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Nonparametric Bayesian functional clustering
for time-course microarray data
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Time-course microarray experiments track gene expres-
sion levels across several time points. They provide valuable
insights into genome-wide dynamic aspects of gene regula-
tions. We focus on gene clustering analysis in this paper. We
explore a nonparametric Bayesian method for constructing
clusters in functional space from the characteristics of gene
profiles. In particular, we model each gene profile using a
B-spline basis. So each gene is characterized by the basis
coefficients of the spline fitting. Then we place a Dirichlet
process prior on the basis coefficients to determine clusters
of the genes. We essentially construct a hierarchical Dirich-
let processes mixing model that assigns genes into the same
cluster if they share the same latent basis coefficients. A sim-
ulation study is conducted to compare the proposed method
to the K-means clustering method, a model-based cluster-
ing method (MCLUST), and a two-stage version of them in
terms of the adjusted Rand index. We show our new method
has better adjusted Rand index number among all these
methods. We apply this nonparametric Bayesian clustering
method to a real data set with 6 time points to gain further
insights into how genes with similar profiles are clustered
together and we find their functional annotation in Gene-
Ontology groups using GOstats.

Keywords and phrases: Dirichlet process, Time-course
microarray, Functional data analysis.

1. INTRODUCTION

DNA microarrays are used to measure the expression lev-
els of a large number of genes simultaneously. Time-course
microarray experiments track the progress of gene expres-
sions along time across one or more experimental conditions.
They provide valuable insight into the dynamic mechanisms
underlying the observed biological processes. Time-course
microarray data have been collected more and more fre-
quently due to reduced costs for running experiments and
increased need for studying dynamic gene regulations. Two
typical types of downstream data analysis from microarrays
are determining which genes are up or down regulated be-
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tween normal and diseased tissues; and deciding how to clus-
ter genes into groups based on their “similarities”. We focus
on the latter activity in this paper. Clustering is a grouping
technique, also called unsupervised learning in data mining.
It partitions data into a small number of sets, so the subjects
within each set are similar, and the subjects between sets are
dissimilar. It reduces the complexity of data sets, and aids
biologists in interpreting them. Additionally, researchers are
able to infer probable functions of new genes based on their
knowledge of the known genes and clustering membership,
since genes that belong to the same cluster may co-regulate
and/or participate in the same pathway.

The proper statistical gene-level analysis for time-course
microarrays requires more sophisticated tools and complex
statistical models than that for a single time point. Given
gene expressions of the same subject are typically collected
at a few time points, the usual time series analysis cannot
be applied. In order to track the temporal changes of gene
expressions, we adopt the functional data analysis (FDA,
Ramsay and Silverman (1997)) approach that accounts for
time dependency in gene expression data monitored over
unequally spaced times. In particular, for each gene in the
gene set, we model its gene profile using a B-spline basis, be-
cause it is more stable than power basis numerically. Then,
we consider the Dirichlet process prior DP(αG0) (Ferguson
(1973)) on the distribution of the basis coefficients and use
the clustering property of the Dirichlet process (DP) to clus-
ter genes. The process is effective in high-dimensional data
reduction because of the built-in Bayesian penalty criterion
for model complexity. Moreover, it has the appealing prop-
erty that one needs not to specify the number of clusters a
priori. On the other hand, it also provides a tuning param-
eter α which controls the number of clusters. If we choose
large α, the number of clusters tends to be large.

In order to evaluate the performance of our clustering al-
gorithm, we conduct a simulation study where four data sets
with different locations and variations of the gene expression
intensities at fixed time points were generated. We compare
our nonparametric Bayesian method to K-means clustering
(MacQueen (1967)), MCLUST (Fraley and Raftery (1999),
Fraley and Raftery (2000)) and a two-stage version of each
of them in terms of adjusted Rand index. The K-means clus-
tering algorithm is one of the simplest clustering algorithms
which partitions the set of genes into k clusters so the re-
sulting intracluster similarity is high but the intercluster
similarity is low. It is widely used in areas such as computer
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science, geostatistics and computational biology. The num-
ber of clusters k needs to be specified prior to the analysis.
MCLUST, also relatively easy to carry out using the codes
provided by http://www.stat.washington.edu/mclust/, is a
well-known model-based clustering procedure using mix-
tures of normal models. The number of clusters is selected
by the BIC criterion. Our proposed nonparametric Bayesian
functional clustering is also a model-based procedure, but
the number of clusters does not need to be pre-specified. The
two-stage version of the two methods for comparisons are
based on curve clustering using B-splines (Abraham et al.
(2003)). First, it fits a cubic B-spline curve for each gene,
and second, it clusters the basis coefficients by K-means or
MCLUST. In the evaluation, we set the number of clusters
for the K-means method to be the true number of clusters
for simplicity. However, in real life, the true number of clus-
ters are usually unknown, so the performance is evaluated
in favor of the K-means method.

There are many previously developed gene clustering
methods for time-course data. However, many of the de-
veloped methods, such as Smyth (2004) and Tai and Speed
(2006), treat the gene profiles as multivariate observations.
Unfortunately, the trend information of the gene profiles
has not been incorporated in these analyses. Many other
researchers apply FDA approach to time-course microarray
data. For example, Storey et al. (2005) propose to model a
gene-specific expression over time as a linear expansion of
natural cubic spline basis functions. Angelini et al. (2007)
develop a fully Bayesian approach for functional data. It ex-
pands each of the time-course gene expression curves over
some standard orthonormal basis, such as Legendre polyno-
mials or Fourier basis, and uses a truncated Poisson distri-
bution to model the number of terms in the expansion. It
also extends the error distribution from normal to all scale
mixtures of normal distributions including student’s t and
double-exponential distributions. Both of these papers are
concerned with determining differentially expressed genes.
On clustering methods, both Luan and Li (2003) and Ma
et al. (2006) view observed temporal gene expression pro-
files coming from underlying smooth curves. The former
uses mixed-effects model with B-splines and the latter uses
mixed-effects smoothing spline method and the rejection-
controlled EM algorithm for gene-to-cluster assignments. Fu
et al. (2013) propose a random-effects mixture model with
the Dirichlet process prior to conduct gene clustering. Song
et al. (2007) develop a unified approach for gene clustering
and dimension reduction based on FDA to group observed
curves with respect to their shapes or patterns. Ray and
Mallick (2006) propose a nonparametric Bayesian model for
clustering the functional data using wavelet basis function,
placing a Dirichlet process prior on the basis coefficients.
Wavelet basis function is extremely flexible especially when
there are sharp curvatures at particular locations. However,
the method requires more advanced techniques and wavelet
basis is typically for equally spaced time points, which is not
always the case in microarray data. There are other previ-

ous works on nonparametric Bayesian mixture models for
clustering genes. For example, Medvedovic and Sivagane-
san (2002) propose a hierarchical Bayesian infinite mixture
model and model averaging algorithm for clustering genes.
Qin (2006) proposes an iterative weighted Chinese restau-
rant seating scheme with a predictive updating where the
optimal number of clusters can be determined simultane-
ously with cluster assignment. Dahl (2006) proposes a least-
squares clustering algorithm for a DP mixing model. Kim
et al. (2006) introduce a latent binary vector formulation
for identifying variables and use a DP mixtures model to
define the cluster structure. They use repeated Metropo-
lis steps and obtain inference on the cluster structure by a
split-merge Markov chain Monte Carlo technique, so both
variable selection and clustering can be done simultaneously.
But all these papers apply DP mixing on the latent variables
of the data directly.

Our paper contains a curve fitting component and the
cluster assignment is done simultaneously by the DP mix-
ing on the basis coefficients. Given microarray data are typ-
ically noisy, our spline fitting has a smoothing effect. There-
fore, we build this smoother in our first level, and apply DP
mixing in the second level to borrow strength among genes
through their intrinsic characters (coefficients of spline fit-
ting). Hence we expect that our algorithm is not only more
robust than the previous versions due to spline smoothing,
but also more accurate and efficient due to that the space of
basis coefficients better represents the gene characters than
the latent parameter space of the original data and also has
smaller dimension. Dunson (2010) reviews thoroughly many
models in biostatistics where DP mixing is useful. They in-
clude a model with cubic spline basis functions construction
and a DP mixing on the coefficients. Our paper is very simi-
lar to this approach, except we use B-spline instead of cubic
spline as basis functions. In addition to this contribution,
our paper is more focused given we only consider clustering
for time-course gene expression data. We describe how to
improve efficiency by implementing the blocked Gibbs sam-
pler from the truncated stick-breaking DP prior (Ishwaran
and James (2001)) to update blocks of parameters to avoid
slow mixing. Moreover, we added a simulation study that
shows our method is superior to K-means, MCLUST, and
their two-step versions in terms of the adjusted Rand in-
dex. Furthermore, we apply our method for clustering to a
real data set from a microarray experiment. We hence in-
vestigate the characteristics of each obtained cluster using
GOstats that provides more insights into the gene functions
for each cluster that relates to the same latent pattern of
the time-course gene expression curves.

We should note our method is sensitive to the choice of
hyperparameters. So caution is needed to select the hyper-
parameters. We also recommend employing sensitivity study
on the hyperparameters in real data analysis. Another sug-
gestion is to standardize the data within each gene first using
the mean and the standard deviation of them over the time
points and replications for each gene, then choose the hy-
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perparameter to be a vector of 0 with an identity variance
and covariance matrix.

We start with some preliminary work in Section 2, then
introduce our proposed hierarchical model in Section 3. Pos-
terior inference and some related issues are addressed in
Section 4. Hyperparameters selection is discussed in Sec-
tion 5. Then we discuss adjusted Rand index that is used
for performance evaluation in Section 6. In Section 7, we per-
form a simulation study to evaluate the performance of our
newly developed nonparametric Bayesian functional clus-
tering method using adjusted Rand index. Two well-known
clustering algorithms, K-means and MCLUST and their two
stage version are also compared with the proposed approach.
Subsection 7.1 describes how we simulate the data, and
the analysis results are shown in Subsection 7.2. In Sec-
tion 8, our proposed approach is applied to a real microar-
ray dataset using Illumina WG-6v1 BeadChip to study bone
development, and the analysis results are further annotated
with gene functions. We finish the article by discussions in
Section 9 with some concluding remarks.

2. PRELIMINARY WORK

Along the lines of many above cited papers, we adopt the
same FDA approach which treats the entire series of a gene’s
expression levels evaluated at several time points as observed
from a single curve. We believe that FDA is appropriate
because time-course data can be generated by some under-
lying smooth function and the discrete measurements col-
lected are snapshots of that function at various time points.
Let yi(t) be the observed gene expression value for gene i,
i = 1, 2, ..., N , at time point t. Write yi(t) = ηi(t) + εi(t),
where ηi is the function profile for gene i, and the error term
εi(t) ∼ N(0, σ2). The profile function ηi(t) can be written

as ηi(t) =
∑L

l=0 βilφl(t), where {φ0(t), ..., φL(t)} is a set of
basis functions, and βi = (βi1, ..., βiL)

′ are the basis coef-
ficients for gene i. Commonly used basis functions include
power basis, Fourier basis, spline basis, and wavelet basis.

We next review the Dirichlet process that defines a prior
distribution on the distributions of the unobserved latent ba-
sis coefficients. Dirichlet process, DP(αG0), introduced by
Ferguson (1973), defines a nonparametric distribution over a
large space of distribution functions. It has two parameters,
G0, the base distribution measure, and α > 0, the scaling
or concentration parameter. This prior process has the ad-
vantages of being flexible and adaptable, yet incorporates
a sparseness-favoring structure that combats the curse of
dimensionality (Dunson (2010)). The incorporation is done
automatically by the Bayesian penalty for model complex-
ity, and centering on a base parametric model.

Sethuraman and Tiwari (1982) and Sethuraman (1994)
have given a constructive expression for the random draw
G from the DP(αG0) prior, that is useful for understanding
the process and posterior updating:

G =

∞∑
r=1

πrδϕr ,

where ϕr’s are i.i.d. from G0; δϕr is a measure of mass one
concentrated at ϕr; and πr’s are the stick-breaking weights
defined by

(2.1) πr = Vr

r−1∏
i=1

(1− Vi),

with Vr
i.i.d.∼ Beta(1, α).

A draw from the Dirichlet process yields a random dis-
crete distribution G (denoted by G ∼ DP(αG0)) with
random locations of jumps as i.i.d. variates from G0, and
the weights on these jumps are given by the stick-breaking
weights (2.1). One of the properties of Dirichlet process is
the clustering property, which can be applied to gene clus-
tering. Specifically, we place a Dirichlet process prior on
the gene-specific characters, for example, basis coefficients.
Then, genes with same characters are clustered together by
the construction of the Dirichlet process.

3. NONPARAMETRIC BAYESIAN MODEL

A typical time-course microarray dataset consists of ex-
pression measurements of N genes across J time points. The
number of genes N is usually in thousands, much larger than
the number of time points J . Mostly, such experiments are
unreplicated due to the high cost or other limitations. But in
some cases replicates are done, but the number of replicates
is small. We consider the most general case in formulating
our model. We assume gene i is measured at time points tj ,
with j = 1, ..., J , each with kij replicates.

B-spline basis functions are defined recursively using the
following expressions (de Boor (1987)), for l = 0, ..., L:

φl,1(t) =

{
1, if tl ≤ t ≤ tl+1;
0, otherwise,

and

(3.1) φl,m(t) =
(t− tl)φl,m−1(t)

tl+m−1 − tl
+

(tl+m − t)φl+1,m−1(t)

tl+m − tl+1
,

for m = 2,...,M , where M , the order of the B-spline, controls
the degree (M − 1) of the resulting polynomial in t and
the continuity of the curve. The knot values are located
at {t0, t1, ..., tL+M}. Note that M = 4 yields the cubic B-
spline basis. For convenience, we write φl,4(t) = φl(t). As
mentioned earlier, the B-spline basis usually consists of more
than one curve segment. For example, when L = 9, the cubic
B-spline basis consists of 10 functions. These 10 spline basis
curves are plotted in Figure 1. In this study, we use cubic
B-spline with L = 9.

Let yijk denote the observed replicate k of the gene in-
tensity for gene i at time point j, we fit a model with a
cubic B-spline function for the time-course data, yijk =∑L

l=0 βilφl(tj) + εijk, for i = 1, ..., N , j = 1, ..., J , k =

1, ...kij , and εijk
i.i.d.∼ N(0, σ2). The matrix form of the
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Figure 1. Cubic B-Spline Basis (L = 9).

model is given by

(3.2) yi = Xβi + εi,

where yi = (yi11, ..., yi1ki1 , ..., yiJ1, ..., yiJkiJ
)′ is the Ki-

dim (Ki =
∑J

j=1 kij) column vector holding all measure-
ments for gene i, βi = (βi0, ..., βiL)

′, X is the Ki ×
(L + 1) block design matrix with the jth block being
the vector [φ0(tj)...φL(tj)] stacked kij times, and εi =
(εi11, ..., εi1ki1 , ..., εiJ1,..., εiJkiJ

)′ is the Ki-dim column vec-
tor of random errors following a multivariate normal dis-
tribution MN(0, σ2IKi). The nonparametric hierarchical
model for the data can be described as follows: for i =
1, . . . , N ,

yi|βi, σ
2 ind.∼ MN(Xβi, σ

2IKi)(3.3)

βi
i.i.d.∼ G

G ∼ DP(αG0)

τ = 1/σ2 ∼ G(n0/2,W0/2)

where G(n0/2,W0/2) denotes a gamma distribution with
mean n0/W0, and both G0 and α are assumed to be known.
The multivariate normal distribution G0 = MNL+1(b0, B0)
is the base measure representing the prior mean of the ran-
dom distribution G, with b0 and B0 being the mean and
variance-covariance matrix of the distribution of G0, re-
spectively. And α is the prior weight that represents the
strength of the prior belief on G. Here we assume that
β1, ...,βN are independently distributed from G, and given
β = (β1, . . . ,βN ) and σ2, y1, ...,yN are independent.

4. POSTERIOR INFERENCE

The posterior distribution for the above Dirichlet pro-
cess mixture model is not analytically tractable. There-
fore, we develop a Gibbs sampling algorithm for the pos-
terior inference. By using conjugate priors, the complete
conditional densities needed for the Gibbs sampler can be
written explicitly for the updating purpose. Ishwaran and
James (2001) proposed the blocked Gibbs sampler which

assumed the prior G to be DP(αG0) with a finite dimen-
sional base measure G0 and truncated at the Rth term by
letting VR = 1 and Vr for r = 1, . . . , R−1 defined exactly as
in the stick-breaking representation (2.1). So it circumvents
the infinitely many parameters in the Dirichlet process. The
blocked Gibbs sampler also enables us to update blocks of
parameters, hence it is very efficient.

Let Si be a cluster allocation function and Si = h de-
note that gene i belongs to cluster h. For genes in the
same cluster, say cluster h, the corresponding yi’s share
the same basis coefficients, denoted by θh. By truncated
stick-breaking construction of the Dirichlet process, we have

θ1, ...,θR
ind.∼ MNL+1(b0, B0). The updating scheme of the

blocked Gibbs sampler works as follows:
Step 1. Allocate genes to one of the R clusters by sam-

pling Si, i = 1, ..., N , from a discrete distribution with prob-
abilities:

Pr(Si = h|−)(4.1)

=
{Vh

∏
r<h (1−Vr)}

∏J
j=1

∏kij
k=1 N(yijk;

∑L
l=0 θhlφl(tj),σ

2)
∑R

v=1{Vv

∏
s<v (1−Vs)}

∏J
j=1

∏kij
k=1 N(yijk;

∑L
l=0 θvlφl(tj),σ2)

,

h = 1, ..., R.

Step 2. Update stick-breaking weights Vh from the con-
jugate beta posterior distribution below with VR = 1:

(Vh|−)
ind.∼ Beta

(
1 +

N∑
i=1

1(Si = h), α+

N∑
i=1

1(Si > h)

)
,

h = 1, ..., R− 1.
(4.2)

Step 3. Update the atoms θh:

(θh|τ,−) ∼ N(b1, B1),(4.3)

where b1 = B1(B
−1
0 b0+τ

∑
i:Si=h X

′yi), and B−1
1 = B−1

0 +

τX ′X
∑N

i=1 1(Si = h).
Step 4. Update τ :

(τ |θh,−) ∼ G(n1

2
,
W1

2
),(4.4)

where n1 = n0+
∑N

i=1

∑J
j=1 kij , and W1 = W0+

∑N
i=1(yi−

XθSi)
′(yi −XθSi).

Steps 3 and 4 in the above Gibbs sampling algorithm are
derived as below. By the prior information, we have

π(θh, τ) ∼ MNL+1(b0, B0)G(
n0

2
,
W0

2
),

and likelihood

L(yi:Si=h;θh, τ)

∝ τ
1
2

∑
i:Si=h

∑J
j=1 kij

· exp{−τ

2

∑
i:Si=h

(yi −Xθh)
′(yi −Xθh)}.
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Therefore, we have the posterior

f(θh, τ |−) ∝ τ
1
2 (n0+

∑
i:Si=h

∑J
j=1 kij)−1(4.5)

· exp
{
−1

2
A1 −

τ

2
[W0 +A2]

}

∝ exp {A3} τ
n1
2 −1 exp

{
−τ

2
W1

}
.

where A1 = (θh − b0)
′B−1

0 (θh − b0), A2 =∑
i:Si=h (yi −Xθh)

′(yi −Xθh) and A3 = −1
2 (θh −

b1)
′B−1

1 (θh− b1). Then (4.3) and (4.4) follow directly from
(4.5). Note we have omitted the indices of the previously
obtained parameters in the above Gibbs sampler discussion
for simpler notation.

Other than the sampling algorithm, there are other issues
that we need to address, including: (a) how to determine the
stick-breaking truncation level R; (b) how to obtain clusters
from the Gibbs samples given different iterations may imply
different clusters; and last but not least, (c) how to evaluate
the performance of the algorithm. We address (a) and (b)
next, and discuss (c) in Section 6.

Truncation level R
We start with R clusters in Step 1, where R serves as

the maximum number of clusters used in the blocked Gibbs
sampler. In practice, the total number of clusters would of-
ten end up to be smaller than R. LetmR andm∞ denote the
marginal density of the data y = (y1, . . . ,yN ) in (3.3) with
the DP(αG0) random measure for G truncated at R level
and without truncation, respectively. The following theorem
from Ishwaran and James (2001) provides a guidance on how
to determine the truncation level R:

∫
RNJK

|mR(y)−m∞(y)|dy ≤ 4

⎡
⎣1− E

⎧⎨
⎩
(

R−1∑
r=1

πr

)N
⎫⎬
⎭
⎤
⎦

≈ 4N exp {−(R− 1)/α} ,(4.6)

where N is the total number of subjects to be clustered. We
also assume that kij = K for all i and j. To make quantity
(4.6) small enough, say less than a small positive number
ε = 10−6, we solve the following equation for R:

(4.7) 4N exp {−(R− 1)/α} = ε.

For example, given N = 100 and α = 0.5, (4.7) suggests
truncating the stick-breaking expression (2.1) at R = 11,
and for α = 1, truncating it at R = 21.

Least-squares clustering
Each iteration from the Gibbs sampler yields a clustering

rule that assigns genes into nonoverlapping clusters. These
clustering rules are labeled by c1, c2,..., cb,..., cB correspond-
ing to B iterations after burn-in. Out of all methods that
estimate the clustering using draws from the posterior clus-
tering distribution, the most straightforward one is to select

the observed clustering that maximizes the density of the
posterior clustering distribution (also known as the maxi-
mum a posteriori or MAP clustering). MAP may select a
slightly more probable clustering than the next best alter-
native, but it may yield a very different allocation from the
latter. Medvedovic and Sivaganesan (2002) define an N×N
association matrix δ(cb), for each b, with the (i, j)-th ele-
ment δij(cb) equaling 1 if gene i and gene j are clustered
together by the cb, and equaling 0 otherwise. They further
define a pairwise distance measure by dij(cb) = 1 − δij(cb).
Then they use complete linkage approach (Everitt (1993))
based on these distances measures to cluster similar expres-
sion profiles. It has been criticized by Dahl (2006) as ad hoc.
Dahl (2006) introduces the least-squares clustering, which is
based on the pairwise probability matrix π̂ that is formed
by averaging over all δ(cb) over b elementwise. Then the
algorithm identifies the optimal clustering by selecting the
one that minimizes the sum of squared deviations from the
average probability matrix π̂. So it takes into account the in-
formation from all clusterings. We use Dahl’s least-squares
clustering to select the optimal clustering in the Markov
chain. Then the least-squares clustering, denoted by cLS , is
obtained by

(4.8) cLS = argmin
c∈{c1,...,cB}

N∑
i=1

N∑
j=1

(δij(c)− π̂ij)
2,

where π̂ij denotes the (i, j)-th element in the average prob-
ability matrix π̂.

Note Wu et al. (2014) recently propose a new method for
tracking configuration for DP sampling which can be used
to construct clusters. It would be worthwhile to compare
the least squares clustering to this new method for future
work.

5. HYPERPARAMETERS SELECTION

In (3.3), we have assumed that τ has a gamma prior with
a shape parameter n0/2 and a scale parameter W0/2, yield-
ing a mean of n0/W0 and a variance of 2n0/W0

2. When
setting the hyperparameters n0 and W0, we can choose val-
ues such that W0/n0 matches the estimated variance of the
data. For example, if the variance of the dataset is estimated
to be 0.01, we can choose n0 = 20,000 and W0 = 200, so
that W0/n0 = 0.01 matches the estimated variance, and
the variance of the prior τ at this time is 2n0/W0

2 = 1.
Note that when the location parameter matches the data,
the dispersion can be relatively small.

The hyperparameters b0 and B0 for the mean and
variance-covariance of G0 should be chosen with caution,
because the number of clusters is very sensitive to the se-
lection of these two hyperparameters (Dunson (2010)). One
of the solutions is to standardize the data within each gene
first using the mean and the standard deviation of them over
the time points and replications of each gene, then choose
b0 to be a vector of 0 and B0 to be an identity matrix.
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Table 1. Contingency table of two partitions

v1 v2 ... vS Total

u1 n11 n12 ... n1S n1.

u2 n21 n22 ... n2S n2.

. . . . .

. . . . .
uR nR1 nR2 ... nRS nR.

Total n.1 n.2 ... n.S n.. = N

The Dirichlet process imposes a prior on the number of
clusters, which depends on the total number of genes and
the concentration parameter of the Dirichlet process α. The
number of clusters increases with increasing α. By default,
we let α = 1, which is one of the common choices in ap-
plications. Of course, one can set a gamma hyperprior, say
G(1, 1), for α to obtain more robust results (Escobar and
West (1995)).

6. ADJUSTED RAND INDEX

One important issue in cluster analysis is the evaluation
of clustering results, also referred to as cluster validation,
which is to assess the quality of the clustering relative to
clustering created by other algorithms, or by the same al-
gorithm using different parameter settings. We will consider
Rand index and adjusted Rand index for such evaluation.

The Rand index is a measure of agreement between two
clusterings for a pair of objects. It is defined by the propor-
tion of the number of agreements by two clustering methods
for a pair of objects out of all possible pairs. More specifi-
cally, let U = {u1, ..., uR} and V = {v1, ..., vS} be the two
resulting partitions of a set of N objects of Y = {Y1, ..., YN}
according to the clustering c and c′, respectively. We can
construct an R× S contingency table (Table 1) for the two
clusterings with the (i, j)-th element, nij , as the number of
common objects between the ith subset of partition c and
jth subset of partition c′.

Consider selecting two objects at random from N ob-
jects, there are

(
N
2

)
possible distinct pairs. The Rand index

Rand(c, c′) of the two clusterings c and c′, is defined as the
chance of agreement where a pair of objects are placed in
the same subset or in different subsets by both c and c′,
i.e.,

Rand(c, c′) =
A(
N
2

) ,
where A counts the number of agreements between c and c′.
Brennan and Light (1974) showed

A =

(
N

2

)
+ 2

R∑
i=1

S∑
j=1

(
nij

2

)
−

⎡
⎣ R∑

i=1

(
ni.

2

)
+

S∑
j=1

(
n.j

2

)⎤⎦ .

The adjusted Rand index in Hubert and Arabie (1985) is a
corrected-for-chance version of the Rand index, which mea-

sures how often pairs of observations are agreed by clustering
rules adjusting for the expected chance agreements. It has
the following general form:

(6.1)
Index− Expected Index

Maximum Index− Expected Index
.

So the adjusted Rand index Rand′(c, c′) for c and c′, derived
from (6.1), is given by

(6.2) Rand′(c, c′) =
D1 −D2
1
2D3 −D2

,

as shown in Hubert and Arabie (1985) and Rand

(1971), where D1 =
∑R

i=1

∑S
j=1

(
nij

2

)
, D2 =∑R

i=1

(
ni.

2

)∑S
j=1

(
n.j

2

)
/
(
n..

2

)
and D3 =

∑R
i=1

(
ni.

2

)
+∑S

j=1

(
n.j

2

)
.

Note Rand′(c, c′) ranges from 0 to 1. Larger Rand′(c, c′)
suggests higher similarity between c and c′. And
Rand′(c, c′) = 1 indicates perfect agreement between the
two clustering rules. The adjusted Rand index is a preferred
measure to evaluate the performance of a clustering algo-
rithm because of its normalized value. In our simulation
study, we use the adjusted Rand index to measure the sim-
ilarity between the clustering from each algorithm and the
simulated truth.

7. SIMULATION STUDY

We first simulate 6 data sets by three choices of σ (0.1, 0.3
or 0.5) and two choices of offsets (0.5 or 1) with details given
in Subsection 7.1. Then we describe the prior parameters
chosen for the proposed nonparametric clustering method in
the same subsection. We compare the results of our method
to that of the K-means method, MCLUST method and two-
stage version of the above methods in Subsection 7.2.

7.1 Simulated data

We generate 6 synthetic data sets where each set con-
tains the gene expressions for 100 genes, 2 replicates each,
at 4 time points (N = 100, J = 4, kij = K = 2 for all i
and j). The 4 time points, unevenly spaced between 0 and
10, are assumed to be 0, 3, 7 and 10. First, we generate
all data yijk independently from N(0, σ2) with σ known for
each i = 1, . . . , 100, j = 1, . . . , 4 and k = 1, 2. Then, we
add or subtract the offset effect at different time points to
formulate 10 clusters with 10 genes in each cluster. Specif-
ically, for the ith cluster, with i = 1, . . . , 4, add the offset
effect of 1 to the data points at the ith time point for all
the 10 genes in this cluster; when i = 5, . . . , 8, subtract
the offset effect of 1 from the data point at the i mod 4
time point respectively; for the 9th cluster, add the offset
effect 1 to all the data points at both the 1st and the 3rd
time points; and for the 10th cluster, add the offset effect
1 to all the data points at both the 2nd and the 4th time
points.
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Figure 2. Simulated data: upper left is the high-effect case (offset effect = 1) with σ = 0.3, upper right is the high-effect case
with σ = 0.1, lower left is the low-effect case (offset effect = 0.5) with σ = 0.3, lower right is the low-effect case with σ = 0.1.

Here we set σ to be 0.1, 0.3 or 0.5, to reflect different
variations for the data. Moreover, we also repeat the three
simulation studies for a low offset effect level of 0.5 instead of
1. To distinguish between the different offset levels, we refer
the case with offset effect 1 to be “high-effect case”, and the
other to be “low-effect case”. Figure 2 shows the plots for
the four simulated data sets (σ = 0.1 and 0.3, each with
high and low effect) to visually provide some ideas about
the simulated data.

Next, we use our proposed Bayesian functional clustering
approach (called DP clustering) to cluster the 100 genes. To

perform the blocked Gibbs sampler on the simulated data,
we need to specify prior parameters. Given σ = 0.3, we
choose n0 = 2,200 and W0 = 200, so that τ ∼ G(1,100, 100).
The stick-breaking weights V1,..., VR−1 have initial values
sampled independently from Beta(1, α), where α = 1 or 0.5.
Also, as mentioned in Section 5, the initial values of basis
coefficient θ1, ...,θR are sampled independently from a 10-
dim multivariate normal MN(b0, B0) distribution, where b0
is chosen to be a 10-dim 0 vector, and B0 is chosen to be a
10× 10 matrix with all diagonal elements equal to 1 and 0
elsewhere.
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Table 2. Comparison of the Bayesian functional clustering to K-means and MCLUST methods: high-effect case

Adjusted Rand index
Method Mean (Standard Error)

Bayesian functional clustering (α = 1) 0.9340 (0.0034)
σ = 0.1 Bayesian functional clustering (α = 0.5) 0.9286 (0.0073)

MCLUST 0.8936 (0.0000)
K-means clustering 0.8252 (0.0090)
Two-stage MCLUST 0.3973 (0.0193)
Two-stage K-means clustering 0.2053 (0.0050)

σ = 0.3 Bayesian functional clustering (α = 0.5) 0.8847 (0.0073)
K-means clustering 0.7618 (0.0072)
Bayesian functional clustering (α = 1) 0.7191 (0.0042)
MCLUST 0.6443 (0.0229)
Two-stage MCLUST 0.5112 (0.0248)
Two-stage K-means clustering 0.1696 (0.0036)

σ = 0.5 Bayesian functional clustering (α = 0.5) 0.5411 (0.0086)
Bayesian functional clustering (α = 1) 0.4249 (0.0053)
K-means clustering 0.3119 (0.0047)
Two-stage K-means clustering 0.1158 (0.0028)
Two-stage MCLUST 0.0155 (0.0055)
MCLUST <0.0001 (<0.0001)

Table 3. Comparison of the Bayesian functional clustering to K-means and MCLUST methods: low-effect case

Adjusted Rand index
Method Mean (Standard Error)

σ = 0.1 Bayesian functional clustering (α = 0.5) 0.8897 (0.0080)
MCLUST 0.8791 (0.0015)
Bayesian functional clustering (α = 1) 0.8740 (0.0039)
K-means clustering 0.8604 (0.0078)
Two-stage MCLUST 0.3035 (0.0193)
Two-stage K-means clustering 0.1998 (0.0046)

σ = 0.3 Bayesian functional clustering (α = 0.5) 0.3771 (0.0070)
Bayesian functional clustering (α = 1) 0.3112 (0.0050)
K-means clustering 0.2077 (0.0038)
Two-stage K-means clustering 0.0893 (0.0023)
Two-stage MCLUST 0.0051 (0.0023)
MCLUST 0.0009 (0.0005)

σ = 0.5 Bayesian functional clustering (α = 0.5) 0.1391 (0.0037)
Bayesian functional clustering (α = 1) 0.1086 (0.0031)
K-means clustering 0.0753 (0.0018)
Two-stage K-means clustering 0.0417 (0.0019)
Two-stage MCLUST 0.0009 (0.0008)
MCLUST <0.0001 (<0.0001)

7.2 Simulation results

We consider α = 0.5 and α = 1 for our proposed Bayesian
function clustering algorithm. According to (4.7), they lead
to maximum numbers of clusters R = 11 and R = 21, re-
spectively for N = 100. We compare our method with two
choices of α to the K-means clustering, MCLUST, and their
two-step versions in terms of the adjusted Rand index. The
mean of the adjusted Rand index (6.2) and its standard er-
ror are calculated from 100 replicated synthetic datasets for
each of the six clustering methods.

The results are shown in Tables 2 and 3 for high-effect and
low-effect cases, respectively. In each table, we see that our
proposed Bayesian functional clustering achieves higher ad-
justed Rand index among all methods. The choice of α = 0.5
is usually better than α = 1 except for the high effect case
with smallest variation σ = 0.1. In high-effect case (Table
2), the between-cluster variation in the simulated data is
larger, therefore, it is relatively easier for these algorithms
to separate clusters precisely, hence in general, the adjusted
Rand index values in the high-effect case are higher than
that in the low-effect case. Moreover, in each table, the ad-
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Figure 3. Plot of resulting clusters by the DP clustering with α = 0.5 for the simulated data with σ = 0.1 and high offset.
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Figure 4. Plot of resulting clusters by the DP clustering with α = 0.5 for the simulated data with σ = 0.3 and high offset.
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justed Rand index values are higher for smaller σ. This is
reasonable in that genes with smaller within-cluster varia-
tion stay closer together, which also make it easier for the
algorithms to cluster them correctly. We also observe the
Bayesain functional clustering has much better performance
than the MCLUST for the low-effect case whereas the dif-
ference is not so distinct for the high effect case. This is
perhaps due to the high-effect case, every method is do-
ing better, so their distinction is not so pronounced. When
the effect gets low and the σ increases, all methods are
not doing well. In particular, the MCLUST performs a lot
worse. This is perhaps due to the overparametrization of the
MCLUST in this case in contrast to that the Bayesian func-
tional clustering tends to be more parsimonious in model
selection.

We see the Bayesian functional clustering is also better
than K-means and MCLUST for each case, it is primarily
due to the excellent clustering capability for the DP mixing
for the former. It may be argued that the proposed method
clusters the coefficients for the B-spline basis whereas K-
means and MCLUST clusters the original data, which makes
the comparison a little ‘unfair’. So we added the two stage
procedure as in Abraham et al. (2003). It can be seen from
the simulations, the proposed Bayesian functional clustering
method is much better than the two-stage methods with a
fixed σ. The two classes of methods all use spline smoothing
and then cluster genes using the coefficients of spline fitting.
However, there are two major differences between them. (1)
The two-stage method conducts data fitting using splines
for all the data first. Then it clusters genes explicitly based
on the results of stage 1. The Bayesian functional cluster-
ing does the two-stages hierarchically where the clustering
on the second stage is done implicitly from the latent vari-
ables constructed in stage 1. (2) The biggest difference is
in the clustering techniques. The Bayesian functional clus-
tering uses DP mixing for clustering, and the other class
uses k-means and MCLUST. Our interpretation from the
simulation study is that the good performance of our pro-
posed approach attributes more to the DP mixing than to
the spline fitting. We suspect that spline fitting alone in this
particular simulated data does not necessarily do a good job.
Furthermore, the two-stage methods cluster the data indi-
rectly by clustering the fitted coefficients rather than the
original data. Hence they may work relatively limited com-
paring to one-stage methods which cluster the original data
directly.

Using high-effect case (offset effect = 1) with α = 0.5 as
an example, we plot the clustering results using the Bayesian
functional clustering in Figures 3 (σ = 0.1) and 4 (σ = 0.3).
For each case, we only show the plots for one simulation
to illustrate the clusters graphically. However, for different
simulated data, these plots can be different due to random-
ness of the noise added to the data. Each cluster is presented
in one plot with the bold curve representing the estimated
curve described by the model in (3.3).

Figure 5. Plot of mouse adipose data.

8. REAL DATA ANALYSIS

8.1 Mouse adipose tissue data

For a real data analysis, we use Illumina data gener-
ated from microarray experiments on mouse adipose tis-
sue from Dr. David Rowe’s lab at the University of Con-
necticut Health Center. The objective is to examine gene
expression changes during a series of 6 consecutive cellu-
lar events including preadipoblast, early adipoblast, and
mature adipoblast. These six events are labeled in order
by different markers as day4sma−, day4sma+, day7sma+,
aP2day14, aP2day18, and aP2LTXday18. There are a total
of 16,454 genes in the dataset and 2 replicates for each cel-
lular events. The gene expression intensities are normalized
first using the R Bioconductor package “lumi” (Du et al.
(2008)) and averaged over 2 replicates to represent the gene
intensity at each cellular event. In our cluster analysis, we
concentrate on the N = 1,040 most differentially expressed
genes selected by the rule of more than 3-fold changes in at
least one of the adjacent pairwise comparisons. The data is
plotted in Figure 5.

8.2 Analysis results

We apply the Bayesian functional clustering algorithm to
the dataset of N = 1,040 genes. We choose α = 1 (R = 24 by
(4.7)) and σ2 (=1/τ) prior as suggested in Section 5. Given
the observed sample standard deviation is roughly 2, we
have chosen n0 = 0.1 and W0 = 0.4 as one of the many ways
that match the empirical variance to W0/n0. The proposed
Bayesian clustering algorithm groups the 1,040 genes into
16 clusters, with cluster size ranges from 29 to 173 genes.
The plot for the 16 clusters are shown in Figure 6.
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Figure 6. Plot of resulting clusters by the DP clustering for the mouse adipose data.

After clustering is done, one can look at such cluster plots,
identify patterns of interest, and investigate the genes be-
longing to such clusters. The Gene Ontology (GO) project
(http://www.geneontology.org) provides GO terms which
are structured vocabularies and classifications of several
molecular and cellular biological functions. GOstats analysis
is a useful bioinformatic tool for scientists to assess the asso-
ciations between GO terms and genes in a selected gene list.
R Bioconductor package “GOstats” (Falcon and Gentleman
(2007)) has been widely used to perform such computations.

We have selected clusters 1, 11, 13, and 14 for biologists’ in-
terest. Table 4 lists the most significant GO terms for these
four clusters. In this table, cellular component, biological
process, and molecular function are abbreviated by CC, BP,
and MF. Moreover, Count

ClusterSize indicates the ratio of the num-
ber of genes in the cluster that belong to the particular GO
term to the size of the cluster.

This GOstats result can provide guidance on which GO
terms are associated with the regulation pattern of each par-
ticular cluster. From this table, we can observe that cluster
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Table 4. GOstats results for selected DP clusters for the mouse adipose data

Cluster Ontology GO ID GO Term Count
Cluster Size

P-value

BP GO:0032787 monocarboxylic acid metabolic process 9/29 8.53E-06
BP GO:0006082 organic acid metabolic process 10/29 8.97E-06
BP GO:0019752 carboxylic acid metabolic process 10/29 8.97E-06
BP GO:0042180 cellular ketone metabolic process 10/29 8.97E-06

Cluster 1 BP GO:0043436 oxoacid metabolic process 10/29 8.97E-06
BP GO:0044255 cellular lipid metabolic process 10/29 1.99E-05
BP GO:0006629 lipid metabolic process 11/29 6.70E-05
BP GO:0006631 fatty acid metabolic process 7/29 1.71E-04
MF GO:0016747 transferase activity, transferring acyl groups other than amino-acyl groups 4/29 2.12E-04
MF GO:0016746 transferase activity, transferring acyl groups 4/29 3.00E-04

BP GO:0048706 embryonic skeletal system development 9/123 3.47E-09
BP GO:0001501 skeletal system development 16/123 3.52E-08
BP GO:0009888 tissue development 29/123 4.93E-08
BP GO:0009792 embryo development ending in birth or egg hatching 17/123 1.89E-07

Cluster 11 BP GO:0043009 chordate embryonic development 17/123 1.89E-07
BP GO:0051216 cartilage development 10/123 2.51E-07
BP GO:0048704 embryonic skeletal system morphogenesis 7/123 2.80E-07
BP GO:0007423 sensory organ development 12/123 5.14E-07
BP GO:0048568 embryonic organ development 13/123 7.12E-07
BP GO:0007507 heart development 14/123 8.26E-07

BP GO:0031175 neuron projection development 10/62 2.00E-05
BP GO:0048523 negative regulation of cellular process 26/62 4.51E-05
BP GO:0048666 neuron development 10/62 8.24E-05
BP GO:0010975 regulation of neuron projection development 7/62 8.43E-05

Cluster 13 BP GO:0072089 stem cell proliferation 4/62 9.28E-05
CC GO:0000267 cell fraction 17/62 9.77E-05
BP GO:0060284 regulation of cell development 10/62 1.06E-04
BP GO:0002009 morphogenesis of an epithelium 9/62 1.40E-04
BP GO:0030030 cell projection organization 11/62 1.47E-04
BP GO:0048468 cell development 15/62 1.91E-04

BP GO:0002376 immune system process 38/84 9.29E-14
BP GO:0006955 immune response 27/84 1.49E-12
BP GO:0050778 positive regulation of immune response 16/84 3.06E-10
BP GO:0050776 regulation of immune response 18/84 4.12E-10

Cluster 14 BP GO:0002682 regulation of immune system process 24/84 1.30E-09
BP GO:0006952 defense response 25/84 5.31E-09
BP GO:0002252 immune effector process 17/84 6.29E-09
BP GO:0002443 leukocyte mediated immunity 12/84 2.43E-08
BP GO:0051707 response to other organism 16/84 7.86E-08
BP GO:0002684 positive regulation of immune system process 17/84 8.66E-08
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1 is more enriched with fat related functional terms, cluster
11 is more enriched with skeletal system and tissue devel-
opment, cluster 13 is more enriched with neuron and cell
development functions, and cluster 14 is a clear immune en-
riched cluster.

9. DISCUSSIONS

We develop a model-based Bayesian functional cluster-
ing approach using Dirichlet process to cluster genes with
time-course microarray data. We construct a Dirichlet pro-
cess on the unknown distribution of the basis coefficients of
the spline fitting of the time course data. The hierarchical
Dirichlet mixing process allows flexible nonparametric mix-
ture modeling. The number of mixture components is not
specified in advance and can grow as new data come in. In
practice, we specify an upper limit on the number of clusters
in order to construct the blocked Gibbs sampler. We take
advantage of the clustering property of the Dirichlet process,
which automatically assigns genes into appropriate number
of clusters, hence it does not need to pre-specify the number
of clusters like some other cluster algorithms. The Bayesian
functional clustering algorithm is evaluated along with two
widely used clustering procedures, K-means, MCLUST, and
their two-stage version by adjusted Rand index. From our
simulation study, we have shown that, our proposed method
achieves higher adjusted Rand index values among all the
procedures considered. In addition, the proposed algorithm
is applied to a real dataset, and the clusters are interpreted
by the GOstats analysis to facilitate the function analysis
afterwards.

Gene clustering has a lot of important applications. For
example, in Golub et al. (1999), cluster analysis is used to
reveal tumor groups; newly discovered classes are compared
with known classes. Ross and Perou (2001) use cDNA mi-
croarrays to study gene expression in the 60 cell lines from
the National Cancer Institute’s anticancer drug screen. Hier-
archical clustering of the cell lines reveals a correspondence
between gene expressions and tissues of the origin of tu-
mors. In van’t Veer et al. (2002), cluster analysis is used
to investigate clinical outcomes of breast cancer and iden-
tify subsets of genes that show different expression patterns
between different types of cancers. Our proposed functional
clustering algorithm provides a flexible tool to cluster high-
dimensional data for a wide range of experimental designs.
Moreover, it can be applied in various areas such as drug dis-
covery, disease diagnosis, cancer research, and personalized
medicine.
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