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Functional regular variations, Pareto processes
and peaks over threshold
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∗
and Mathieu Ribatet

History: The latest developments of extreme value theory
focus on the functional framework and much effort has been
put in the theory of max-stable processes and functional
regular variations. Paralleling the univariate extreme value
theory, this work focuses on the exceedances of a stochastic
process above a high threshold and their connections with
generalized Pareto processes. More precisely we define an ex-
ceedance through a homogeneous cost functional � and show
that the limiting (rescaled) distribution is a �–Pareto process
whose spectral measure can be characterized. Three equiva-
lent characterizations of the �–Pareto process are given using
either a constructive approach, either a homogeneity prop-
erty or a peak over threshold stability property. We also
provide non parametric estimators of the spectral measure
and give some examples.
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1. INTRODUCTION

Balkema and de Haan [4] and Pickands [17] have made
a major contribution to the extreme value theory with the
introduction of the generalized Pareto distribution and its
connection with exceedances above a large threshold. They
established that the linearly normalized maximum of inde-
pendent random variables converges to an extreme value dis-
tribution if and only if the normalized exceedance above a
threshold converges to a generalized Pareto distribution. For
statistical purposes, the use of peaks over threshold rather
than block maxima is often more convenient since it usually
wastes less observations. Extensions to the multivariate case
have been proposed by Rootzen and Tajvidi [19] and Falk
et al. [11].

More recently, the infinite dimensional setting, i.e., the
functional framework and continuous random processes, en-
joyed renewed interests. The generalized Pareto processes,
also known as GPD processes or functional generalized
Pareto distributions, have been introduced by Buishand
et al. [5], Aulbach et al. [3] and de Haan and Ferreira [12].
Similarly to the finite dimensional case, the domain of at-
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traction of a generalized Pareto process and that of the asso-
ciated max-stable process coincide. Several equivalent char-
acterizations of Pareto processes are given, including the
peak over threshold stability and a homogeneity property.
Statistical issues such as local asymptotic normality or tests
for the class of generalized Pareto processes are addressed
in Aulbach and Falk [1, 2].

Often exceedances above a high threshold can be defined
through a uniform supremum. More precisely, a peak over
threshold of a stochastic process {X(t)}t∈T can be defined
by

sup
t∈T

X(t)− bn(t)

an(t)
> 0

where {an > 0}n≥1 and {bn}n≥1 are normalizing functions.
Since we restrict our attention to the tails of the process, it
is sensible to have

P

{
sup
t∈T

X(t)− bn(t)

an(t)
> 0

}
−→ 0, n → ∞.

Theorem 3.2 in de Haan and Ferreira [12] states that if there
exists continuous normalizing functions {an > 0}n≥1 and
{bn}n≥1 such that

X − bn
an

∣∣∣∣
{
sup
t∈T

X(t)− bn(t)

an(t)
> 0

}

converges weakly in the space of continuous functions as
n → ∞, then the limit must be a generalized Pareto process.
In particular when X is nonnegative and an = bn > 0 are
constants, we have

sup
t∈T

X(t)− bn
an

> 0 if and only if ‖X‖ > an

where ‖ · ‖ denotes the uniform norm.
Although from a theoretical point of view the use of a uni-

form supremum seems sensible when working with the space
of continuous functions, for practical purposes other kinds of
thresholds might be relevant. More generally, an exceedance
over a threshold can be defined as an event {�(X) > an}, for
some functional � and where the threshold an is such that

P {�(X) > an} −→ 0, n → ∞.

For example, Buishand et al. [5] were interested in the total
amount of rain over a catchment T , i.e.,

∫
T
X(t)dt where
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X(t) represents the amount of rain at t ∈ T . In this context,
it seems appropriate to let �(x) =

∫
T
x(t)dt and to derive

the limiting distribution of

a−1
n X | {�(X) > an}, n → ∞.

Other possibilities are �1(x) =
∫
T
x(t)2dt, �2(x) =

inft∈T x(t) or �3(x) = x(t0). The choice �1 is natural in the
context of an energy functional, for example if X stands for
the strength of the wind in space. A high threshold with
respect to �2 occurs when the random field takes large val-
ues at any point t ∈ T and might be relevant for modeling
sea levels along a dike. The use of �3 puts the emphasis on
a specific point t0 ∈ T and might be of interest for model-
ing extreme flows at the confluence of two rivers. We may
see these functionals as cost functionals and for our pur-
poses we will restrict our attention to the class of measur-
able nonnegative homogeneous functional � : C → [0,+∞),
with C = C{T, [0,+∞)} the space of nonnegative continuous
functions over a compact parameter set T . All the previous
examples belong to this class. A functional � is said to be
homogeneous of order β > 0 if

�(ux) = uβ�(x), for all u > 0, x ∈ C.

Without loss of generality, we can assume that β = 1. Indeed
since the functional � is nonnegative, the functional �̃ = �1/β

is clearly homogeneous of order 1 and satisfies

{�(X) > an} = {�̃(X) > a1/βn }.

The paper is organized as follows. The background on
functional extreme value theory is introduced in Section 2.
Section 3 is devoted to the �-Pareto processes and their prop-
erties in connection to exceedances over high thresholds.
Non parametric estimators of the spectral measure are intro-
duced in Section 4 and their consistency is shown. Section 4
deals with some examples related to Brown-Resnick pro-
cesses and the simulation of Pareto processes is discussed.

2. FUNCTIONAL EXTREME VALUE
THEORY

The theory of continuous max-stable processes was ini-
tiated by de Haan [7], de Haan and Pickands [10] and de
Haan and Lin [9]. Connections with functional regular vari-
ations are well known, see e.g. Hult and Lindskog [13, 14]
or Davis and Mikosch [6]. For a background on functional
extreme value theory, we refer to the monograph de Haan
and Ferreira [8]. Note that for the sake of simplicity, we will
only consider in this paper standardized (or simple) pro-
cesses, i.e. processes whose marginal distributions are in the
domain of attraction of a Fréchet distribution with index
α > 0.

For the convenience of the reader, we start with some
standard results on univariate extreme value theory. Let α >

0 and X, {Xi}i≥1 be i.i.d. positive random variables with
common distribution function F . For u > 1, we note a(u) =
F←(1− 1/u), where F← denotes the quantile function. It is
well known that the following statements are equivalent:

1. the tail function 1 − F is regularly varying at infinity
with index −α;

2. uP{X/a(u) ∈ ·} v−→ λα(·) as u → +∞, where λα(dr) =

αr−α−1dr and
v−→ stands for vague convergence in the

space M{(0,+∞]} of Radon measures on (0,+∞];
3. the normalized sample point process

∑n
i=1 δXi/a(n) con-

verges weakly in M{(0,+∞]} as n → +∞ to a Poisson
point process on (0,+∞] with intensity λα;

4. the normalized maximum max(X1, . . . , Xn)/a(n) con-
verges in distribution as n → +∞ to an α-Fréchet dis-
tribution;

5. the distribution P{X/u ∈ · | X > u} of normalized ex-
ceedances over high threshold converges in distribution
as u → +∞ to a Pareto distribution with index α.

These equivalence are well known but rarely presented all at
the same time. The reader shall refer to Resnick [18] Propo-
sition 1.11 and 3.21 for the equivalence betwen 1, 2, 3 and
4. The equivalence between 4 and 5 follows from Balkema
and de Haan [4].

We explain how this can be generalized to the func-
tional setting and introduce first the notion of functional
regular variation. Let T be a compact metric space and
C = C{T, [0,+∞)} the Banach space of nonnegative con-
tinuous functions x : T → [0,+∞) endowed with the uni-
form norm ‖x‖ = supt∈T |x(t)|. Let C0 = C \ {0} and
S = {x ∈ C; ‖x‖ = 1} be the unit sphere. Given any metric
space X , we denote by B(X ) its Borel σ-algebra.

Definition 1. A random process X with sample path in
C0 is said to be regularly varying with exponent α > 0
and spectral probability measure σ on S, noted shortly X ∈
RVα,σ(C0), if there exists a positive function a(·) such that
a(u) → +∞ as u → +∞ and

(1) uP {X/‖X‖ ∈ B, ‖X‖ > ra(u)} −→ σ(B)r−α

for all r > 0 and all B ∈ B(S) such that σ(∂B) = 0, where
∂B denotes the boundary of B.

The exponent α and the spectral measure σ are uniquely
determined while the function a(·) is unique up to asymp-
totic equivalence and regularly varying at infinity with ex-
ponent 1/α. Similarly to the univariate case, a convenient
choice is

(2) a(u) = inf{x ≥ 0: P(‖X‖ ≤ x) ≤ 1− 1/u},

and in the remainder of this paper we will always assume
this choice.

We now introduce some technical backgrounds on func-
tion and measure spaces that are useful when using point
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processes. A first step is to introduce a suitable modifica-
tion of the space C in order to deal with points at infinity.
In the univariate case, this is done by working with the
space (0,+∞] instead of (0,+∞). In the functional frame-
work, the polar decomposition C0 → (0,+∞) × S given by
x �→ (‖x‖, x/‖x‖) is bijective and bi-continuous and allows
to identify C0 and (0,+∞) × S. We consider the complete
separable metric space C0 = (0,+∞]×S equipped with the
metric

d{(r1, s1), (r2, s2)} = |1/r1 − 1/r2|+ ‖s1 − s2‖.

A set B is bounded in C0 if and only if there exists some
ε > 0 such that B ⊂ [ε,+∞]×S (see e.g. Davis and Mikosch
[6] for more details).

Definition 2. Let M(C0) be the set of Borel measures m
on C0 that are boundedly finite, i.e., such that m(B) < ∞,
for all bounded sets B ∈ B(C0).

A sequence {mn}n≥1 in M(C0) is said to converge to m
in the ŵ-topology if∫

fdmn −→
∫

fdm, n → ∞,

for all bounded and continuous functions f : C0 → R with
bounded support.

The notion of ŵ–convergence generalizes the notion of
vague convergence and takes into account the fact that C0

is not locally compact. The ŵ-topology defined by this no-
tion of convergence ensures that M(C0) is a Polish space.
The subspaceMp(C0) consisting of all boundedly finite point
measures is a closed subset of M(C0) and is endowed with
the induced ŵ-topology. It is the suitable space when work-
ing with point processes in functional extreme value theory.

In the following, we emphasize on the connections be-
tween regular variations, sample point measures, sample
maxima and exceedances above high thresholds in a func-
tional framework. Before generalizing the analogous of state-
ments i)–v) in the univariate case to the functional frame-
work, we first need some notations and to introduce the
limiting objects that will appear in the functional extreme
value theory. For a general background on functional ex-
treme value theory, the reader shall refer to de Haan and
Ferreira [8], chapter 9.

Definition 3. For α > 0 and σ a probability measure on S,
we define

• mα,σ the unique measure on C0 such that

mα,σ{[r,+∞)×B} = r−ασ(B), r > 0, B ∈ B(S);

• Πα,σ a Poisson point measure on C0 with intensity
mα,σ;

• Mα,σ a continuous max-stable process on T with expo-
nent measure mα,σ;

• Pα,σ a Pareto process with index α > 0 and spectral
measure σ, i.e.,

Pα,σ(t) = PαY (t), t ∈ T

where Pα has an α–Pareto distribution, i.e.,

P(Pα > r) = r−α, r ≥ 1,

and is independent of the continuous process Y defined
on T and whose distribution is σ.

Note that mα,σ is boundedly finite and homogeneous of
order −α, i.e.,

mα,σ(uA) = u−αmα,σ(A),

for all u > 0 and A ∈ B(C0) bounded.

The Poisson point measure Πα,σ can be seen as a ran-
dom element of Mp(C0) and might be defined as follows.
Let {Γi}i≥1 be a Poisson point process on (0,+∞) with
Lebesgue intensity and, independently, let {Yi}i≥1 be a se-
quence of independent processes with common distribution
σ, then

Πα,σ =
∑
i≥1

δ
Γ
−1/α
i Yi

is a Poisson point process with intensity mα,σ. Similarly, the
max-stable process

Mα,σ(t) = max
i≥1

Γ
−1/α
i Yi(t), t ∈ T,

is a max-stable process with exponent measure mα,σ.

Theorem 1. Let X1, X2, . . . be independent copies of a ran-
dom process X with sample path in C0. The following state-
ments are equivalent:

1. X ∈ RVα,σ(C0);
2. the following ŵ-convergence holds in M(C0)

tP{a(t)−1X ∈ ·} ŵ−→ mα,σ, as t → ∞;

3. the normalized point measure

Nn =

n∑
i=1

δXi/a(n)

converges weakly in Mp(C0) to the Poisson point mea-
sure Πα,β as n → ∞;

4. the normalized sample maximum

Mn(t) = a(n)−1 max{X1(t), . . . , Xn(t)}, t ∈ T,

converges weakly in C to the max-stable random process
Mα,σ as n → ∞;
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5. the conditional distribution of normalized exceedances

P
(
t−1X ∈ A | ‖X‖ > t

)
, A ∈ B(C),

converges weakly in C to the generalized Pareto process
Pα,σ as n → ∞.

Proof of Theorem 1. The equivalence 1 ⇔ 2 is due to Hult
and Lindskog [13]. The equivalence 1 ⇔ 3 ⇔ 4 is proved in
Davis and Mikosch [6, Lemma 2.2], note that an essential
part of the proof is due to de Haan and Lin [9, Theorem
2.4]. The equivalence 4 ⇔ 5 is essentially a consequence of
Theorem 3.1 in Ferreira and de Haan [12].

3. PEAKS OVER THRESHOLDS AND
PARETO PROCESSES

As explained in the introduction, the peaks over threshold
approach amounts to consider the conditional distribution
of a random field X given that �(X) > u, where u > 0 is the
threshold level and � : C → [0,+∞) is a homogeneous mea-
surable cost functional associated to the threshold method.

The notion of �-Pareto process relies on the following the-
orem providing several equivalent characterizations. Setting
�(·) = ‖ · ‖, we retrieve essentially Theorem 2.1 of Ferreira
and de Haan [12]. The main difference is that some extra
positivity condition is made in [12] that prevent W from
being identically equal to zero at some point t ∈ T (this is
useful when considering finite dimensional distributions).

Theorem 2. Let W be a continuous stochastic process with
sample path in C0. The following three statements are equiv-
alent:

1. Constructive approach:

1a. �(W ) has a Pareto distribution with index α > 0,
i.e., P(�(W ) > u) = u−α, u > 1;

1b. �(W ) and W/�(W ) are independent.

2. Homogeneity property:

2a. P{�(W ) > 1} = 1;

2b. For all u ≥ 1 and measurable A ⊂ {f ∈ C : �(f) ≥
1},

P(W ∈ uA) = u−α
P(W ∈ A).

3. Peaks over threshold stability:

3a. P{�(W ) > 1} > 0;

3b. For all A ∈ B(C) and all u ≥ 1 such that
P{�(W ) > u} > 0,

P{u−1W ∈ A | �(W ) > u} = P(W ∈ A).

Note that the tail index α is the same in 1a. and 2b.
Characterization 3. is more implicit and does not involve
the tail index α.

Definition 4. The distribution σ� of W/�(W ) is called the
spectral measure on {x ∈ C; �(x) = 1}. The process W is
called a simple �–Pareto process with tail index α and spec-
tral measure σ� and is denoted by W ∼ P �

α,σ�
.

Proof of Theorem 2. We first prove that 1. ⇒ 2. Condition
2a. follows trivially from 1a. Consider the set

(3) Av,B = {f ∈ C : �(f) ≥ v, f/�(f) ∈ B}.

with v ≥ 1 and B ⊂ {f ∈ C : �(f) = 1} measurable. Clearly,
1a. and 1b. entail

P(W ∈ Av,B) = P(�(W ) ≥ v,W/�(W ) ∈ B) = v−ασ�(B).

Using the relation uAv,B = Auv,B , we obtain

P(W ∈ uAv,B) = u−α
P(W ∈ Av,B).

The sets of the form Av,B form a π-system and generate
the σ-algebra of Borel sets A ⊂ {f ∈ C : �(f) ≥ 1}. Hence
condition 2b. holds for all Borel set A.

We prove that 2. ⇒ 3. Let A ⊂ C be a Borel set. Using
conditions 2a. and 2b., we obtain

P{u−1W ∈ A, �(W ) > u} = u−α
P{W ∈ A, �(W ) > 1}

= u−α
P(W ∈ A).

When A = C we have P{�(W ) > u} = u−α > 0 and hence

P{u−1W ∈ A | �(W ) > u} =
P{u−1W ∈ A, �(W ) > u}

P{�(W ) > u}
= P(W ∈ A).

It remains to check that 3. ⇒ 1. Condition 3b. with A =
{f ∈ C : �(f) > v} gives for u, v ≥ 1

P{�(W ) > uv} = P{�(W ) > u}P{�(W ) > v}

and hence the tail function u �→ F̄ (u) = P{�(W ) > u}
satisfies the functional equation

(4) F̄ (uv) = F̄ (u)F̄ (v), u, v ≥ 1.

Condition 3a. gives the initial condition F̄ (1) > 0. Clearly
(4) implies F̄ (1) = F̄ (1)2 and the initial condition ensures
that F̄ (1) = 1. We then prove that F̄ is positive on [1,∞).
Since F is right continuous and F̄ (∞) = 0, there exists some
u0 > 1 such that F̄ (u0) ∈ (0, 1). Using (4), we have for all
n ≥ 1, F̄ (un

0 ) = F̄ (u0)
n > 0 and letting un

0 → ∞, F̄ must
be positive since it must be non-increasing.

Any non-increasing positive solution of the functional
equation (4) must be of the form F (u) = u−α for some
α > 0. This proves that �(W ) satisfies 1a. It remains to
prove that �(W ) and W/�(W ) are independent. To this aim,
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we consider B ∈ B(C) and we set A = {f ∈ C : f/�(f) ∈ B}.
Condition 3b. ensures that for all u ≥ 1,

P{W/�(W ) ∈ B, �(W ) > u}
= P{W ∈ A, �(W ) > u}
= P{u−1W ∈ A, �(W ) > u}
= P{W ∈ A}P{�(W ) > u}
= P{W/�(W ) ∈ B}P{�(W ) > u},

and this proves condition 1b.

The following result shows that Pareto processes natu-
rally appear as the possible limiting distributions of (nor-
malized) exceedances over a high threshold. The proof re-
lies on the characterization of Pareto processes by peak over
threshold stability.

Proposition 1. Assume � is continuous and let X be a
stochastic process such that

P{u−1X ∈ · | �(X) > u} −→ P(W ∈ · ), u → ∞,

weakly in C. Then either W is a simple �–Pareto process or
P{�(W ) = 1} = 1.

Proof of Proposition 1. Let A = {f ∈ C : �(f) ≥ 1}. Clearly,
P{u−1X ∈ A | �(X) > u} = 1 for all u > 0. Furthermore,
A is closed by the continuity of � so that the Portmanteau
theorem implies

P(W ∈ A) ≥ lim sup
u→+∞

P{u−1X ∈ A | �(X) > u} = 1,

and hence �(W ) ≥ 1 almost surely.
We suppose that P{�(W ) = 1} < 1 and prove that W is

a simple �–Pareto process. Clearly, in this case, P{�(W ) >
1} > 0 and condition 3a. of Theorem 2 is satisfied. We prove
that the limit W satisfies also the peak over threshold sta-
bility condition 3b. so that it must be a simple �–Pareto
process. Clearly, for all u1, u2 ≥ 1 and all set Av,B of the
form (3), we have

P{u−1
1 u−1

2 X ∈ Av,B , �(u−1
1 X) > u2 | �(X) > u1}

= P{u−1
1 u−1

2 X ∈ Av,B | �(X) > u1u2}
× P{�(u−1

1 X) > u2 | �(X) > u1}.

As u1 → ∞ the weak convergence entails

P{u−1
2 W ∈ Av,B , �(W ) > u2}

= P(W ∈ Av,B)P{�(W ) > u2},(5)

provided P{�(W ) = v} = 0 and P{W/�(W ) ∈ ∂B} = 0.
Indeed since � is continuous, the boundary set of {f ∈
C : �(f) > v} is {f ∈ C : �(f) = v}. Finally, equation (5)
is extended to all v ≥ 1 and all A ∈ B(C) thanks to the fact
that the sets of the form Av,B with P{�(W ) = v} = 0 and

P{W/�(W ) ∈ ∂B} = 0 form a π-system generating the σ-
algebra of Borel sets A ⊂ {f ∈ C : �(f) ≥ 1}. Hence the two
probability measures P(W ∈ ·) and P{u−1

2 W ∈ · | �(W ) <
u2} are equal and condition 3b. is satisfied.

Theorem 3. Suppose that X ∈ RVα,σ(C0). If � is continu-
ous at the origin and does not vanish σ–a.e., then

P{u−1X ∈ · | �(X) > u} −→ P �
α,σ�

, u → ∞,

weakly in C and the spectral measure σ� is given by

(6) σ�(B) =
1

c�

∫
S
�(f)α1{f/�(f)∈B} σ(df), B ∈ B(C),

with c� =
∫
S �(f)ασ(df).

Proof of Theorem 3. In order to use regular variations, we
introduce the normalizing function a(·) from Definition 1
and prove

P{a(u)−1X ∈ · | �(X) > a(u)} −→ P �
α,σ�

, u → ∞.

To this aim, it is enough to prove that for all bounded con-
tinuous functional F : C → R we have
(7)
uE

[
F{a(u)−1X}1{�(X)>a(u)}

]
−→ c�E{F (W )}, u → ∞,

with W ∼ P �
α,σ�

. Indeed, taking F ≡ 1 implies

uP{�(X) > a(u)} −→ c�, u → ∞.

Since � is nonnegative and does not vanish σ–a.e., c� > 0
and we have

E[F (a(u)−1X) | �(X) > a(u)]

=
E

[
F (a(u)−1X)1{�(X)>a(u)}

]
P{�(X) > a(u)} −→ E{F (W )}, u → ∞,

proving the required weak convergence. We now prove (7).
By the homogeneity of �,

(8) uE
[
F{a(u)−1X}1{�(X)>a(u)}

]
= uE

[
F̃{a(u)−1X}

]
,

with F̃ (f) = F (f)1{�(f)>1}. According to Theorem 1, X ∈
RVα,σ(C0) implies the ŵ-convergence in C0

uP{a(u)−1X ∈ ·} → mα,β(·)

and therefore we have

(9) uE
[
F̃{a(u)−1X}

]
−→

∫
C0

F̃ (f)mα,σ(df),

provided that F̃ has a bounded support in C0 and is con-
tinuous mα,σ–a.e. We will check these conditions later. The
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right-hand side of (9) is equal to∫ ∞

0

∫
S
F̃ (rf)αr−α−1drσ(df)

=

∫ ∞

0

∫
S
F (rf)1{r�(f)>1} αr

−α−1drσ(df).(10)

On the other hand, the right-hand side of (7) can be com-
puted using a simple change of variable∫ ∞

1

∫
C
F (rf)αr−α−1drc�σ�(df)

=

∫ ∞

0

∫
S
1{r>1}F (rf/�(f))�(f)α αr−α−1drσ(df)

=

∫ ∞

0

∫
S
1{r�(f)>1}F (rf)αr−α−1drσ(df).(11)

Equations (8)–(11) imply (7). It remains to prove that F̃
has a bounded support in C0 and is continuous mα,σ–a.e.
The continuity and homogeneity of � implies that there ex-
ists some M > 0 such that �(f) ≤ M‖f‖ for all f ∈ C.
Hence �(f) > 1 implies ‖f‖ > M−1 and the support of F̃ is
included in [M−1,+∞]× S and is bounded in C0. Further-
more since F is continuous, f �→ F̃ (f) = F (f)1{�(f)>1} is
continuous at every point f such that �(f) �= 1. Finally, it
holds

mα,σ({�(f) = 1}) =
∫ ∞

0

∫
S
1{r�(f)=1} αr

−α−1drσ(df) = 0,

and F̃ is continuous mα,σ–a.e.

When different functionals � and �′ are involved, the cor-
responding spectral measures σ� and σ�′ defined by (6) are
linked by a simple relation.

Proposition 2. Let � and �′ be homogeneous measurable
functionals C → [0,+∞) and suppose that �′(f) > 0 σ�–a.e.
Then,

(12) σ�(B) =

∫
C �(f)

α1{f/�(f)∈B} σ�′(df)∫
C �(f)

α σ�′(df)
, B ∈ B(C).

As a direct consequence, if �(f) > 0 σ–a.e., then (6) can
be inverted and we have

(13) σ(B) = c�

∫
C
‖f‖α1{f/‖f‖∈B}σ�(df), B ∈ B(S).

Proof of Proposition 2. Using the definition of σ� and σ�′ ,
we have for B ∈ B(C),∫

C
�(f)α1{f/�(f)∈B} σ�′(df)

=
1

c�′

∫
C
�′(f)α{�(f)/�′(f)}α1{f/�(f)∈B} σ(df)

=
c�
c�′

σ�(B),

where we used in the last equality the fact that �′(f) > 0
σ�–a.e. Taking B = C, we get

c� = c�′

∫
C
�(f)ασ�′(df)

and (12) follows easily.

4. ESTIMATION OF SPECTRAL MEASURES

Under the assumptions of Theorem 3, we consider a
natural non-parametric estimator of the spectral measure
σ� in (6) associated to the regularly varying random field
X ∈ RVα,σ(C0). It is based on independent copiesX1, X2, . . .
of X, and especially on exceedances over large thresholds,
i.e., such that �(Xi) > un for some large threshold level un.

Proposition 3. Suppose that X ∈ RVα,σ(C0) and that � is
continuous at the origin and does not vanish σ–a.e. Consider
a sequence un > 0 such that un → ∞ and un/a(n) → 0, with
a(·) given by (2). Then

σ̂�,n =

∑n
i=1 1{�(Xi)>un}δXi/�(Xi)∑n

i=1 1{�(Xi)>un}
, n ≥ 1,

is a consistent estimator of the spectral measure σ� in the
sense that σ̂�,n(B) converges in probability as n → +∞ to
σ�(B) for all B ∈ B(C) such that σ�(∂B) = 0.

In some applications, it may happen that the observations
are obtained by thresholding with respect to a functional �′

different from the functional � of interest. Propositions 2 and
3 suggest the following generalized estimator.

Proposition 4. Suppose that X ∈ RVα,σ(C0). Let � and �′

be homogeneous functionals C → [0,+∞) such that

• �′ is continuous at the origin and does not vanish σ–a.e.
• � is continuous and satisfies � ≤ M�′ for some M > 0.

Consider a sequence un > 0 such that un → ∞ and
un/an → 0 with a(·) given by (2). Then

σ̃�,n =

∑n
i=1 {�(Xi)/�

′(Xi)}α 1{�′(Xi)>un}δ{Xi/�(Xi)}∑n
i=1 {�(Xi)/�′(Xi)}α 1{�′(Xi)>un}

.

is a consistent estimator of σ�.

Proof of Proposition 3. Let Nn =
∑n

i=1 1{�(Xi)>un} be the
number of observations above threshold un in the sample
X1, . . . , Xn. The estimator σ̂�,n is well defined as soon as
Nn > 0. If Nn = 0, define σ̂�,n = σ0 with σ0 an arbitrary
probability measure. The choice of σ0 is irrelevant from an
asymptotic point of view since we will see that P(Nn = 0) →
0 as n → ∞.

Clearly Nn has a binomial distribution with parameters
n and pn = P{�(X) > un}. In particular, Nn has mean
npn and variance npn(1− pn). The conditions un → ∞ and
un/an → 0 imply pn → 0 and npn → ∞. Since Nn/(npn)
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has mean 1 and its variance goes to 0 as n → ∞, Nn/(npn)
converges in probability to 1.

Let B ∈ B(C) such that σ�(∂B) = 0 and define pn,B =
P{�(X) > un, X/�(X) ∈ B}. The normalized sum

(14)
1

npn

n∑
i=1

1{�(Xi)>un, Xi/�(Xi)∈B}

has expectation pn,B/pn and variance pn,B(1−pn,B)/(np
2
n).

Theorem 3 combined with the condition σ�(∂B) = 0 yields

pn,B
pn

= P{X/�(X) ∈ B | �(X) > un}

−→ σ�(B), n → ∞.

Since

pn,B(1− pn,B)

np2n
∼ σ�(B)

npn
−→ 0,

(14) converges in probability to σ�(B) as n → ∞. Finally,
the expression

σ̂�,n(B) = σ01{Nn=0}

+
npn
Nn

1

npn

[
n∑

i=1

1{�(Xi)>vn, Xi/�(Xi)∈B}

]
1{Nn>0}

and the convergences in probability mentioned above com-
bined with Slutsky’s lemma imply σ̂�,n(B) → σ�(B) in prob-
ability and proves Proposition 3.

Proof of Proposition 4. According to Proposition 2,

(15) σ�(B) =

∫
C �(f)

α1{f/�(f)∈B} σ�′(df)∫
C �(f)

α σ�′(df)
, B ∈ B(C).

The estimator σ̃�,n is obtained by replacing σ�′ in this ex-
pression by the non-parametric estimator σ̂�′,n from Propo-
sition 3:
(16)

σ̃�,n(B) =

∫
C �(f)

α1{f/�(f)∈B} σ̂�′,n(df)∫
C �(f)

α σ̂�′,n(df)
, B ∈ B(C).

As a consequence of Proposition 3, the probability measures
σ̂�′,n converge in probability as n → ∞ to σ�′ in the space
of probability measures on C endowed with the metric of
weak convergence. This entails the convergence in proba-
bility

∫
F (f)σ̂�′,n(df) →

∫
F (f)σ�′(df) for all functional F

that are bounded and continuous σ�′–a.e.

Let B ∈ B be such that σ�(∂B) = 0 and consider the
particular choice FB(f) = �(f)α1{f/�(f)∈B}. The condition
� ≤ M�′ entails FB(f) ≤ Mα for all f such that �′(f) = 1.
Since � is continuous, FB is continuous except at points f
such that f/�(f) ∈ ∂B. It is easily checked that the condi-
tion σ�(∂B) = 0 implies σ�′({f/�(f) ∈ ∂B}) = 0 so that FB

is continuous σ�′–a.e. Hence, we get as n → ∞∫
C
�(f)α1{f/�(f)∈B} σ̂�′,n(df)

P−→
∫
C
�(f)α1{f/�(f)∈B} σ̂�′(df),

and similarly∫
C
�(f)ασ̂�′,n(df)

P−→
∫
C
�(f)α1{f/�(f)∈B} σ̂�′(df).

Then (15)–(16) and Slutsky’s Lemma imply that σ̃�,n(B) →
σ�(B) in probability.

5. AN EXAMPLE

For standard examples of regularly varying random fields,
the reader shall refer to section 4.1 in Davis and Mikosh
[6]. These examples include simple multiplicative processes,
symmetric α-stable processes, max-stable processes. We de-
velop here an example in connection with Brown-Resnick
processes: we describe the associated Pareto processes and
provide some simulations.

The Brown-Resnick processes introduced in Kabluchko
et al. [16] form a flexible class of stationary max-stable
random fields. The construction is as follows: consider
B = (B(t))t∈Rd a centered continuous stationary incre-
ments Gaussian random field on R

d with variance function
σ2(t) = E[B(t)2]; let (Bi)i≥1 be independent copies of B
and, independently, let {Γi}i≥1 be a Poisson point process
on (0,+∞) with Lebesgue intensity; then for α > 0, the
random field

M(t) = max
i≥1

Γ
−1/α
i exp

( 1

α
(Bi(t)− σ2(t)/2)

)
, t ∈ R

d

is an α-Fréchet max-stable random field which is stationary
on R

d. Furthermore, the distribution of M depends only on
α and on the variogram γ(t) = E[(B(t)−B(0))2].

For any compact T ⊂ R
d, M is regularly varying on C0

with index α and spectral measure given by

σ(A) =
E[‖Z‖α1{Z/‖Z‖∈A}]

E[‖Z‖α] , A ∈ B(S),

where Z denotes the log-normal process

Z(t) = exp
( 1
α
(B(t)− σ2(t)/2)

)
, t ∈ R

d.

We consider a random field X in the max-domain of at-
traction of M , or equivalently X ∈ RVα,σ(C0) and a cost
functional � and we are interested in the behavior of X given
that �(X) is large. Theorem 3 states that the (normalized)
exceedances of X over high threshold converge to a �-Pareto
process P �

α,σ�
with spectral measure given by

σ�(A) =
E[�(Z)α1{Z/�(Z)∈A}]

E[�(Z)α]
, A ∈ B(C).
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Figure 1. Simulations in logarithmic scale from the spectral
measure σ� in the Brown-Resnick framework with exponential
(top) and Brownian (bottom) variogram respectively. The

cost functional � is the mean value on the domain
T = [−10, 10].

It is worth noting that for the simple cost function �(x) =
x(t0) giving the value of x at a given location t0 ∈ T ,
the spectral measure is simply the distribution of the log-
normal process Z̃(t) = exp( 1

α (B̃(t)−σ̃2(t)/2)) where B̃(t) =

B(t)− B(t0) and σ̃2(t) = E[B̃(t)2]. This can be checked by
standard computations on Gaussian random vectors since
in this case

σ�(A) = E

[
exp(B(t0)−σ2(t0)/2)1{Z/Z(t0)∈A}

]
, A ∈ B(C).

and we can use a change of measure with exponential density
(see Kabluchko [15, Proposition 2] for more details).

More generally, one can simulate (approximatively) the �-
Pareto process thanks to a Metropolis-Hastings procedure.
The construction uses independent copies (Zn)n≥1 of the
log-normal process Z as proposals and is as follows:

i) set Z ′
1 = Z1;

ii) for n ≥ 2, compute the acceptance probability pn =
min((�(Zn)/�(Zn−1))

α, 1) and set then Z ′
n = Zn with

probability pn and Z ′
n = Z ′

n−1 with probability 1− pn.

The sequence of random fields (Z ′
n) is a reversible Markov

chain with stationary distribution

P[Z ′ ∈ A] =
E[�(Z)α1{Z∈A}]

E[�(Z)α]
, A ∈ B(C).

Hence for large n, the distribution of Z ′
n/�(Z

′
n) converges to

σ�.
We apply this procedure to sample from the spectral

measure σ� when �(x) = |T |−1
∫
T
x(t)dt is the mean value

of x on the domain T . Simulation of the stationary incre-
ments Gaussian random fields is performed with the func-
tion GaussRF from the R package RandomFields. We use
the domain T = [−10, 10] and a discretization of the integral
with a grid of size 100 × 100. The tail index is α = 1. Two
different variograms are considered: the exponential model
γ(t) = 2(1 − e−‖t‖) and the Brownian model γ(t) = ‖t‖.
Sample path from the spectral measure are shown in Fig-
ure 1. Both random fields have mean value equal to 1 but
the behaviors are quite different: in the exponential model,
many moderate peaks (≈15) appear at various places in
the domain; in the Brownian model, there is one large peak
(≈80) in a localized place. This is related to behavior of the
log-normal process Z which is stationary in the exponential
model while it vanishes at infinity in the Brownian model.
Hence an extremal event has an impact in the whole domain
in the first case, while the impact remains more localized in
the second case.
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