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Uniform asymptotics for ruin probabilities
in a nonstandard compound renewal risk model*

YANG YANG', ZHONGQUAN TAN, AND YUNYUN ZHONG

In this paper, we consider a nonstandard compound re-
newal risk model with or without a constant interest rate, in
which claims at each accident moment are aggregated from a
number of widely orthant dependent individual claims, and
inter-arrival times are widely lower orthant dependent. We
establish some asymptotic formulae for the finite-time and
infinite-time ruin probabilities, when the individual claims
are heavy-tailed. The obtained asymptotics hold uniformly
on a finite or infinite time interval.
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1. COMPOUND RENEWAL RISK MODEL

In this paper, we investigate the uniformly asymptotic
behavior of the finite-time and infinite-time ruin probabil-
ities in a nonstandard compound renewal risk model with
or without a constant interest rate. The compound renewal
risk model is a natural modification of the classical one. In
such a model, the claims at each accident moment are ag-
gregated from a number of individual claims, meanwhile, in
a classical renewal risk model one claim at each accident
time appears. More specifically, the compound renewal risk
model satisfies the following three requirements:

Assumption H;. The individual claim sizes { Xy, k > 1}
form a sequence of identically distributed but not necessar-
ily independent nonnegative random variables (r.v.s) with
common distribution F' and finite mean p > 0.

Assumption H,. The inter-arrival times {6y, k > 1} are
also identically distributed but not necessarily independent
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nonnegative r.v.s, which are independent of {Xy, k > 1}
and not degenerate at zero.

Assumption Hs. The individual claim sizes and the claim
number caused by the nth accident at the accident time
Tn = Yop_y 0k are {X,E"), k > 1} and N,, respectively.
Here, {X,i"), k > 1} are independent copies of { Xy, k > 1}
and {Ny, k > 1} are independent and identically dis-
tributed (i.i.d.) nonnegative integer-valued r.v.s with com-
mon distribution G and finite mean v > 0. In addition,
the random sequences {Np, k > 1}, {0k, k > 1} and
{{X,i"), k> 1}, n > 1} are mutually independent.

If the individual claim sizes {Xj, k > 1} and the inter-
arrival times {6y, k > 1} are both independent r.v.s, re-
spectively, the model is the so-called independent compound
renewal risk model, which was introduced by Tang et al.
(2001). If each claim number N} is degenerate at 1, the
model above reduces to the classical one.

In such a compound renewal risk model, the times of
successive accidents {7,, n > 1} constitute a quasi-renewal
counting process

(1)

which represents the number of accidents in the interval [0, ¢]
with mean function A(t) = E7(t). The total claim amount
at time 7, and the total claim amount up to time ¢ > 0 are,
respectively,

T(t):sup{nZ()i Tn St}a tZO,

Ny, 7(t) 7(t) N,
(2) sy =3 X" and 3OSy =303 X"
k=1 n=1 n=1k=1

The total amount of premiums accumulated up to time
t > 0, denoted by C(t) with C'(0) = 0 and C(t) < oo al-
most surely (a.s.) for every t > 0, is a nonnegative and
nondecreasing stochastic process, which is independent of
{Ni, k>1}, {6k, k> 1} and {{X", k> 1}, n>1}. Let
r > 0 be the constant interest rate (that is, after time ¢, the
capital z becomes ze™). We remark that if r = 0, then the
model has no interest rate. The discounted surplus process
of an insurance company, which plays an important role in
the study of ruin probabilities, is expressed by

Up(x,t) = x + C(t) — Do (1),
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where x is the initial capital reserve, C’ fo e~ "5C(ds)

and D, (t) = ZT(fl S(n) ~"n represent the total discounted
premium amount and the total discounted claim amount up
to time ¢ > 0, respectively. Assume that C(t) < co a.s. for
all 0 <t < oco. In this described model the ruin probability
within a finite time ¢ > 0 and the infinite-time ruin proba-
bility are defined, respectively, by

U(z,1) :P( inf U (,u) < 0[U, (2.,0) *x)

0<u

and

U(z) = P( inf U, (z,u) < 0|, (x,0) = x)
uz
This paper aims to investigate the asymptotics for such
ruin probabilities in some dependent compound renewal
risk model, holding uniformly for all ¢ such that the quasi-
renewal function A(¢) is positive, which implies that the set

A= {t: At) > 0} is needed. Define ¢ = inf{t : A(t) >0} =
inf{¢t: P(0; <t) > 0}, then, clearly,
A [ ltodl PO =1) >0
] @00, U P(G=t) =0.

Then, for all t € A and = > 0,

U(x,t) = P( sup (Dy(u) —

3) -
U(x) = P(ig% (Dy(u) — C(u)) > x)

In the noncompound renewal risk model, where N; =
Ny = --- =1, the renewal counting process 7(¢) in (1) can
be explained as the number of claims within [0, ¢], then the
total claim amount up to time ¢ > 0 in (2) is simplified by
527® X,,. Therefore, the finite-time and infinite-time ruin
probabilities in (3) reduce to

(g, (Z e -cw) )
<51ip0<ZX e " — ~(u)> >x>.

To better illuminate our results, we denote the finite-time
and infinite-time ruin probabilities in the noncompound re-
newal risk model by v (x,t) and ¥ (z), respectively.
Throughout this paper, all limit relationships hold for z
tending to oo unless stated otherwise. For two positive func-
tions a(z) and b(z), we write a(x) ~ b(x) if lim a(z)/b(z) =
1; write a(z) < b(x) if limsupa(x)/b(z) < 1; write
a(z) > b(z) if iminfa(x)/b(x) > 1; and a(z) = o(b(x))

and
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if lima(z)/b(z) = 0. Furthermore, for two positive bivari-
ate functions a(z,t) and b(x,t), we write a(z,t) ~ b(x,t)
uniformly for all ¢ in a nonempty set A, if

a(z,t)

lim sup b, 1)

Tr— 00 teA

write a(z,t) < b(x,t) or b(x,t) = a(x,t) uniformly for all
te A, if

<1

I a(x, t)
im sup su

w—><>op te}z b(l’ t)
For real y, denote by [y] the greatest integer smaller than
or equal to y.

2. PRELIMINARIES AND MAIN RESULTS

We shall restrict the claim-size distribution F' to some
classes of heavy-tailed distributions. An important class of
heavy-tailed distributions is D, which consists of all distribu-
tions with dominated variation. A distribution V' =1—V on
(—00, 00) belongs to the class D, if limsup V (zy)/V (z) < oo
for any 0 < y < 1. A slightly smaller class is C of consistently
varying distributions. A distribution V' on (—oo,00) be-
longs to the class C, if lim,~ 1 liminf, o V(zy)/V(z) =
Closely related distribution class is the class £ of long-tailed
distributions. A distribution V' on (—o0, c0) belongs to the
class £, if V(z +y) ~ V(z) for any y > 0. It is well known
that the following inclusion relationships hold:

ccLnNnDcCL

Furthermore, for a distribution V' on (—o0,00), denote its
upper and lower Matuszewska indices, respectively, by

log V. (y)

+ _ _ li
Jy im oz y

Yy—00
with V., (y) := liminf V(zy)/V (x) for y > 1,

log V" (y)

Jy=—1i
Y 1m logy

Y—>00

with V" (y) := limsup V (zy)/V () for y > 1. Define another
important parameter Ly = limg\ 1 V*(y) The following as-
sertions are equivalent: (i) V € D (ii) Ly > 0; (iii) J;7 < oo.
It also holds that V' € C if and only if Ly = 1. For more de-
tails, see Bingham et al. (1987, Chapter 2.1) and Foss et al.
(2011).

Many works have been devoted to ruin probabilities with
constant interest rate and heavy-tailed claim sizes. After
some earlier works in some noncompound renewal risk mod-
els, Tang et al. (2001) and Aleskeviciené et al. (2008) started
to consider compound renewal risk models. Most of these
works were conducted for i.i.d. claims and inter-arrival times
with the premium process C(t) a deterministic linear func-
tion. Recently, Wang et al. (2013) introduced some new and



wider dependence structures (widely upper/lower orthant
dependence, see the definitions below), under which they
considered the noncompound renewal risk model and de-
rived a uniformly asymptotic estimate for the finite-time
ruin probability on the interval A N[0, 7] and some T € A,
when F' belonging to the class £ N D. We would like to re-
mark that their result is important and interesting in view
of the fact that it is in the form of exact equivalence, al-
lowing the interest rate » = 0 and dropping the restriction
Jg > 0, even though the uniformity is over a bounded time
interval. Later, Liu et al. (2012) extended Wang et al.’s re-
sult from widely upper orthant dependent claims to upper
tail asymptotically independent claims; and Yang and Wang
(2012) investigated the uniform asymptotics for the finite-
time and infinite-time ruin probabilities, and extended the
uniformity region to the whole interval A. Some related re-
sults in some dependent noncompound renewal risks can
be found in Yang and Wang (2010) among others. Under
some dependence structures, the asymptotics for finite-time
ruin probability in compound risk models have been studied
by using the investigation of random sums, see, e.g., Yang
et al. (2009), Zong (2010) and Yang et al. (2012) among
others. A recent paper Yang et al. (2013) investigated the
uniformly asymptotic behavior of finite-time and infinite-
time ruin probabilities in a dependent compound Poisson
risk model.

Motivated by the above results, this paper considers a
dependent compound renewal risk model, and investigates
the uniformly asymptotic behavior of ruin probabilities on
any finite time interval or the whole interval A.

We firstly introduce some dependence structures, which
will be commonly used in our risk model. Maulik and
Resnick (2004) proposed a pairwise dependence structure.
R.v.s {&,, n > 1} are said to be upper tail asymptotically
independent (UTAI), if P(§, > 2) > 0 for all x € (—o00, 00)
and n > 1, and for each 1 <1i# j < o0

lim
min{z,y}—o00

P& > al¢; > 1) = 0.

Such a dependence structure is wider than the following
widely upper orthant dependence, which was recently pro-
posed by Wang et al. (2013). R.v.s {£,, n > 1} are said to
be widely upper orthant dependent (WUOD), if there ex-
ists a finite real sequence {gfj (n), n > 1} such that, for each
n>1and all x1,...,x,,

(4) P(ﬂ{fk > m) < g () [ P& > an):
k=1

k=1

they are said to be widely lower orthant dependent
(WLOD), if there exists a finite real sequence {gi(n), n>
1} such that, for each n > 1 and all x4, ..., x,,

and they are said to be widely orthant dependent (WOD),
if they are both WUOD and WLOD.

Clearly, if r.v.s {£,, n > 1} are WUOD, then they are also
UTAL Recall that if glgj(n) = g% (n) = M for some constant
M >0and alln > 1in (4) and (5), the r.v.s {&,, n > 1}
are said to be upper extended negatively dependent (UEND)
and lower extended negatively dependent (LEND), respec-
tively (see Chen et al. (2010)); they are extended negatively
dependent (END), if they are both UEND and LEND (see
Liu (2009)). In particular, if gfj (n) = g% (n)=1foralln >1
in (4) and (5), the r.v.s {&,, n > 1} are said to be upper
negatively dependent (UND) and lower negatively depen-
dent (LND), respectively (see Ebrahimi and Ghosh (1981)
or Block et al. (1982)); they are negatively dependent (ND),
if they are both UND and LND (see Lehmann (1966)). So,
the WUOD and WLOD structures allow many common neg-
atively dependent r.v.s, as well as some positively dependent
r.v.s. See the examples in Section 3 of Wang et al. (2013).

The following lemma can be obtained directly from the
definitions, which is due to Proposition 1.1 of Wang et al.
(2013).

Lemma 2.1. (1) If r.v.s {&,, n > 1} are nonnegative and
WUOD with the dominating sequence {gg(n)7 n > 1}, then
for each n > 1

E( 11 §k> < gy(n) [T E&-
k=1 k=1

(2) Assume that r.v.s {&,, n > 1} are WUOD (WLOD)
with the dominating sequence {ggU(n)7 n>1} ({gi(n), n>
1}). If functions {fn(-), m > 1} are all nondecreasing
then {fn(&n), n > 1} are still WUOD (WLOD); while if
{fu(:), n > 1} are all nonincreasing then {fn(&,), n > 1}
are WLOD (WUOD). For each case, the dominating se-
quence remains unchanged.

Some related asymptotic independence structures can be
referred to Chen and Yuen (2009), Yang and Wang (2013),
Yang and Hashorva (2013), Li (2013) among others.

Now we state the main results of the paper.

Theorem 2.1. Consider a dependent compound renewal
risk model with constant interest rate » > 0 described in
Section 1. Under Assumptions Hy—Hs, assume that the in-
dividual claim sizes {X,, n > 1} are WOD r.v.s with
common distribution F € LN D and the dominating se-
quences {giy (n), n > 1}, {g7(n), n > 1} satisfying for any
O<e<l,

(6)

the inter-arrival times {0,, n > 1} are WLOD r.v.s with
the dominating sequence {g% (n), n > 1} satisfying for some
€ >0,

(7)

lim g;} (n) (nf(n))E =0;

n—oo

. 0 —eon __ ).
Jim_ g7 (n)e” " = 0;
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and the claim numbers {N,, n > 1} are i.i.d. r.v.s with
common distribution G € C. Then, for any fixed T € A,

(8)  U(x,t)~ /0_ (VE(ze™) + G(p 'we™) ) AM(du)

holds uniformly for allt € AN[0,TY, if either of the following
two conditions is satisfied:

Condition A. EX? < oo and for any 0 < e < 1,

9)

. X —en

HILH;O g7, (n)e” " =0.

Condition B. There ezists a nonnegative and nondecreas-
ing function g(x), such that max{g{s (n), g7 (n)} < g(n)
for all n > 1, where g(x) satisfies g(x) — oo and = “g(x)
is semi-decreasing for some 0 < a < 1. Here, the semi-
decreasing function x~%*g(x) means that there exists a con-
stant C > 0 such that xy%g(x1) > Cxy%g(x2) for all
xo > x1 > 0.

We remark that if the individual claim sizes {X,,, n > 1}
are END r.v.s and the inter-arrival times {6,,, n > 1} are
LEND r.v.s, then all conditions on dominating sequences
in Theorem 2.1 are, clearly, satisfied, and the strong law
of large numbers of END r.v.s also holds without Condi-
tion B. The obtained Theorem 2.1 significantly extends and
improves the result in Zong (2010) from the following as-
pects. We extend the dependence structures among individ-
ual claim size and inter-arrival times to the more general
case; enlarge the scope of the claim-size distribution to the
class LND; obtain the equivalent formula holding uniformly
for ¢ in a finite interval; drop the condition J; > 0; and al-
low the constant interest rate r > 0.

Our second result investigates the uniform asymptotics
for ruin probability on the whole interval A. We remark that
it includes the estimate for infinite-time ruin probability.

Theorem 2.2. Consider a dependent compound renewal
risk model with constant interest rate r > 0 described in Sec-
tion 1. Under the conditions in Theorem 2.1, if F € C, J5 >
0, J5 >0 and (7) holds for some 0 < ¢y < —logEe™"/r%
then (8) holds uniformly for all t € A.

3. PROOFS OF MAIN RESULTS

In the sequel, C' always represents a finite and positive
constant whose value may vary from place to place. We start
this section by a lemma before proving our main results.
The following lemma deals with the asymptotics for the tail
probability of the random sum, which plays a crucial role in
the proof of our main results, and is of independent interest
in its own right.

Lemma 3.1. Let {X,, n > 1} be WOD nonnegative r.v.s
with common distribution F € LND, finite mean p > 0 and
the dominating sequences {gX (n), n > 1}, {g5 (n), n > 1},
and let N, independent of {X,, n > 1}, be a nonnegative
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integer-valued r.v. with distribution G € C and finite mean
v > 0. If (6) and either of Conditions A and B in Theo-

rem 2.1 are satisfied, then

(10)

P(ZXk > x) ~vF(z)+G(p ).

k=1

Proof. We follow the line of Zong (2010). Denote by Sy =
Z}Icv=1 X We firstly estimate the upper bound of P(Sy >
z). For any 0 < € < 1, any fixed positive integer m and all
x>0,

(11)

P(SN > 93)
_ <Z+ Y Ly >p<sn - PN =)
n=1 m<n<(l—e)p~lz n>(1—e)p 'z

= Il —|—Ig—|—[3

By Lemma 2.1 of Liu et al. (2012), we have that

m

lim nP(N =n) =w.

m oo
n=1

. . I
lim lim = =
m oo T—00 F(x)

(12)
Asfor I, by (6) and F' € D, according to the large-deviation
upper bound for WUOD r.v.s (see Theorem 1 of Wang et al.
(2012)), there exists a positive constant C, depending only
on F| such that for sufficiently large m and all m < n <
(1-¢e)p o,

P(S, > z)

IAN AN IA
Q
3
Rl
™
g

which, combined with v = EN < oo, implies that

I, =

13) lim limsup = < (C lim nP(N =n)=0.
( ) m oo ;c—>oop .%') - m/oon:zm;+1 ( )
By G € C, we have that

o I3
(14) lim lim sup =

eNO 200 ,uflx)

Gl o
< lim lim sup ((7 S x) =1.
eNO z—oo G(;le)

From (11)—(14), we obtain that

(15) P(Sy > ) < vF(z) + G(p 'z).



We next deal with the lower bound of P(Sy > x). For
any 0 < € < 1, any fixed positive integer m and all z > 0,

(16)

P(SN > CU)

v

>

m
pox
n=1  n>(l4+e)p~ 'z

)P(Sn > z)P(N =n)

=: Il —|—I4

The first term I; has been treated in (12). We mainly es-
timate I, under Condition A or B in Theorem 2.1. Since
{X,, n > 1} are nonnegative, it holds that

(17) Iy > P(S{(14e)u-12) > )G ((L+2)p ™ ).

Under Condition A, for any v > 0, since {X,,, n > 1} are
WLOD r.v.s, by Markov’s inequality and Lemma 2.1 we
have that

(18) P(S[(prg)“—lz“ < 1‘)

< gf([(l + E)/,Lilx-l)e”z (Ee*UX1) [(14e)p 1] .

According to the inequalities 1+y < e¥, y € (—o0,0), and
eV <l-y+y? y>0,

Ee v%1 < exp{E(e_”X1 —1)}
< exp{—v,u—i—v2EX12}.

Plugging this into (18), we obtain that for any v > 0 and
sufficiently large x,

P(Stte)u—1a1 < @)
< g ([QA+e)p'z])
x exp{—v(ex — p) + v’EXTpu (1 + )z}
1 _vex VEXE(1 +¢e)x
<gX([QA+e)p'z])ex p{ 5 +—M }

Choose v = pe/(4EX?(1+¢)) > 0, then

(19) (S[(l_,_g)u—lﬂ < :L‘)
< (a+ ‘Dexp{—
<gr ([(L+ D

pe? -1
I o —| N
x exp{ 16EXZ(1 + )2 [+ e x]} 0

e .
16EX2(1+¢)

where the last step follows from (9). Condition B implies
that the strong law of large numbers for WOD r.v.s holds,
see Theorem 1.4 of Wang and Cheng (2011). Thus,

f“)

(20) P(S((l—&-a)u—lx] > x)

S[a+e)u-ta) x

(=rer R

>P< Sta+ou—tal
[ +e)pte]

[(EDrRE

_ 2,.—1
S BN
14+e—pz!

Hence, plugging (19) or (20) into (17) and by G € C, we

obtain that

lim lim inf _L

eN0 z—00 G(/dbflx)
Gl t+e)p e

> lim lim inf — ) =1.
eN0 z—00 G(M_lm)

1) and (12

(21)

It follows from (16), (2 ) that

(22) P(Sy > z) = vF(z) + G(p 'z).
Therefore, the desired (10) follows from (15) and (22).
This ends the proof of the lemma.

Now we start the proofs of the main results.

Proof of Theorem 2.1. Clearly, Assumption Hs shows that
{S](\Zj, n > 1} are iid. r.v.s with common distribution,
denoted by H. By Lemma 3.1, we have that

(23) H(z) ~vF(z)+G(p 'z),

which, by F € LND, G € C and combined with the inequal-
ity % < max{¢,..., 3=}, implies that H € LND. By
(3) and applying Theorem 1 1'of Liu et al. (2012), which es-
timates the finite-time ruin probability in the noncompound
risk model, we obtain that for any fixed T € A,

t
(24) \Il(x7t)~/ H (ze™)\(du)

0—
holds uniformly for all ¢ € A N [0,T]. Plugging (23) into

(24), we derive the desired (8). This completes the proof of
Theorem 2.1. O

Proof of Theorem 2.2. The proof of the theorem is similar
to that of Theorem 2.1 by using Theorem 3 of Yang and
Wang (2012), and noting J;; > 0. Indeed, (23), together
with F' € C and G € C, yields H € C; and again by (23) and

the inequality % < max{’;—i7 RN Z—:}, for any y > 1,
—x% F Gyt
H (y) = hmsupy _(Jiy)—l-g(u zy)
vF(z) + G(p~'x)
a -1
< hmbupmax{}i Y ,G_'(,u xy)}
F(z) Glu'a)
< maX{F @*(y)},
which, by Jz > 0 and Jz; > 0, leads to J; >
min{Jz,J;} > 0. O
ACKNOWLEDGEMENTS

The authors are most grateful to the referee and the edi-
tor for their very thorough reading of the paper and valuable
suggestions, which greatly improve the original results and
presentation of this paper.

Uniform asymptotics for ruin probabilities 7



(1]

2]

(3]

(4]

(5]

[6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

Received 8 August 2013

REFERENCES

ALESKEVICIENE, A., LEIPUS, R. and S1auLys, J. (2008). Tail be-
havior of random sums under consistent variation with applica-
tions to the compound renewal risk model. Extremes 11 261-279.
MR2429907

Brock, H. W., Savits, T. H. and SHAKED, M. (1982). Some
concepts of negative dependence. Ann. Probab. 10 765-772.
MR0659545

BinagHAM, N. H., GorLpig, C. M. and TEUGELS, J. L. (1987).
Regular Variation. Cambridge University Press, Cambridge.
MRO0898871

CHEN, Y., CHEN, A. and NG, K. W. (2010). The strong law of
large numbers for extended negatively dependent random vari-
ables. J. Appl. Probab. 47 908-922. MR2752902

CHEN, Y. and YUEN, K. C. (2009). Sums of pairwise quasi-
asymptotically independent random variables with consistent
variation. Stochastic Models 25 76-89. MR2494614

EBraHIMI, N. and GHosH, M. (1981). Multivariate negative
dependence. Comm. Statist. A. Theory Methods 10 307-337.
MR0612400

Foss, S., KorsHUNOV, D. and ZACHARY, S. (2011). An Introduc-
tion to Heavy-Tailed and Subexponential Distributions. Springer,
New York. MR2810144

LEHMANN, E. L. (1966). Some concepts of dependence. Ann.
Math. Statist. 37 1137-1153. MR0202228

L1, J. (2013). On pairwise quasi-asymptotically independent ran-
dom variables and their applications. Statist. Probab. Lett. 83
2081-2087. MR3079049

Liu, L. (2009). Precise large deviations for dependent random
variables with heavy tails. Statist. Probab. Lett. 79 1290-1298.
MR2519013

Liu, X., Gao, Q. and WANG, Y. (2012). A note on a dependent
risk model with constant interest rate. Statist. Probab. Lett. 82
707-712. MR2899510

MauLIK, K. and RESNICK, S. (2004). Characterizations and exam-
ples of hidden regular varitation. Extremes 7 31-67. MR2201191
TANG, Q., Su, C., JiaNG, T. and ZHANG, J. (2001). Large devia-
tions for heavy-tailed random sums in compound renewal model.
Statist. Probab. Lett. 52 91-100. MR1820135

Wang, K., WANG, Y. and GAao, Q. (2013). Uniform asymptotics
for the finite-time ruin probability of a dependent risk model with
a constant interest rate. Methodol. Comput. Appl. Probab. 15
109-124. MR3030214

WAaNG, K., YANG, Y. and LiN, J. (2012). Precise large deviations
for widely orthant dependent random variables with dominatedly
varying tails. Front. Math. China 7 919-932. MR2965946
WAaNG, Y. and CHENG, D. (2011). Basic renewal theorems for a
random walk with widely dependent increments and their appli-
cations. J. Math. Anal. Appl. 384 597-606. MR2825210

YANG, Y. and HASHORvA, E. (2013). Extremes and products of
multivariate AC-product risks. Insurance Math. Econom. 52 312—
319. MR3033454

Y. Yang, Z. Tan, and Y. Zhong

(18]

(19]

20]

(21]

(22]

23]

[24]

YaNG, Y., LiN, J., HuaNng, C. and Ma, X. (2012). The finite-
time ruin probability in two non-standard renewal risk models
with constant interest rate and dependent subexponential claims.
J. Korean Statist. Society 41 213-224.

YANG, Y., WANG, K. and Liu, J. (2013). Asymptotics and uniform
asymptotics for finite-time and infinite-time absolute ruin prob-
abilities in a dependent compound renewal risk model. J. Math.
Anal. Appl. 398 352-361. M R2984338

YANG, Y. and WaNg, K. (2012). Uniform asymptotics for the
finite-time and infinite-time ruin probabilities in a dependent risk
model with constant interest rate and heavy-tailed claims. Lith.
Math. J. 52 111-121. MR2902720

YaNG, Y. and WANG, Y. (2010). Asymptotics for ruin probability
of some negatively dependent risk models with a constant interest
rate and dominatedly-varying-tailed claims. Statist. Probab. Lett.
80 143-154. MR2575439

YANG, Y. and WANG, Y. (2013). Tail behavior of the product of
two dependent random variables with applications to risk theory.
Extremes 16 55-74. MR3020177

Yang, Y., WANG, Y., LEpus, R. and StauLys J. (2009). Asymp-
totics for tail probability of total claim amount with negatively
dependent claim sizes and its applications. Lith. Math. J. 49 337—
352. MR2553921

ZoNG, G. (2010). Finite-time ruin probability of a nonstandard
compound renewal risk model with constant force of interest.
Front. Math. China 5 801-809. MR2728725

Yang Yang

School of Mathematics and Statistics
Nanjing Audit University

School of Economics and Management
Southeast University

Nanjing 211815

People's Republic of China

E-mail address: yyangmath@gmail . com

ZhongQuan Tan

College of Mathematics, Physics and Information Engineering
Jiaxing University

Jiaxing 314001

People’s Republic of China

E-mail address: tzq728@163. com

YunYun Zhong

School of Mathematics and Statistics
Nanjing Audit University

Nanjing 211815

People's Republic of China

E-mail address: zhongyunyun1219@163. com


http://www.ams.org/mathscinet-getitem?mr=2429907
http://www.ams.org/mathscinet-getitem?mr=0659545
http://www.ams.org/mathscinet-getitem?mr=0898871
http://www.ams.org/mathscinet-getitem?mr=2752902
http://www.ams.org/mathscinet-getitem?mr=2494614
http://www.ams.org/mathscinet-getitem?mr=0612400
http://www.ams.org/mathscinet-getitem?mr=2810144
http://www.ams.org/mathscinet-getitem?mr=0202228
http://www.ams.org/mathscinet-getitem?mr=3079049
http://www.ams.org/mathscinet-getitem?mr=2519013
http://www.ams.org/mathscinet-getitem?mr=2899510
http://www.ams.org/mathscinet-getitem?mr=2201191
http://www.ams.org/mathscinet-getitem?mr=1820135
http://www.ams.org/mathscinet-getitem?mr=3030214
http://www.ams.org/mathscinet-getitem?mr=2965946
http://www.ams.org/mathscinet-getitem?mr=2825210
http://www.ams.org/mathscinet-getitem?mr=3033454
http://www.ams.org/mathscinet-getitem?mr=2984338
http://www.ams.org/mathscinet-getitem?mr=2902720
http://www.ams.org/mathscinet-getitem?mr=2575439
http://www.ams.org/mathscinet-getitem?mr=3020177
http://www.ams.org/mathscinet-getitem?mr=2553921
http://www.ams.org/mathscinet-getitem?mr=2728725
mailto:yyangmath@gmail.com
mailto:tzq728@163.com
mailto:zhongyunyun1219@163.com

	Compound renewal risk model
	Preliminaries and main results
	Proofs of main results
	Acknowledgements
	References
	Authors' addresses

