
ber of change-points.

In our analysis, we consider three quantile levels 7 =
0.95,0.98 and 0.99. Note that the single quantile approach
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implicitly sets the critical values to accommodate sequen-
tial testing and estimation so no further adjustments are
required when trying to identify multiple change-points.

2.4 Multiple quantile approach

Suppose that quantiles in the interval T = [, 7g] with
0 < 7 < 7 < 1 are affected by structural changes at
the same change-points but possibly change with differ-
ent magnitudes. The multiple quantile method aims to de-
tect the common change-points across quantiles. The pro-
cedure operates in the same way as the single quantile
method except that the test statistic S@Q is replaced by
MQ = sup,cr SQ- and the critical value G ; is replaced
by Ga,;, the (1 — a)th quantile of Q(z)7, where Q(-) is the
distribution of sup,crsup.<,<i_.|B(s,7)|, and B(s,7) is
the Brownian Pillow process; see [23]. In our analysis, we
consider the upper quantile region 7 = [0.95,0.99]. As with
the single quantile approach, sequential testing is implicit.

2.5 Kim and Lee approach

[16] proposed a cusum-based procedure for testing tail
index changes in time series with Pareto-type tails. The tail
index is a measurement of the fatness of the tail distribution.
Here we adapt the idea in [16] to identify change points using
multiple time series.

Consider testing the hypotheses Hy: there is no change
in the tail index versus H,: there exists at least one change-
point. Let 7 be a high quantile level close to one. Define the
test statistic

1 t*
Tn = M t*7 AT - =M Ta AT 3
(¢) e e r (t",4r) = = M(T' 4r)

where M (t*,4.) = >0, Z§=1 gb{log(%)} and G, is the 7th
sample quantile of { Z;; }. Two choices are considered for ¢(-),
¢1(x) = I(x > 0) and ¢a(x) = 4. For the score function
¢p2(x) = xy, M(t,q;)/(nTT) is the well known Hill’s estima-
tor ([8]) of the tail index for heavy-tailed distributions. The
score function ¢o(x) incorporates exceedance values rather
than the simple count of the number of exceedances mea-
sured by ¢1(x).

Similar to the likelihood-ratio method in Section 2.1, we
identify the change-points sequentially using the following
procedure. We first carry out the above testing, and de-
termine there is no change-point and terminate the proce-
dure if T,,(¢1) < Ga1 or Tn(d2) < V2€Gg1, where 1/€
is the tail index. Otherwise we reject Hy and estimate the
first change-point by T} = arg maxcp<-<(1—ar | M(t*, ¢r) —
t*/TM(T,qG,)|- We then repeat the hypothesis testing pro-
cedure for each identified segment separately, adjusting the
nominal level as for the LRT in Section 2.1, to determine
the other change-points until the test fails to reject the null
hypothesis in all segments or until the shortest segment de-
fined by adding another change-point is shorter than €T'.



2.6 Connections and distinctions of different
approaches

The test statistics of the Bernoulli, multinomial, single
and multiple quantile approaches and the Kim and Lee ap-
proach with ¢;(-) are all based on the counts of the number
of exceedances. In contrast, the LRT and the Kim and Lee
with ¢o(+) incorporate the values of exceedances, and thus
are more informative and are intended to characterize the
tail distribution in a more comprehensive way. However, the
paucity of data in the tail can make the estimation of the
tail distribution more difficult, especially since the LRT ap-
proach relies on the approximating GP distribution of the
exceedances.

All the approaches require the choice of a threshold (in
one form or another) and the usual arguments of bias (too
low a threshold) and variance (too high a threshold) pre-
vail. To keep comparisons fair, in our numerical studies, we
choose a reasonably high threshold for each method, and
we apply the single quantile method at three different high
quantiles to show the sensitivity.

2.6.1 Bernoulli and single quantile

Both Bernoulli and single quantile methods focus on the
exceedance probability over a high threshold. The Bernoulli
method reduces the tail data to Bernoulli variates B;; =
I(Z;; > u), indicating whether the observation Z;; on day ¢
of the ith year exceeds the threshold u or not. Then the
dynamic programming approach in [6] is applied to find
the change-points that maximize the Bernoulli likelihood.
In particular, the observed log-likelihood that needs to be
maximized is of the form

nt*{ﬁa log(pa) + (1 — pa) log(1 — ﬁa)}
+n(T — t*){pp log(ps) + (1 — pp) log(1 — pu)}

where p, and p; are the averages of B;; within the two seg-
ments formed by [1,¢*] and (t*, T}, respectively.

In the single quantile method, the quantity I(Z;; < u) in
the test statistic SQ, can be written as Bernoulli variates
as well since I(Z; < u) = 1 — By. Then it is not difficult
to show that maximizing the single quantile test statistic in
(3) is equivalent to maximizing {t*(T —¢*)}|pa — Ps| over ¢*.

Both methods are therefore based on the MLE of the
exceedance probability. The Bernoulli method estimates
change-points by finding the MLE of the exceedance proba-
bility and maximizing a Bernoulli likelihood, while the single
quantile approach estimates change-points by detecting the
maximum fluctuation of the MLE between two segments.

2.6.2 Single quantile and Kim and Lee

The Kim and Lee method is closely related to the sin-
gle quantile method. In fact, when the indicator function
¢1(x) = I(x > 0) is used, the test statistic of Kim and Lee
is identical to that in the single quantile method. The proce-
dure of Kim and Lee for detecting the existence of change-
point is the same as Step 1 of the single quantile procedure.

When ¢3(z) = 4 is used in Kim and Lee, the test statistic
incorporates the relative excess and the method tends to be
more informative but less robust compared to that based on

¢1(.’L‘)
2.6.3 Likelihood ratio test and Kim and Lee

The Kim and Lee method based on ¢»(-) is also related
to the likelihood ratio approach [4] for the GP distributions
in that both utilize Hill’s estimator to characterize the dis-
tribution’s tail behavior. Instead of only considering the ex-
ceedance probability as in the Bernoulli and single quan-
tile methods, both methods incorporate exceedance values
through Hill’s estimator. The connection between them is
similar to that between the Bernoulli and the single quan-
tile methods. The likelihood ratio method estimates change-
points through the LRT where the shape parameter is esti-
mated by Hill’s estimator, while the Kim and Lee approach
estimates change-points by detecting the maximum fluctu-
ation of Hill’s estimator.

3. SIMULATION STUDY
3.1 One change-point

To assess the implications of using a parametric or non-
parametric approach, we compare the methods presented in
Section 2 not only when the tail GP model is true, but also
for cases with other possible (comparable) tail behaviors.
We consider three different types of data: GP-, Beta- and t-
distributed. We generate 50 years x 365 days of independent
data and set one change-point at 77 = 182 with distributions
fo and f1 as indicated in Table 1. The change in the tail,
before and after the change-point, in each case is comparable
as measured by the tail index 7(F) of [9] defined by

F~1(0.99) — F~1(0.5) /@1(0.99) — ®-1(0.5)

") = 505 —F1(05) / 51(0.75) — 5-1(05) °

where ® is the standard normal distribution. The values of
7(F) are included in Table 1. The true parameter values
were chosen based on the fact that, for the GP, going from
& = —0.05 to & = 0.05 represented a reasonable challenge
for the methods.

As noted in Section 2.1, Pickands’ result says that if there
is a non-degenerate asymptotic distribution for the excesses
over a high threshold, then that distribution must be the
GP. So, considering a distribution other than the GP re-
flects the idea that, in practice, we might not have reached
the asymptotic behavior and the data are more related to
the parent distribution. In this respect, we have chosen dis-
tributions that are likely. The Beta is in the domain of at-
traction of the GP(£ < 0). It is a good choice because it has
finite upper support (which one would like to think is the
case for temperature data for example). Note that 8 = 1
for both segments and thus the distribution of exceedances
over an asymptotically high threshold is a GP with £ = —1.
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Table 1. Simulation details: un

processed data, one change-point

fo T(F) f T(F)

GP GP(é= 005 3=1) 151 GP(E=005p3=1) LT8
Beta Beta(a =0.25,4=1) 1.03 Beta(a=0.2,4=1) 1.29
t  Normal(u=0,0=1) 1.00 t(v = 6) 1.26

Table 2. Comparison of TP, FP, FWER and computation time for GP-, Beta- and t- distributed tail data. Simulated data have

one true change-point at Th = 182. Results for each distribution-method combination is based on 500 simulations. Fifty years

of daily data are generated in each of the simulations. Methods are described in the following sections: LRT - §2.1, Be - §2.2,
Mu -§2.2,5Q, - 8§23, MQ - §2.4, KL (using ¢2) - §2.5

Distribution | Method | TP | TPR (%) || FP1 FP2 FP | FWER (%) || Time (s)
LRT | 257 | 514 238 3 241 1822 10.6
Be |307| 614 213 81 294 58.8 11.8
Mu |[353| 706 196 58 254 50.8 17.9
SQuos | 300 | 60.0 206 5 211 42.2 0.01
GP SQues | 312 | 624 199 4 203 40.6 0.01
SQugo | 304 |  60.8 204 8 212 42.4 0.01
MQ | 313| 626 194 7 201 40.2 0.18
KL | 371 | 742 133 4 137 27.4 0.02
LRT | 0 0 30 1 31 6.2 18.0
Be |123| 246 327 61 388 77.6 10.6
Mu | 112 | 224 290 57 347 69.4 15.7
SQues | 128 | 256 259 9 304 60.8 0.01
Beta SQuos | 52 10.4 185 3 188 37.6 0.01
SQog0 | 25 5.0 103 1 104 20.8 0.01
MQ | 136 | 272 278 7 285 57.0 0.17
KL 78 15.6 182 1 183 36.6 0.02
LRT | 405 | 81.0 96 3 99 19.8 10.4
Be |329| 658 221 73 294 58.8 11.9
Mu | 417 | 834 192 54 246 49.2 18.9
SQuos | 347 | 694 155 8 163 32.6 0.01
t SQuos | 395 | 79.0 110 8 118 23.6 0.01
SQuoo | 374 | 748 135 13 148 29.6 0.01
MQ | 361 | 722 145 1 146 29.2 0.20
KL | 413 | 826 89 2 91 18.2 0.02

The maximum likelihood estimators do not obey the reg-
ularity conditions when & < —0.5 ([27]). This design could
thus be quite problematic for the LRT. The Normal is in the
domain of attraction of the GP(¢ = 0), while the t(v = 6)
is in the domain of attraction of the GP(§ > 0). They are
good choices based on empirical evidence in many data sets.
We carry out 500 simulations for each distribution-method
combination, and Table 2 shows:

TP: Total number of correctly identified change-points:
true positives. For each simulation, if there is any
change-point detected, we choose the one closest to the
true change-point, and record a true positive only if the
detected change-point is within five days of the true
value;

TPR: Proportion of cases where the true change-point is
identified, TPR = TP/500;

FP1: Number of cases where one false change-point is de-
tected;
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FP2: Number of cases where > two false change-points are
detected;

FP: Total number of cases with false positives, FP = FP1
+ FP2; and

FWER: Proportion of cases where at least one false
positive is obtained, i.e. the familywise error rate,
FWER = FP/500. Note that FWER + TPR could be
greater than 100% as a method could have identified
two change-points for example, the true one and an ad-
ditional (unnecessary) one.

The computation time is also provided. All the compu-
tations are done by a single threaded application in R on a
dual socket quad core 2.66 Ghz Intel Xeon Clovertown with
16 GB of RAM. For all methods, the tail data are those
above the 95% quantile. For the case of GP-distributed data,
the Kim and Lee approach outperforms all other methods,
yielding both the largest TPR and the lowest FWER. The
multinomial approach has the second largest TPR, but its



Table 3. Comparison of TP, FP, FWER for GP-, Beta- and t- distributed tail data. Simulated data have two true
change-points at Ty = 122 and T, = 243. Results for each distribution-method combination is based on 500 simulations. Fifty
years of daily data are generated in each of the simulations. Methods are described in the following sections: LRT - §2.1, Be -

§2.2, Mu - §2.2,SQ, - §2.3, MQ - §2.4, KL (using ¢2) - §2.5

Distribution | Method | TPI TP2 | TPR (%) || FP1 FP2 FP | FWER (%)
LRT | 180 88 17.6 187 71 258 51.6
Be 239 175 35.0 216 139 355 71.0
Mu 197 253 50.6 191 108 299 59.8
SQues | 219 221 44.2 218 54 272 54.4
GP SQues | 216 221 44.2 216 59 275 55.0
SQuge | 236 191 38.2 236 68 304 60.8
MQ | 213 214 42.8 214 63 277 55.4
KL 173 306 61.2 182 22 204 40.8
LRT 1 0 0 26 4 30 6.0
Be 120 18 3.6 197 139 336 67.2
Mu 778 1.6 217 90 307 61.4
SQues | 77 10 2.0 81 44 125 25.0
Beta SQuos | 18 5 1.0 45 7 52 10.4
SQuge | 11 0 0 36 3 39 7.8
MQ 62 11 2.2 80 35 115 23.0
KL 15 2 0.4 16 3 19 3.8
LRT | 162 309 61.8 165 23 188 37.6
Be 226 206 41.2 220 128 348 69.6
Mu 133 351 70.2 202 61 263 52.6
SQues | 212 236 47.2 212 49 261 52.2
t SQuos | 152 322 64.4 152 26 178 35.6
SQge | 170 316 63.2 170 14 184 36.8
MQ | 196 260 52.0 196 44 240 48.0
KL 129 364 72.8 128 10 138 27.6

FWER is also the second largest. The parametric approach,
i.e. LRT, falls apart in the case of the Beta-distributed data.
The Bernoulli, multinomial, single quantile with 7 = 0.95
and multiple quantile manage to maintain a TPR of 25%,
but do so at the expense of large FWER. The Kim and Lee
approach, as one might expect, has very little power in the
Beta-distributed case. For the t-distributed data, the Kim
and Lee approach is once again the top performer, but single
quantile with 7 = 0.95 and LRT are close behind. The multi-
nomial approach yields the largest TPR, but has a FWER
about twice that of the previous three methods. Overall,
the multinomial works better than Bernoulli in terms of
TPR and FWER for both the GP and t distributions, while
the two are similar for the Beta distribution. The quantile
methods, SQ (at the three quantiles) and MQ, perform sim-
ilarly.

3.2 Multiple change-points

In this simulation study, we examine the performance
of each of the methods for multiple change-points iden-
tification. A similar simulation design is used as in Sec-
tion 3.1. The three types of distributions, GP, Beta and
t, are considered, but with two change-points at 77 = 122
and T, = 243. We generate 50 years x 365 days of indepen-
dent data with distributions fy, fi1 and fo = fy as indicated

in Table 1. Then, change-points are identified by each of
the methods following the multiple change-points identifica-
tion procedures described in Section 2 and summarized in
Table 4. With 500 replications, the histograms of the num-
ber of identified change-points for each of the methods are
shown in Figure 2 under each of the three distributions. Ta-
ble 3 shows similar measurements as in Table 2 except the
following:

TP1: Number of cases where one true change-point is de-
tected;

TP2: Number of cases where two true change-points are
detected;

TPR: Proportion of cases where two true change-points are
identified, TPR = TP2/500.

Results are similar to those for the one change-point case,
except that the performance under the Beta-distributed tail
is further reduced. A summary of the properties of our
different change-point estimation methods appears in Ta-
ble 4.

Other simulation studies (not shown) reveal that it be-
comes increasingly difficult to detect all the change-points
when they increase in number, however the proportion of
cases where at least one false positive is obtained only in-
creases in the case of t-distributed data. As the number
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Figure 2. The histograms of the number of identified change-points in the multiple change-points simulation study for each of
the methods for the GP, Beta and t distributions.
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Table 4. Summary of properties of our change-point estimation methods

Method | Robustness/Flexibility Multiple change-point detection Speed
LRT Relies on the GP distribution assump- | Applies single-change-point-detection method | Slow
tion/approximation for exceedance over | within each subsegment.
threshold.
Be/Mu | Nonparametric Uses multiple change-points estimation method | Slow
based on the dynamic programming approach
SQ/MQ | Nonparametric Uses a sequential test to determine number | Fast
of change-points and estimate multiple change-
points
KL Nonparametric Same as LRT Fast
NewYork Newark Dover
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Figure 3. Minimum, 5% quantile, median, 95% quantile and maximum observed daily maximum temperatures (in degrees
Fahrenheit) for New York, Newark and Dover, 1956-2005. WBAN station numbers are 14732, 14734 and 13707, respectively.

of days in a year is fixed to 365, an increased number
of change-points means fewer observations between these
change-points so these results are as expected.

4. CHANGE-POINTS IN TEMPERATURE
DATA

We reconsider the historical daily maximum tempera-
tures from 1956 to 2005, recorded to the nearest degree
Fahrenheit, for New York City, analyzed in [5], and add
the historical daily maximum temperatures at Newark, New
Jersey and Dover, Delaware, over the same 1956 to 2005 pe-
riod. The latter daily maximum temperatures are recorded
to the nearest tenth of a degree Fahrenheit and are obtained
from the National Oceanic and Atmospheric Administration
(NOAA) at www.nesdis.noaa.gov. There were only one and
two missing observations, respectively, and we simply filled
in missing points by linear interpolation. Quantile curves
for the observed daily maximum temperatures are plotted
in Figure 3.

As daily maximum temperature data are non-stationary,
exhibiting at least seasonality in the mean and in the vari-
ability, and autocorrelated, we first consider the time se-
ries model proposed in [5] to remove these complicating

factors. Scaled residuals Z;; are then calculated and in-
spected for serial correlation. Estimated lag coefficients are
very small (not shown) and there are no significant lags.
The non-extreme part of the distribution of the Z;; is mod-
eled by its empirical distribution F. z,u, but we need to check
for, and model if necessary, any non-stationarity in the ex-
tremes of the {Z;} process. The fundamental differences
in heat-generating mechanisms at different times of the
year, e.g. in winter, daily maximum temperature is driven
by advection, while in the summer, clear skies and light
winds can be the driving forces, encourage non-stationary
extremes of Z;;. Figure 4 shows the scaled residuals, by sea-
son, for each of the three cities. Under the null hypothe-
sis that the Z; are i.i.d., the expected number of the ex-
ceedances of any 1" of them over a high threshold u, such
that Pr(Z;; > up) = p is Tnp, and the total number of ex-
ceedances, > 1, Zthl I(Z; > uy), follows a binomial(nT, p)
distribution. Table 5 shows the results of the tests by season.
We clearly see that the Z;; are not i.i.d. over the year.

It is inadequate to simply adopt a model using the
calendar-based seasons and we use our estimation meth-
ods to estimate more appropriate change-points. Consider
a number of change-points, 11, 15, ..., T}, such that the ob-
servations Z; with T, <t <Tj,j=1,...,m+1 are con-
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Figure 4. Residuals by season. Horizontal lines indicate 90%, 95%, 99% and 99.9% quantiles, respectively.

Table 5. Number of exceedances of residuals Z;; over high thresholds qo.90 [1], qo.95 [2], qo.99 [3] and qo.999 [4]. Expected
number of exceedances over the four thresholds are approximately 455, 227.5, 45.5, and 4.55, respectively. Results of binomial
test for too few or too many exceedances over the threshold: x - significant at 0.05, xx - significant at 0.01

New York Newark Dover
1] 2 [3] 4 | 1]  [2] Bl M| [2 3] [4]
Winter 482 250 61" 5 475 244 59 5 489 288"  69** 11**
Spring 467 241 61" 8 478 254 54 6 476 232 44 5
Summer | 422 193* 37 5 427 193* 38 7 428 189"  30* 2
Fall 454 229 24** 1 445 222 32 1 432 204 40 1

sidered in the same season. Estimated seasonal breaks are
shown in Figure 5. We see that while the optimal seasons
are city-dependent and differ somewhat across the eight esti-
mation methods, there is some general agreement. However,
when examining the data, we note that for a given season,
the GP parameters 8 and £ could also be time-varying be-
cause of changes in weather patterns over the years due to
climate change, industrialization, etc. For a season defined
by t € [Tj_1,T};), we allow one change over the 50-year pe-
riod and refer to the year n; in which it occurred as the
change-year. We fit a GP with various time-covariate mod-
els: (i) allowing for one change-year in the value of &, (ii)
allowing for one change-year in the value of 3, (iii) allowing
for one (common) change-year for the values of both £ and .
More precisely, for Z;; with t € [T;_1,T}),j=1,...,m+1,
we model (Z;y —u. ;)| Zi > u,; ~ GP(B;5,&;) where model
(i) fij = §j0 + Ejl * I(Z > ’I7j) and ﬁij = ﬁj, model (ii)
ﬂij = BjO + /le * I(l > ’rb) and gij = fj, model (111)
&ij = &o + & = 1(i > m;) and Bi; = Bjo + Bj1 + I(i > 1),
and u, ; is a high threshold. Models (i) and (ii) are nested in
model (iii) and we carry out model selection based on like-
lihood considerations, performing likelihood ratio tests to
assess evidence in favor of model (iii). Note that the change-
point methods are not applied in this case. We simply con-
sider integer-valued n; such that 1966 < n; < 1996, and
estimate 7; as the year which maximizes the likelihood for
the 50-year period. The constraints on 7; are necessary to
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ensure that there is a sufficient number of points before, and
after, the change-year so that the GP can actually be fitted.
Results are detailed in Figure 5. All data and most methods
are pointing in the direction of a change-point in the April
to May time period and, for the January to April season,
a change-year in the shape (shape and scale for Newark) of
the upper tail during the mid-70s.

Estimated 100-year return levels using the [16] approach
are shown for the three cities in Figure 6. We see that the
ordering has been maintained over the 50 years and the esti-
mates are most similar for the three cities during the prob-
lematic May period. Figure 7 shows increases in estimated
100-year return levels, from 1956 to 2005, for the three cities.
We see that New York and Newark have seen comparable
increases in the winter months, but the increase in Newark
is about twice that in New York, 2 degrees Fahrenheit com-
pared to 1, for the rest of the year. Dover seems to have been
immune to these increases, indicating that perhaps increases
in the other cities are the result of a heat-island effect. The
heat-island effect increases with population, population den-
sity and urbanization. Dover has seen smaller increases in
all three compared to New York and Newark.

5. DISCUSSION

There are three approaches to analyzing the extremes of
non-stationary data: (i) including covariates in the parame-
ters of the usual extreme value models for stationary series,
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Figure 5. Estimated change-point day T (under segment) marking the change of seasons during the year and estimated
change-year 1) (over segment) at which there was a change in the shape (all three cities, all seasons) and scale (season 1,
Newark only) parameter of the GP of scaled residuals, 1956-2005. E.g. The LRT approach estimates that there are two
seasons in New York: Jan 1 to May 6 (Day 126) and May 7 to Dec 31. The GP has shape parameter &1 for Jan 1 to May 6
data up to 1974, and shape parameter 19 + &11 for Jan 1 to May 6 data after 1974. Analogously, the GP has shape parameter
&0 for May 7 to Dec 31 data up to 1991, and shape parameter oo + €21 for May 7 to Dec 31 data after 1991. Methods are

labelled as

(ii) using a time-varying (or covariate-dependent) thresh-
old, and (iii) preprocessing the original series before ana-
lyzing extremes in terms of residuals. Approach (i) above
is not workable with the daily maximum temperature data.
The complexity of the nonstationarity can simply not be
captured by including covariates in the model parameters.
One often encounters convergence problems with MLE when
even only a few covariates are included, sometimes as few
as one in the case of the shape parameter £. There is also
much climatological evidence towards heavy day-to-day de-
pendence in daily maximum temperatures (as there is empir-
ical evidence in [5] where seasonal disturbances have large
first-order regression coefficient) and approach (i) cannot
handle the autoregressive behavior. A few have attempted
approach (ii), see [5]. We took approach (iii) and prepro-
cessed the maximum temperature series, accounting for lo-
cation and scale of the daily maximum temperature distri-
bution. When interest lies in changes in extreme tails, these
are more affected by the shape of the error distribution. The
methods reviewed and developed in this paper are used in

in Table 2.

Section 4 to detect changes in the latter.

Change-point analysis for extremes can focus on either
the rate of exceeding of a high threshold, the excess over
the high threshold, or both components. For the methods
discussed in the paper, the Bernoulli and single quantile
methods treat only the first component, while the likelihood
ratio test and Kim and Lee method treat only the second
component. The multiple quantile method aims to detect
changes at any high quantiles 7 € 7 and thus treats both
components when 7 is an interval. When calculating the
multiple quantile test statistic M@, a grid of quantile levels
from T are considered. Our numerical investigation shows
that the multiple quantile method is insensitive to the choice
of number of grid points used. In our applications, we con-
sidered only three thresholds for the multinomial method
but more thresholds can be incorporated for the multino-
mial method to cover the far upper tail region. However, our
additional simulations reveal that adding additional thresh-
olds to the multinomial approach do not further improve its
performance.
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Figure 6. Estimated 100-year return levels for 1956 and 2005 for New York, Newark and Dover when using the Kim and
Lee (2009) approach to find the change-points (i.e. determine seasons). Estimates are values that were only exceeded in 500
of 50,000 Monte Carlo simulated years.
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Figure 7. Increase in estimated 100-year return levels, from 1956 to 2005, for New York, Newark and Dover. Estimates are
values that were only exceeded in 500 of 50,000 Monte Carlo simulated years.
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