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Hierarchical dynamic models for multivariate
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In several application areas, we see the need for accurate
statistical modeling of multivariate time series of counts as
a function of relevant covariates. In ecology, count responses
on species abundance are observed over several time periods
at several locations, and the covariates that influence the
abundance may be location-specific and/or time-varying.
This paper describes a Bayesian framework for estimation
and prediction by assuming a multivariate Poisson sampling
distribution for the count responses and by fitting a hierar-
chical dynamic model. Our modeling incorporates the tem-
poral dependence as well as dependence between the com-
ponents of the response vector.
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1. INTRODUCTION

In several application areas, we increasingly see the need
for developing accurate statistical modeling approaches for
time series of multivariate count responses. The response
consists of an m-dimensional vector of counts that is ob-
served at each of N locations (or for each of N subjects)
over T regularly spaced times. The objective of the sta-
tistical analysis is to understand stochastic temporal pat-
terns in the response as a function of observed location
(or subject)-specific and/or time-varying covariates. For in-
stance, in ecology, understanding the causes and conse-
quences of variation in the abundance of organisms as a
function of topographical and environmental covariates has
been a long-standing goal (Krebs, 1972, Scheiner and Willig,
2011). In business, a pharmaceutical firm may be interested
in estimating and predicting the number of new prescrip-
tions written by physicians of drugs from the firm and its
competitors, as a function of the firm’s promotional activ-
ities (Venkatesan et al., 2012). In a problem in transporta-
tion engineering, the state of Connecticut is interested in
understanding stochastic patterns in the temporal behavior
of crash counts categorized by injury severity across a set
of highway segments, as a function of roadway geometry,
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traffic volume, etc. (Serhiyenko et al., 2014). For such ap-
plications, the modeling described in this article enable us
to adequately incorporate dependence in the response over
time as well as the dependence between the components of
the response vector. We illustrate the approach for the ecol-
ogy example.

The literature on count time series modeling includes ob-
servation driven models and parameter driven models. One
approach to develop models for count time series is based
on the thinning operator (Steutel and van Harn, 1979),
where the thinning operator is generated by counting se-
ries of Bernoulli-distributed random variables. McKenzie
(1985) and Al-Osh and Alzaid (1987) independently devel-
oped the first-order integer-valued autoregressive, INAR(1)
model. McKenzie (2003) and Jung and Tremayne (2006)
present a good review of subsequent developments. Regres-
sion modeling for count time series using quasi-likelihood
methods were discussed in Zeger (1988). Jorgensen et al.
(1999) described analysis of longitudinal multivariate count
data driven by a latent gamma Markov process using a
state space approach. Davis et al. (2003) described max-
imum likelihood estimation for generalized autoregressive
moving average (GLARMA) models for count time series.
Bayesian modeling of panel count data was discussed in
Chib et al. (1998), while Chib and Winkelmann (2001) dis-
cussed models with latent effects for correlated count data.
Count data models in the state space approach was dis-
cussed in Gamerman (1998), Durbin and Koopman (2000),
Fruhwirth-Schnatter and Wagner (2006), and Gamerman
et al. (2013), among others. Multivariate INAR models for
counts were discussed in Pedeli and Karlis (2011, 2012) and
references therein.

For Gaussian dynamic linear models (DLMs), also of-
ten referred to as Gaussian state space models, Kalman
(1960) and Kalman and Bucy (1961) popularized a recur-
sive algorithm for optimal estimation and prediction of the
state vector, which then enables prediction of the observa-
tion vector; see West and Harrison (1989) for details. Car-
lin et al. (1992) described the use of Markov Chain Monte
Carlo methods (Chen et al., 2000) for non-Gaussian and
non-linear state space models. Hierarchical dynamic linear
models (HDLMs) combine the stratified parametric linear
models (Lindley and Smith, 1972) and the DLMs into a
general framework, which have been particularly useful in
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econometric, education, and health-care applications. The
Gaussian HDLM includes a set of one or more dimension re-
ducing structural equations along with the observation equa-
tion and state (system) equation of the DLM (Gamerman
and Migon, 1993). Landim and Gamerman (2000) further
extended the Gaussian HDLM to a more general class of
models where the response vector has a matrix-valued nor-
mal distribution.

For situations where the time series of responses con-
sists of counts, DLMs have been generalized to dynamic
generalized linear models (DGLMs) or exponential family
state space models, which assume that the sampling distri-
bution is a member of the exponential family of distribu-
tions, such as the Poisson or negative binomial distributions
(Gamerman, 1998). The DGLMs may be viewed as dynamic
versions of the generalized linear models (McCullagh and
Nelder, 1989), and Bayesian inference is facilitated through
a Metropolis-Hastings algorithm combined with the Gibbs
sampler in repeated use of an adjusted version of Gaus-
sian DLM. In many applications, the response consists of
a vector-valued time series of counts, and there is a need to
develop statistical modeling approaches for estimation and
prediction. In this article, we describe a hierarchical multi-
variate dynamic model (HMDM), with a multivariate Pois-
son distribution (MVP) as the sampling distribution for the
response vector time series of counts, and incorporating co-
variates that may vary over location and/or time. The use
of the MVP distribution enables us to model associations
between the components of the count response vector, while
the dynamic framework allows us to model the temporal be-
havior. The hierarchical structure enables us to capture the
location (or subject) specific effects over time.

The format of the paper follows. Section 2 gives a de-
scription of the ecological application, including a descrip-
tion of the data. Section 3 reviews the MVP distribution and
describes fast computation of its probability mass function
(pmf). Section 4 describes the HMDM model and gives de-
tails of the Bayesian inference. Section 5 discusses model se-
lection and prediction based on the fitted HMDM. Section 6
presents results for simulated data, while Section 7 presents
an analysis of the ecological data on gastropod abundance.
Section 8 provides a summary and discussion.

2. GASTROPOD ABUNDANCE IN THE
LUQUILLO EXPERIMENTAL FOREST IN
PUERTO RICO – DATA DESCRIPTION

Understanding the causes and consequences of variation
in the abundance of organisms has been a long-standing
goal in ecology (Scheiner and Willig, 2011). Nonetheless, few
long-term analyses spanning over 20 years of spatiotempo-
ral variation in abundance exist, especially for invertebrate
populations in tropical habitats that are subject to high in-
tensity but infrequent disturbances such as hurricanes (e.g.,
Willig et al., 2012). Terrestrial gastropods are of consid-
erable ecological importance because of their abundance,

diversity, and trophic position. Moreover, terrestrial gas-
tropods, like non-marine mollusks in general, are suffering
from global declines and are in need of scientifically informed
conservation action and management (Lydeard et al., 2004).
As such, there is considerable urgency to understand varia-
tion in gastropod abundance and the factors that affect it. In
some ecosystems, gastropods respond to environmental gra-
dients (Willig et al., 1998a, 2011, 2012) and to disturbances
(Bloch and Willig 2006), including those induced by human
activities, and do so at a variety of spatial scales (Willig et
al., 1998b, 2007). Because gastropods are ectothermic and
not particularly vagile, they are constrained in distribution
and behavior by desiccation stress (Cook 2001). This fauna
evinces a suite of attributes that suggests differential re-
sponses to spatial variation in habitat or micro-climate that
might arise as a consequence of global change. Finally, ef-
fective management or conservation of populations threat-
ened by altered disturbance regimes requires species-specific
understanding of the particular environmental aspects of
change that are associated with alterations in abundance.

Long-term censuses of terrestrial gastropods were accom-
plished on the Luquillo Forest Dynamics Plot (LFDP; 18o20
N, 65o49 W), a16-ha grid in the northwest of the Luquillo
Experimental Forest (LEF) in the Luquillo Mountains of
northeastern Puerto Rico (McDowell et al., 2012). Although
a modestly drier period typically extends from January to
April (hereafter, the dry season), rainfall generally remains
at least 20 cm in all months (Brown et al., 1983). The ba-
sic census design includes sampling during the wet and dry
season of each year on each of forty circular sites (3-m ra-
dius) that are spaced evenly within a rectilinear grid such
that 60-m separated adjacent points along a row or column
(see Bloch and Willig, 2006, Willig et al., 1998b, 2007). The
abundance of gastropods is sampled at each of those 40 sites
during the dry and wet seasons for each year from 1991 to
2012. The number of replicate samples per season differed
among years: 1 replicate in the dry season of 1991; 2 repli-
cates in the dry season of 2003 and in the dry and wet
seasons of 1992 and 1993; 3 replicates in the dry season of
1995 and in the wet and dry season of 1994; and 4 replicates
in all other seasons and years between 1995 and 2012.

Although 17 species of gastropods are known to live in
the Luquillo Forest Dynamics Plot, we focus on Caracolus
caracolla and Gaeotis nigrolineata, the most abundant and
widely distributed terrestrial gastropods in the tabonuco
forest. We estimate abundance based on the minimum num-
ber known to be alive (MKNA) at each site during each
season (i.e., the maximum number of individuals captured
within a season at a site). All individuals were identified to
species in the field and returned as closely as possible to
the point of capture and always within the site of capture.
There is no ecological reason to support an assumption of
negative association between the counts over time for these
two species (Bloch and Willig, 2012).

In addition to species counts, environmental character-
istics that are invariant over the course of the study were
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determined for each site. Elevation and slope (unitless) are
continuous variables, ranging from 333 m asl to 428 m asl,
and 0.7 to 65.1, respectively. Aspect and soil type are cate-
gorical variables that are estimated based on four 20 m by
20 m quadrants whose vertex was coincident with the center
of each survey plot. The aspect of each quadrant was charac-
terized into categories that represent the angular equivalents
of the four cardinal (N, E, S, and W) or four intermediate
(NE, SE, SW, and NW) compass directions. Because these
categories arise from an underlying circular distribution, we
quantify the central tendency after converting the angles to
radians and applying a cosine transformation, doing so only
when the observed aspect is no more than 135 degrees (in
order to ensure environmentally informative characteriza-
tions). Aspect categories were combined into four distinct
levels to increase sample sizes, viz., 1, 5, 7, and 8, of which
level 1 is used as the baseline in the model shown in section 7.
To ensure environmentally informative characterizations of
soil type, we characterized each survey plot by the domi-
nant soil type based on consideration of its four associated
quadrants, when the most pervasive soil type was at least
twice as frequent as the second most common soil type, and
was dominant in at least two of the four quadrants. The soil
type levels are Zarzal (1), Cristal (2), or Prieto (3).

Based on percent canopy cover (CC) evident in aerial
photographs taken in 1936, US Forest Service records, and
other sources, the LFDP can be subdivided into four canopy
cover classes (Thompson et al., 2002). CC classes 1 and 2
were combined to increase sample size, resulting in three
areas of historic land use in 1936. The redefined CC level 1
(0–49% cover) experienced the most intensive logging and
agriculture prior to 1934; CC level 2 (50–80% cover) was
used for shade-coffee cultivation and other small scale mixed
agriculture before 1934; and CC level 3 (80–100% cover) was
lightly and selectively logged up to the 1950s.

As a consequence of disturbance and secondary succes-
sion, some habitat characteristics (e.g., canopy openness and
plant apparency) vary over time at each site. Canopy open-
ness (CO) was measured using a spherical densitometer,
higher numbers representing greater canopy openness. Em-
pirically, it equals the average number of grid cells that are
not occluded by vegetation from measurements by a densit-
ometer at the mid-point of the 4 cardinal radii of each sam-
pling plot. Plant apparency is the volume of space in the
understory that was occupied by plants, and is estimated
using a plant apparency device at each of the mid-points
along the cardinal radii. We estimated plant apparency (PA)
via a method (Cook and Stubbendiek, 1986) that quantifies
the aerial density of all living vegetation at heights up to
3 m above the forest floor (see Secrest et al., 1996). Us-
ing a plant apparency device (Secrest, 1995), we determine
the cumulative number of foliar intercepts, defined as the
sum of species-specific counts of living vegetation touching
a wooden dowel at each of seven heights (0, 0.5, 1.0, 1.5, 2.0,
2.5, and 3.0 m). The device comprises a set of four 0.5 m

long dowels positioned at 90o angles at each height. The de-
vice is positioned 1.5 m from the center of each plot in each
of the four cardinal directions. Apparency is estimated sep-
arately for Prestoea acuminata, the sierra palm (PAsp) and
for all other plant species (PAothers). Canopy openness and
plant apparency are measured only during wet seasons. In
order to investigate the gastropod abundance, we propose
hierarchical dynamic modeling of the bivariate count time
series, which enables us to study the effect of site-specific
and time-dependent covariates, as described in the follow-
ing sections.

3. MULTIVARIATE POISSON
DISTRIBUTION

The definition of an m-variate Poisson distribution is
based on a mapping g : N

q → N
m, q ≥ m, such that

Y = g(X) = AX (Mahamunulu, 1967; Johnson et al.,
1997). Here, X = (X1, . . . , Xq)

′ is a vector of unobserved in-
dependent Poisson random variables, i.e., Xr ∼ Poisson(λr)
for r = 1, . . . , q; andA is an arbitrarym×q matrix which de-
termines the properties of the multivariate Poisson distribu-
tion. The m-dimensional vector Y = (Y1, . . . , Ym)′ = AX
follows a multivariate Poisson distribution with parameters
λ = (λ1, . . . , λq)

′ and pmf

MPm(y|λ) = P (Y = y|λ) =
∑

x∈g−1(y)

P (X = x|λ)

=
∑

x∈g−1(y)

q∏
r=1

P (Xr = xr|λr)(1)

where g−1(Y ) denotes the inverse image of Y ∈ N
m and for

r = 1, . . . , q, the pmf of the univariate Poisson distribution
is P (Xr = xr|λr) = exp(−λr)λ

xr
r /xr!.

The literature on the use of the multivariate Poisson dis-
tribution for modeling applications was sparse until recently,
possibly due to the complicated form of the pmf (1). Karlis
and Meligkotsidou (2005) proposed the two-way covariance
structured multivariate Poisson distribution which permits
a more realistic modeling of multivariate counts for several
practical applications. This distribution is constructed by
setting A = [A1 A2], where A1 = Im captures the main ef-
fects; A2 captures the two-way covariance effects; A2 is an

m×(m(m−1)
2 ) binary matrix; each column of A2 has exactly

2 ones and (m−2) zeros and no duplicate columns exist; and
q = m+[m(m− 1)]/2. We correspondingly split the param-

eter λ into two parts, viz., λ(1) = (λ1, · · · , λm)′, which cor-

responds to the m main effects, and λ(2) = (λm+1, · · · , λq)
′

which corresponds to the m(m−1)/2 pairwise covariance ef-
fects. For example, whenm = 2, the bivariate Poisson distri-
bution with two-way covariance structure for Y = (Y1, Y2)

′

is expressed via q = 3 independent Poisson random vari-
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ables as:

Y1 = X1 +X3

Y2 = X2 +X3(2)

where Xi ∼ Poisson(λi), i = 1, 2, 3. The joint pmf of Y1 and
Y2 is:

P (Y1 = y1, Y2 = y2|λ) = exp{−(λ1 + λ2 + λ3)}

×λy1

1

y1!

λy2

2

y2!

s∑
i=0

(
y1
i

)(
y2
i

)
i!

(
λ3

λ1λ2

)i

(3)

where s = min(y1, y2).
Similarly, when m = 3, we write Y = (Y1, Y2, Y3)

′ as:

Y1 = X1 +X4 +X5

Y2 = X2 +X4 +X6

Y3 = X3 +X5 +X6(4)

where Xi ∼ Poisson(λi) for i = 1, · · · , 6. The joint proba-
bility mass function of Y1,Y2 and Y3 is:

P (Y1 = y1, Y2 = y2, Y3 = y3|λ) = exp{−
6∑

i=1

λi}

×
∑

(X4,X5,X6)∈C

λy1−X4−X5

1 λy2−X4−X6

2

(y1 −X4 −X5)!(y2 −X4 −X6)!

× λy3−X5−X6

3 λX4
4 λX5

5 λX6
6

(y3 −X5 −X6)!X4!X5!X6!
(5)

where the summation is over the set C such that C =
[(X4, X5, X6) ∈ N

3 : (X4 + X5 ≤ y1) ∩ (X4 + X6 ≤
y2) ∩ (X5 +X6 ≤ y3)] �= ∅]

It is easy to see that the matrix A has the respective
forms shown below for m = 2 and m = 3:

(
1 0 1
0 1 1

)
and

⎛
⎝1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

⎞
⎠

The mean vector and variance-covariance matrix of Y
are given by E(Y |λ) = Aλ and Cov(Y |λ) = AΣA′,
where Σ = diag(λ1, . . . , λq). As pointed out by Karlis and
Meligkotsidou (2005), this covariance cannot accommodate
negative associations among the components of Y . When
m = 1, the MPm(y|λ) in (1) reduces to the univariate Pois-

son pmf P (Y = y|λ) = e−λλy

y! .
A recursive scheme was proposed by Tsiamyrtzis and

Karlis (2004) for computing the multivariate Poisson pmf
when m = 2 or m = 3. We use the following faster ap-
proach for the calculation of the multivariate Poisson pmf
proposed in Hu (2012). When m = 2, let y1 and y2 denote
the observed counts, and without loss of generality, assume
that y1 ≤ y2, so that min(y1, y2) = y1. Since X3 is the com-
mon term in both equations in (2), it is straightforward to

obtain the set of possible values that X3 can assume, viz.,
x3 = 0, . . . ,min(y1, y2), and obtain the corresponding values
assumed by X1 and X2 to be respectively X1 = y1−x3 and
X2 = y2 − x3. We have solved for all possible sets of values
for the inverse image of y, i.e., x ∈ g−1(y). The pmf for the
bivariate Poisson distribution can be calculated using (3).

When m = 3, without loss of generality, we assume
that y1 ≤ y2 ≤ y3. The possible values for x4 and x5

are in the set C1 = (0, . . . , y1), and the possible values
for x6 are in the set C2 = (0, . . . , y2). We have in to-
tal K different combinations for (x4, x5, x6), where K =
(length of set C1)

2 × (length of set C2) = (y1 + 1)2(y2 + 1).
The corresponding values for X1, X2, X3 can be calculated
from (4). Let C∗ denote the set of K different combinations
of possible values for all q = 6 independent Poisson vari-
ables. Since it is possible that in the set C∗, X1, X2, or X3

may assume negative values, a subset of C∗, which only con-
tains non-negative values of X1, X2, and X3, is the inverse
image of y. The pmf of the trivariate Poisson distribution is
then obtained using (5).

The computation of the multivariate Poisson likelihood
directly depends on the magnitude of the counts, and a
sizable portion of the computational effort in the Bayesian
modeling is for the evaluation of the likelihood. In Table 1,
we present the CPU times (seconds) for the likelihood calcu-
lation of 10, 000 simulated counts under three scenarios cor-
responding to different λ’s. In these computations, we have
assumed all pairwise covariance mean effects to be equal to
1, and have chosen different main effect means for each sce-
nario. Specifically, in the univariate case when m = 1, we
simulate Poisson random variables Y ’s under the three sce-
narios with means λ = 3, λ = 5 and λ = 10. In the bivariate
case (2), we simulate X1, X2, X3 under scenario 1 as univari-
ate Poisson with respective means λ1 = 2, λ2 = 2, λ3 = 1.
Under scenario 2, λ1 = 4, λ2 = 4, λ3 = 1, while under sce-
nario 3, λ1 = 9, λ2 = 9, λ3 = 1. In the trivariate case (4), we
simulate X1, · · · , X6 under scenario 1 as univariate Poisson
with respective means λ1 = · · · = λ6 = 1. Under scenario 2,
λ1 = λ2 = λ3 = 2, and λ4 = λ5 = λ6 = 1. Under scenario 3,
λ1 = λ2 = λ3 = 8, and λ4 = λ5 = λ6 = 1. Simulations are
run on Dell Optiplex 990 (Intel Core i7-2600 CPU a quad
core processor with 3.4Ghz) with 16Gb of RAM using 32-bit
version of Debian GNU/Linux version 6 operational system.
The computational times for the simulations are compara-
ble across the three scenarios for a given m, and increases
rapidly as m increases.

Table 1. CPU Times (secs) for the Likelihood Computation

Likelihood Scenario 1 Scenario 2 Scenario 3

Univariate Poisson 8× 10−3 8× 10−3 8.001× 10−3

Bivariate Poisson 8× 10−3 1.2× 10−2 2.4× 10−2

Trivariate Poisson 1.412 18.209 248.788
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4. HIERARCHICAL MULTIVARIATE
DYNAMIC MODEL (HMDM)

Let Y it = (Y1,it, · · · , Ym,it), for t = 1, · · · , T denote the
m-dimensional time series of counts from location i, where
i = 1, · · · , N , and assume that Y it follows a multivariate
Poisson distribution (1). The observation equation of the
HMDM is

Y it|λit ∼ MPm(yit|λit)

log λj,it = D′
j,itδj,it + S′

j,itηj , j = 1, · · · , q(6)

where log denotes the natural logarithm, Dj,it =
(Dj,it,1, · · · , Dj,it,aj )

′ is an aj-dimensional vector of ex-
ogenous predictors with location-time varying (dynamic)
coefficients δj,it = (δj,it,1, · · · , δj,it,aj )

′ and Sj,it =
(Sj,it,1, · · · , Sj,it,bj )

′ is a bj-dimensional vector of exogenous
predictors with static coefficients ηj = (ηj,1, · · · , ηj,it,bj )′.
We assume that the model either includes δj,it,1 which rep-
resents the location-time varying intercept, or includes ηj,1
which represents the static intercept, i.e., either Dj,it,1 = 1
or Sj,it,1 = 1. A simple formulation of (6) could set aj = 1
for j = 1, · · · , q, set bj = b > 1 for j = 1, · · · ,m and
bj = 0 for j = m + 1, · · · , q, which implies using only the
location-specific and time-dependent intercept to model the
Poisson means corresponding to the association portion, and
the location-time intercept together with an equal number
of static coefficients (corresponding to exogenous predictors)
for the main effects portion of the multivariate Poisson spec-
ification.

For the reminder of the paper, let pd =
∑q

j=1 aj and

ps =
∑q

j=1 bj . Let βit be a pd-dimensional vector con-
structed by stacking the aj coefficients δj,it for j = 1, · · · , q.
The structural equation of the HMDM relates the location-
time varying parameter βit to an aggregate (pooled) state
parameter γt:

βit = γt + vit(7)

where the errors vit are assumed to be i.i.d. Npd
(0,V i). The

state (or system) equation of the HMDM is:

γt = Gγt−1 +wt(8)

where G is a pd × pd state transition matrix and the state
errors wt are assumed to be i.i.d. Npd

(0,W ).
The HMDM in (6)–(8) simplifies to the Hierarchi-

cal DGLM (HDGLM) when m = 1, where we replace
MPm(yit|λit) by the univariate Poisson pmf.

4.1 Bayesian inference

Let Y , D and S denote all the responses yit, and the
dynamic predictors and the static predictors for t = 1, · · · , T
and i = 1, · · · , N . Let η and β denote all the coefficients ηj

and βit for j = 1, · · · , q, t = 1, · · · , T and i = 1, · · · , N , and

let γ denotes all the coefficients γt for t = 1, · · · , T . The
likelihood function under the model described by (6)–(8) is

L(η,β,γ;Y ,D,S) =

N∏
i=1

T∏
t=1

MPm(yit|βit,γt)

× pnormal(η)× pnormal(βit|γt)× pnormal(γt|γt−1)(9)

where we have suppressed the terms D and S on the right
side for brevity. We assume multivariate Normal priors
for the initial state vector and the static coefficients, i.e.,
γ0 ∼ Npd

(m0,C0) and η ∼ Nps(μη,Ση). We assume in-
verse Wishart priors for the variance terms V i and W , i.e.,
V i ∼ IW (nv,Sv), and W ∼ IW (nw,Sw), and we assume
a product prior specification. The hyperparameters are se-
lected to correspond to a vague prior specification. Prior elic-
itation is an important, ongoing problem of considerable in-
terest in Bayesian analysis, and the vast, growing literature
includes seminal work on objective priors (Berger, 2006),
power priors (Ibrahim and Chen, 2000), expert elicited pri-
ors (O’Hagan et al., 2006), etc. In section 6, we discuss prior
sensitivity for our analysis.

The joint posterior of the unknown parameters is propor-
tional to the product of the likelihood and the prior:

π(βit,γt,η,V i,W |Y ,D,S) ∝ [
T∏

t=1

N∏
i=1

MPm(yit|λit)

× |V i|−1/2 exp{−1

2
(βit − γt)

′V −1
i (βit − γt)}]

× |Ση|−1/2 exp{−1

2
(η − μη)

′Σ−1
η (η − μη)}

× [
T∏

t=1

|W |−1/2 exp{−1

2
(γt −Gγt−1)

′W−1(γt −Gγt−1)}]

× |C0|−1/2 exp{−1

2
(γ0 −m0)

′C−1
0 (γ0 −m0)}

× [

N∏
i=1

|V i|−nv/2 exp{−1

2
tr(V −1

i Sv)}]

× |W |−nw/2 exp{−1

2
tr(W−1Sw)}

(10)

The Gibbs sampler proceeds by sequentially sampling
from the complete conditional distributions of the parame-
ters, which are proportional to the joint posterior (10). The
complete conditional densities of the unknown parameters
are given in the Appendix.

4.2 Details of sampling algorithms

Let Ψ = (V 1, · · · ,V N ,W )′. Conditional on βit and Ψ,
the structural and state equations of the HMDM have the
form of a Gaussian Dynamic HDLM with observations βit

and state γt. Note that γt is independent of Y t, given βit.
Let F t = (Ipd

, · · · , Ipd
)′ denote an Npd × pd mapping ma-

trix, and let βt denote the vector obtained by stacking βit
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for i = 1, · · · , N . The complete conditional distribution of
γt may be written as

P (γ|β,Ψ) = P (γ|β,Ψ)
T−1∏
t=1

P (γt|γt+1, · · · ,γt,β,Ψ)(11)

The structure of the dynamic linear model implies that
the second term on the right-hand side of the above equa-
tion reduces to P (γt|γt+1,βt,Ψ). To generate a random
sample from the complete conditional distribution of γt,
for t = 1, · · · , T , using the Forward-Filtering-Backward-
Sampling (FFBS) algorithm (Carter and Kohn, 1994,
Fruhwirth-Schnatter, 1994), we implement the following
steps:

Filter step: For t = 1, · · · , T , we compute the mean mt

and variance matrix Ct of the posterior normal distribu-
tions P (γt|γt+1,βt,Ψ), by applying the standard sequential
updating results for Gaussian DLMs:

mt = Gmt−1 +RtF
′
tQ

−1
t (βt − F tGmt−1)

Ct = Rt −RtF
′
tQ

−1
t F tRt

Qt = V + F ′
tRtF t

Rt = W +GCt−1G
′,

where V is an Npd × Npd block diagonal matrix, each
block represents the variance covariance matrix V i for i =
1, · · · , N .
Smooth step: At time t = T , we sample the final state vec-
tor γT from the marginal distribution, P (γT |βT ,Ψ), which
is N(γT |mT ,CT ). For time periods t = T − 1, · · · , 0, we
sample from P (γt|γt+1,βt,Ψ) which is N(ht,Ht) at each
time, conditional on the latest value of γt+1, where

Ht = (C−1
t +G′W−1G)−1(12)

ht = Ht(C
−1
t mt +G′W−1γt+1)(13)

The results of these steps is a draw (γT , · · · ,γ1) from its
complete conditional distribution.

The complete conditional distributions of the variance
terms are inverse Wishart distributions. Let β̂it = γt. For
each i, we sample V i from IW (ni,Si), where

ni = T + nv

Si = Sv +

T∑
t=1

[
(βit − β̂it)(βit − β̂it)

′
]

We sample W from IW (nw,Sw) where

nw = T + nw

Sw = Sw +

T∑
t=1

[
(γt −Gγt−1)(γt −Gγt−1)

′]
The Metropolis-Hastings algorithm is used for sampling βit

and η.

The sampling based Bayesian framework for the univari-
ate HDGLM model is similar to that of HMDM, but much
simpler, since the conditional sampling distribution of Yit is
the univariate Poisson(λit) distribution. Since m = q = 1,
this results in lower dimensional vectors and matrices, so
that the computations become much faster.

5. MODEL SELECTION AND PREDICTION

We use data on the first T time points from all N loca-
tions for model fitting, and then make predictions for the
next L times. Predictions for λit are obtained by using the
output of the Gibbs sampler to approximate the predictive
density p(λ|Y ,γ,β,η,Ψ) using Monte Carlo integration.
We also obtain the conditional predictive ordinates (CPO)
for each i and t, and aggregate the values to obtain the
pseudo-Bayes factor (PsBF) which provides a model selec-
tion criterion. The Mean Absolute Deviance (MAD) and the
Prediction Mean Absolute Deviance (PMAD) criteria are
used for evaluating fits/predictions in the calibration and
hold-out data respectively, and are defined as

MAD =
1

N

1

T

N∑
i=1

T∑
t=1

sign(yit − λ̂it)
√

dit

PMAD =
1

N

1

L

N∑
i=1

T+L∑
t=T+1

sign(yit − λ̂it)
√

dit(14)

where λ̂it denotes the posterior mean of λit, and dit denotes
an individual deviance contribution and is defined as

dit = 2
(
log(PPoisson(yit|yit))− log(PPoisson(yit|λ̂it))

)
(15)

where PPoisson(y|λ) denote the univariate Poisson pmf. The
MAD and PMAD values reported in sections 6 and 7 are
averaged over the Gibbs iterations.

6. SIMULATED DATA RESULTS

Data from the univariate HDGLM with counts Yit (i =
1, · · · , 16 and t = 1, · · · , 44) is simulated according to the
following model:

Yit|λit ∼ Poisson(λit)

log λit = δit,1 + δit,2 + ηSit(16)

In (16), Sit represents a static predictor, which is simulated
from Normal(0,1) and η = 0.5. Let βit = (δit,1, δit,2)

′ repre-
sent a location-time varying coefficient vector. The struc-
tural (hierarchical) and state equations are given by (7)
and (8), with G = diag(1,−1). The errors vit in (7) are
simulated from N2(0,V i) with V i = diag(0.05, 0.01) for
i = 1, · · · , 16, and wt from (8) is simulated from N2(0,W )
with W = diag(10−3, 10−4). Here, pd = 2 and ps = 1.

Estimation via the Bayesian framework discussed in sec-
tion 4.1 is carried out on the first T = 40 observations, by
assuming that the prior distribution of W = diag(W1,W2)
is an Inverse-Wishart distribution with 2pd + 1 degrees of
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freedom and scale matrix Sw = diag(103, 104). Similarly
the prior distribution of V i = diag(V1i, V2i) is an Inverse-
Wishart distribution with 2pd + 1 degrees of freedom and
scale matrix Sv = diag(25, 100). To investigate prior sensi-
tivity, the prior for η1 is assumed to be N(0, 103), N(0, 102)
or N(0, 10) for simulation scenarios 1, 2 and 3 respectively.
In scenario 5, we assume the prior scales Sw = diag(104, 104)
and Sv = diag(103, 103), along with a N(0, 103) prior for η.
Further, we consider different starting values for the η sam-
pling. Thus scenarios 1 and 4 denote starting from MLE’s
under a static regression model and 0 respectively, both un-
der a N(0, 103) prior. Based on each fitted model, predic-
tions are obtained for the next L = 4 times.

Data from a bivariate HMDM with the vector of counts
Y it = (Y1,it, Y2,it)

′ (i = 1, · · · , 16 and t = 1, · · · , 44) is
simulated according to the following model:

Y it|λ1,it, λ2,it, λ3,it ∼ MP2(λ1,it, λ2,it, λ3,it)

log λ1,it = δ1,it,1 + δ1,it,2 + η1Sit

log λ2,it = δ2,it,1 + δ2,it,2 + η2Sit

log λ3,it = δ3,it,1(17)

In (17), Sit represents a static predictor, which is sim-
ulated from N(0,1) and η1 = 0.5 and η2 = −0.5.
Let βit = (δ1,it,1, δ2,it,1, δ3,it,1, δ1,it,2, δ2,it,2)

′ represent
location-time varying coefficients. The structural and
state equations are again given by (7) and (8), with
G = diag(1, 1, 1,−1,−1). The errors vit are simulated
from N5(0,V i) with V i = diag(V 1i,V 2i), where V 1i

is a symmetric matrix with diagonal elements 0.05 and
off-diagonal elements 0.001, for i = 1, · · · , 16. Like-
wise, V 2i is a symmetric matrix with diagonal elements
0.01 and off-diagonal elements 0.001 for i = 1, · · · , 16.
The errors wt are simulated from N5(0,W ) with W =
diag(10−3, 10−3, 10−3, 10−4, 10−4). Here, pd = 5 and ps = 2.

The prior distribution of W = diag(W1, · · · ,W5) is an
Inverse-Wishart distribution with 2pd + 1 degrees of free-
dom and scale matrix Sw = diag(103, 103, 103, 104, 104). The
prior distribution of V i = diag(V 1i,V 2i) is an Inverse-
Wishart distribution with 2pd + 1 degrees of freedom and
scale matrix Sv = diag(25, 25, 25, 100, 100). To investi-
gate prior sensitivity, the prior for η = (η1, η2)

′ is as-
sumed to be N2(0, diag(10

3, 103)), N2(0, diag(10
2, 102)) or

N2(0, diag(10, 10)) for simulation scenarios 1, 2 and 3 re-
spectively. The prior scales Sw = diag(104, 104, 104, 104, 104)
and Sv = diag(103, 103, 103, 103, 103) are considered for sce-
nario 5, along with a N2(0, diag(10

3, 103)) prior for η. We
again consider different starting values for the η sampling.
Thus, scenarios 1, 2, 3 and 5 denote starting from ML esti-
mates from a static regression model, and scenario 4 from 0
corresponding to a N2(0, diag(10

3, 103)) prior.
We ran a total of 40,500 Gibbs iterations; with a burn-in

of 500 iterations, and thinning of 40 iterations to obtain a
posterior sample of size 1,000. Summaries from the posterior
distributions of the static coefficients are shown in Table 2.

Table 2. Posterior Summaries for HMDM–Simulated Data

Scenario Parameter True value Posterior Posterior
Mean Std. Dev.

Univariate HDGLM

1 η 0.5 0.5206 0.0217
2 η 0.5 0.5208 0.0220
3 η 0.5 0.5209 0.0216
4 η 0.5 0.5204 0.0215
5 η 0.5 0.5215 0.0216

Bivariate HMDM

1 η1 0.5 0.4371 0.0209
η2 -0.5 -0.3610 0.0301

2 η1 0.5 0.4372 0.0210
η2 -0.5 -0.3611 0.0303

3 η1 0.5 0.4371 0.0211
η2 -0.5 -0.3610 0.0303

4 η1 0.5 0.4370 0.0211
η2 -0.5 -0.3608 0.0303

5 η1 0.5 0.4525 0.0257
η2 -0.5 -0.3746 0.0298

The estimated coefficients for η were close to the true
values of the parameters across all simulation scenarios. The
estimates for the other model parameters were also found to
be reasonably close to true values, but have been omitted
from the table for the brevity. For simulation scenario 1 for
the univariate HDGLM, MAD is 0.9080, PMAD is 0.9829
and log PsBF is 2.6046. For the bivariate HMDM, over-
all MAD and PMAD across both components of the count
vector are respectively 0.8879 and 1.0389, while log PsBF
is 3.3254. The η estimates are also reasonably sensitive to
changes in priors for the variance parameters W and Vi.

7. ANALYSIS OF GASTROPOD COUNTS

For univariate gastropod counts Yit, an HDGLM is

Yit ∼ Poisson(λit)

log λit = αit + Seasonit + η1LogRept + η2Elevationi

+ η3Slopei + η4COit + η5PAspit + η6PAothersit

+ η7I(Aspect=5)i + η8I(Aspect=7)i + η9I(Aspect=8)i
+ η10I(Soil Type=2)i + η11I(Soil Type=3)i
+ η12I(CC=2)i + η13I(CC=3)i
= D′βit + S′η = Iβit + S′η

(18)

In (18), let βit = (αit, Seasonit)
′ denote the location-time

varying coefficients, let η denote a 13-dimensional vector
of static coefficients and S denote the corresponding vector
of exogenous predictors. The structural and state equations
are given by (7) and (8), with G = diag(1,−1). The speci-
fications for Bayesian inference are what are shown for the
univariate HDGLM in Section 6.
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Table 3. Model Selection Criteria–Gastropod Data

Model Species MAD PMAD Log PsBF

Univariate C. caracolla 1.2298 1.9130 3.9575
G. nigrolineata 1.3363 2.4915 3.9990

Bivariate Overall 1.2947 2.2087 4.6727
C. caracolla 1.3424 1.9082 –
G. nigrolineata 1.2470 2.5093 –

We next fit a bivariate HMDM to gastropod counts
Yit = (Carcarit, Gaenigit)

′, where Carcarit and Gaenigit
represent the abundance of C. caracolla and G. nigrolineata
respectively at location i and time t. Let ηj correspond to
a vector of static coefficients for j = 1, 2 and S denote the
vector of static predictors as defined in (18). As described
in Section 4, pd = 5, and ps = 26. The observation equation
of the HMDM is

Y it|λ1,it, λ2,it, λ3,it ∼ MP2(λ1,it, λ2,it, λ3,it)

log λ1,it = α1,it + Season1,it + S′η1

log λ2,it = α2,it + Season2,it + S′η2

log λ3,it = α3,it(19)

The structural equation for βit = (α1,it, α2,it, α3,it,
Season1,it, Season2,it)

′ is given in (7) and the state equation
is given in (8) with G = diag(1, 1, 1,−1,−1).

We ran a total of 40,500 Gibbs iterations; with a burn-in
of 500 iterations, and thinning of 40 iterations, to obtain
a posterior sample of size 1,000. Table 3 shows prediction
evaluation criteria for the two gastropod species, which are
quite similar for the univariate and bivariate models. As be-
fore, MAD corresponds to the calibration data and PMAD
corresponds to the holdout data.

The posterior means and standard deviations of the static
coefficients for the univariate and bivariate models are given
in Table 4. The posterior means for the first three diagonal
elements of the matrix W are estimated to be 0.0011 with
posterior standard deviation of about 0.0003 each, while
the other two elements are estimated as 0.0001 with pos-
terior standard deviation of around 0.00002 each. The esti-
mated posterior means for the first three diagonal elements
of the matrix Vi are 0.044 with posterior standard devia-
tions around 0.01, while the other diagonal elements are es-
timated around 0.01 with posterior standard deviation 0.002
each. All the estimated off-diagonal elements of W and Vi

reveal no significant values for i = 1, · · · , 40. Recall that the
first three diagonal elements of W and Vi for i = 1, · · · , 40
are associated with the location-specific and time-dependent
intercepts, and the last two elements are associated with the
location-specific seasonal components (with period equal to
two, corresponding to the dry and wet periods).

Figure 1 shows the fitted means for the counts of C.
caracolla and G. nigrolineata from Site 14 (top panel)
and from Site 22 (bottom panel) based on the bivariate

HMDM model. Clearly, the fitted model adequately tracks
the stochastic pattern over time for almost all time points,
especially for C. caracolla. The fit for G. nigrolineata is also
good, although at a few time points, the model is unable
to track the large empirical counts. This suggests that the
abundance of G. nigrolineata is affected by environmental
characteristics beyond those measured in this study, at least
during some time periods. The significance of coefficients
from the univariate and bivariate models (Table 4) are gen-
erally in accord for C. caracolla. Aspect and soil type have
the strongest influence; the logarithm of the number of repli-
cates has a modest influence, and other environmental char-
acteristics (i.e., elevation, slope, canopy openness, canopy
cover class, apparency of sierra palm, and plant apparency
of species other than sierra palm) have little to no influ-
ence on variation in abundance. More specifically, Cristal
soils as well as Preito soils support more individuals than do
Zarsal soils; these effects are likely mediated by differences
in the nutrient characteristics of the soils and the plant as-
semblages that they harbor. All of the contrasts associated
with aspect (over the baseline aspect level 1) are significant.
Such effects could arise via two mechanisms: (i) abiotic ef-
fects of aspect on gastropods via influences on microclimate,
especially diurnal temperature as well as (ii) biotic effects
mediated by the well-documented responses of plant assem-
blages to aspect (i.e., those associated with insolation and
variation in temporal patterns of temperature), especially
in topographically steep environments, such as the Luquillo
Mountains. Finally, the effect of logarithm of the number of
replicates is to be expected, as the MNKA, the methodology
used to estimate gastropod abundance, can only increase
with increasing effort.

For G. nigrolineata, significance based on the univariate
framework (see Table 4) are similar, but not identical, to
those based on the bivariate model. In general, differences
among sites in soil type and canopy cover class have a mod-
est influence on abundance, whereas all other environmental
characteristics have little or no significant effect. Abundance
of G. nigrolineata on Cristal soils was lower than that on
Zarzal soils, whereas abundance of G. nigrolineata on Pri-
eto soils were higher than that on Zarzal soils. Moreovever,
abundance on sites within cover class 2 (50–80% canopy
openness in 1936) was greater than that on cover class 1
(0–49% canopy openness in 1936). The non-significant ef-
fect and negative value of the parameter estimate for the
influence of the logarithm of the number of replicates on
abundance is unexpected. This may be because the suite of
environmental characteristics in this study do not include all
variables to which G. nigrolineata responds most strongly
(i.e., random effects capture variation in abundances asso-
ciated with unmeasured environmental characteristics), or
may arise because of time lags in the response of this species
to environmental variability. This is something to investigate
in a future study of this species.

In summary, a comparison of static coefficients in Table 4
do not show a marked difference between the univariate and
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Table 4. Posterior Summaries for HMDM–Gastropod Data

Gastropod Parameter Univariate Model Bivariate Model
Species η Posterior Mean Posterior Mean

(Std. Dev.) (Std. Dev.)

C. caracolla LogRep 0.5492 (0.0668) 0.5650 (0.0705)
Elevation 0.0011 (0.0007) 0.0001 (0.0005)
Slope 0.0046 (0.0018) 0.0038 (0.0017)
CO 0.0227 (0.0082) 0.0247 (0.0083)
PAsp -0.0071 (0.0015) -0.0067 (0.0015)
PAothers -0.0017 (0.0009) -0.0022 (0.0009)
Aspect=5 1.0305 (0.0736) 1.0146 (0.0844)
Aspect=7 0.8145 (0.0742) 0.7998 (0.0845)
Aspect=8 0.4865 (0.0727) 0.4761 (0.0834)
Soil Type=2 0.6975 (0.0331) 0.6827 (0.0327)
Soil Type=3 1.8029 (0.0485) 1.7355 (0.0443)
CC=2 0.2783 (0.0400) 0.2464 (0.0373)
CC=3 0.0642 (0.0339) 0.0598 (0.0347)

G. nigrolineata LogRep -0.0644 (0.0934) -0.0911 (0.0876)
Elevation 0.0049 (0.0009) 0.0039 (0.0010)
Slope -0.0006 (0.0026) -0.0033 (0.0025)
CO -0.1419 (0.0133) -0.1328 (0.0128)
PAsp 0.0194 (0.0018) 0.0193 (0.0019)
PAothers -0.0069 (0.0012) -0.0061 (0.0012)
Aspect=5 0.0447 (0.0951) -0.1296 (0.0875)
Aspect=7 -0.0207 (0.0934) -0.0297 (0.0809)
Aspect=8 0.1904 (0.0910) 0.2022 (0.0798)
Soil Type=2 -0.1716 (0.0498) -0.1644 (0.0525)
Soil Type=3 0.2653 (0.0852) 0.1308 (0.0872)
CC=2 0.3778 (0.0469) 0.2856 (0.0475)
CC=3 0.1254 (0.0491) 0.1370 (0.0511)

bivariate models for the two species. The top plot in Fig-
ure 2 shows that in the bivariate model, the estimated dy-
namic level coefficient corresponding to the main effect for
C. caracolla exhibits a slowly increasing trend over time,
while for G. nigrolineata, the trend is slowly decreasing over
time. The estimated dynamic level coefficient correspond-
ing to the second-order covariance effect is almost flat over
time, indicating that the dependence between the species
does not change over time. The bottom plot shows the de-
creasing amplitudes of the dynamic seasonal components for
both species; the wet season shows an increased level for C.
caracolla while the dry season shows an increased level forG.
nigrolineata. The bivariate analysis is useful since it allows
us to examine the temporal behavior of the second-order co-
variance effect, whose behavior would guide the modeler in
terms of preferring a univariate or a multivariate model for
understanding variation in species abundances. In this ap-
plication for the two gastropod species, this effect is approx-
imately constant over time, which explains why the results
from the univariate and bivariate models are similar.

8. SUMMARY AND DISCUSSION

This article describes a hierarchical dynamic modeling
framework for univariate and multivariate time series of

counts, and investigates its utility for an ecological data
set on gastropod abundances in Puerto Rico. We describe
the use of the multivariate Poisson distribution as the sam-
pling distribution in a fully Bayesian framework for infer-
ence in the context of multivariate count time series. Our
approach is able to account for species-specific variation
in gastropod abundances, and documents the importance
of particular environmental characteristics in molding the
abundance and distribution of organisms, a primary goal in
ecology.
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APPENDIX

The complete conditional density of βit for i = 1, · · · , N
and t = 1, · · · , T is

π(βit|γt,η,V i,W ,Y ) ∝ MPm(yit|λit)

× exp{−1

2
(βit − γt)

′V −1
i (βit − γt)}(20)

The complete conditional density of γt for t = 1, · · · , T is

π(γt|βit,η,V i,W ,Y ) ∝

∝
N∏
i=1

exp{−1

2
(βit − γt)

′V −1
i (βit − γt)}

× exp{−1

2
(γt −Gγt−1)

′W−1(γt −Gγt−1)}

× exp{−1

2
(γt+1 −Gγt)

′W−1(γt+1 −Gγt)}(21)

The complete conditional density of η is

π(η|βit,γt,V i,W ,Y ) ∝
T∏

t=1

N∏
i=1

MPm(yit|λit)

× exp{−1

2
(η − μη)

′Σ−1
η (η − μη)}(22)

The complete conditional density of V i for i = 1, · · · , N is

π(V i|βit,γt,η,W ,Y ) ∝
T∏

t=1

|V i|−1/2

× exp{−1

2
(βit − γt)

′V −1
i (βit − γt)}

× |V i|−nv/2 exp{−1

2
tr(V −1

i Sv)}(23)

The complete conditional density of W is

π(W |βit,γt,η,V i,Y ) ∝
T∏

t=1

|W |−1/2

× exp{−1

2
(γt −Gγt−1)

′W−1(γt −Gγt−1)}

× |W |−1/2 exp{−1

2
(γ0 −m0)

′C−1
0 (γ0 −m0)}

× |W |−nw/2 exp{−1

2
tr(W−1Sw)}(24)
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