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Bayesian case-deletion model complexity
and information criterion
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We establish a connection between Bayesian case influ-
ence measures for assessing the influence of individual ob-
servations and Bayesian predictive methods for evaluating
the predictive performance of a model and comparing differ-
ent models fit to the same dataset. Based on such a connec-
tion, we formally propose a new set of Bayesian case-deletion
model complexity (BCMC) measures for quantifying the ef-
fective number of parameters in a given statistical model
and its properties in linear models are explored. Adding
certain functions of BCMC to a conditional deviance func-
tion leads to a Bayesian case-deletion information criterion
(BCIC) for comparing models. We systematically investi-
gate some properties of BCIC and its connections with other
information criteria, such as the Deviance Information Cri-
terion (DIC). We illustrate the proposed methodology for
the linear mixed model with simulations and a real data
example.
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sures, Cross validation, Information criterion, Markov chain
Monte Carlo, Model complexity.

1. INTRODUCTION

The aim of this paper is to establish a formal connection
between Bayesian case influence measures for assessing the
influence of individual observations on a model and Bayesian
predictive methods for choosing an appropriate dimension of
a model and selecting the best model for a given dataset. In
Bayesian analysis, such statistical measures are very impor-
tant and highly relevant in any formal statistical analysis,
but their formal connections have not been fully explored.
We systematically examine the properties of these measures
and establish such connections in this paper.

Bayesian case influence measures are typically developed
for the purpose of assessing the influence of individual ob-
servations (or generally, a set of observations), but they also
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provide a measure of the importance of each observation in
the analysis for assessing model fit [33, 9, 25, 5, 7, 12, 11].
See [42, 43] for a comprehensive review of various Bayesian
case influence measures and their properties. In particular,
single case influence measures have been widely used for var-
ious specific statistical models including generalized linear
models, time series models, survival models, and statistical
models with missing data [18, 29, 20, 14, 12, 28, 43]. The
influence of individual observations are often assessed either
on the posterior distributions or the predictive distributions
through case deletion. The two most popular Bayesian case
influence measures are the Kullback-Leibler (KL) divergence
[11] and the conditional predictive ordinate (CPO) [14, 12].

Bayesian predictive methods are developed to evaluate
the predictive performance of a given model and to select
a single model with the best predictive performance from
a set of candidate models. For instance, many researchers
have been interested in Bayesian model assessment tools
based on criterion-based methods, such as the L-measure
[17, 23, 15, 16, 8]. See [39] and [4] for an overview of recent
progress in cross-validation procedures and Bayesian predic-
tive methods for model assessment, selection, and compar-
ison. The main challenge is to estimate predictive model
accuracy by correcting for the bias inherent in the dou-
ble use of the data for both fitting and prediction. Cross-
validation (CV) is a natural way of estimating out-of-sample
prediction error [12, 41]. However, since cross-validation re-
quires repeated model fits, it is computationally intensive,
and hence, information criteria are commonly sought as al-
ternative measures. Such information criteria include the
Akaiki Information Criterion (AIC) [1], the Takeuchi Infor-
mation Criterion (TIC) [35, 22], the Bayesian Information
Criterion (BIC) [31, 24, 21], the Deviance Information Cri-
terion (DIC) [32], and the Bayesian Predictive Information
Criterion (BPIC) [2], among many others. All these infor-
mation criteria incorporate different complexity terms for
model choice and can be viewed as approximations to dif-
ferent versions of cross-validation [34, 33].

Despite the extensive literature on Bayesian diagnos-
tic measures and Bayesian predictive methods, very little
has been done on systematically examining their connec-
tions in general parametric models. Based on the connec-
tions explored here, we also develop Bayesian case-deletion
model complexity (BCMC) measures for quantifying the ef-
fective number of parameters in a given statistical model and
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a Bayesian case-deletion information criterion (BCIC) for
comparing different models. We calculate BCMC and BCIC
in two theoretical examples involving linear models and lin-
ear mixed models. We show that BCMC can be regarded
as a measure of model complexity, and show its asymptotic
equivalence to the effective number of parameters in various
information criteria. We systematically investigate the con-
nection of BCIC with cross-validation methods and other in-
formation criteria, such as TIC and DIC. When the number
of observations in each set, denoted as NS , is small, we sys-
tematically derive their asymptotic approximations, which
facilitate their computation and establish their asymptotic
equivalence.

The rest of this paper is organized as follows. In Section
2, we review Bayesian case influence measures and Bayesian
predictive methods. We propose BCMC for measuring
model complexity and BCIC for comparing different models.
We also systematically establish the connections between
our two new measures including BCMC and BCIC as well as
many existing model complexity measures and information
criteria. In Section 3, we illustrate the proposed method-
ology using both simulations and a real dataset involving
the Yale infant growth data for the linear mixed model. We
conclude the paper with some discussion in Section 4.

2. METHODS

2.1 Bayesian case influence measures

We consider a probability density function for an N × 1
vector Y T = (Y T

1 , . . . ,Y
T
n ), denoted by p(Y |θ), where θ =

(θ1, . . . , θp)
T is a p × 1 vector in an open subset Θ of Rp,

Y i = (yi1, . . . , yimi)
T , and N =

∑n
i=1 mi. Letting p(θ) be

the prior distribution of θ, the posterior distribution for the
full data Y is given by p(θ|Y ) ∝ p(Y |θ)p(θ). Moreover, the
dimension of Y i (or mi), such as the number of repeated
measures in each cluster for longitudinal studies, may vary
across all i.

Bayesian case influence measures are primarily used to
assess the influence of deleting an NS × 1 vector of ob-
servations, denoted by S, on posterior inferences regarding
θ. We use a subscript ‘[S]’ to denote the relevant quantity
with all observations in S deleted. For example, if S = {i},
then Y [S] is the corresponding observed data with all of Y i

deleted, whereas for S = {i1, i2}, Y [S] is the correspond-
ing observed data with Y i1 and Y i2 deleted. Moreover,
we may set S = {i1, . . . , ik} and S = {(i1, j1), . . . , (ik, jk)}
to allow more complicated case deletions. We use Y S and
Y [S] to represent a subsample of Y consisting of all the
observations in S and a subsample of Y with all obser-
vations in S (Y S) deleted, respectively. We also calculate
p(θ|Y [S]) ∝ p(Y [S]|θ)p(θ) as the posterior distribution of θ
given Y [S], where p(Y [S]|θ) = p(Y |θ)/p(Y S |θ).

Following [43], we briefly introduce three types of
Bayesian case influence measures based on case deletion.
First, we consider the φ−influence of Y [S], denoted by

Dφ(S), as a measure of the distance (discrepancy) between
p(θ|Y [S]) and p(θ|Y ). Letting R[S](θ) = p(θ|Y [S])/p(θ|Y ),
then Dφ(S) is given by

(1) Dφ(S) =

∫
φα(R[S](θ))p(θ|Y )dθ,

where φα(u) is defined by 4{1 − u(1+α)/2}/(1 − α2) for
α �= ±1, u log(u) for α = 1, and − log(u) for α = −1.
The φ1(·) and φ−1(·) lead to the Kullback-Leibler diver-
gence (K-L divergence), whereas φ(u) = φ1(u) + φ−1(u)
leads to the symmetric K-L divergence. The L1−distance
and the χ2−divergence correspond to φ(u) = 0.5|u− 1| and
φ(u) = (u− 1)2, respectively [20].

Second, we consider Cook’s posterior mode distance, de-
noted by CP(S), for quantifying the discrepancy between
the posterior mode of θ with and without the ith case [10].
We define the posterior modes of θ for the full sample
Y and a subsample Y [S] as θ̂ = argmaxθ log p(θ|Y ) and

θ̂[S] = argmaxθ log p(θ|Y [S]), respectively. Then, CP(S) is
given by

(2) CP(S) = (θ̂[S] − θ̂)TGθ(θ̂[S] − θ̂),

where Gθ is chosen to be a positive definite matrix.
For instance, Gθ can be JN (θ) = −∂2

θ log p(θ|Y ) =

−∂2
θ log p(Y |θ)− ∂2

θ log p(θ) evaluated at θ̂, where ∂2
θ rep-

resents the second-order derivative with respect to θ. If
∂2
θ log p(θ̂) = op(−∂2

θ log p(Y |θ̂)), then CP(S) is close to
the well-known Cook’s distance for deleting a set of observa-
tions [10, 44]. A large value of CP(S) implies more influence
of the set S on the posterior mode.

Third, we consider Cook’s posterior mean distance, de-
noted by CM(S), for quantifying the distance between the
posterior mean of θ with and without the observations in
S. Let θ̃ =

∫
θ · p(θ|Y )dθ and θ̃[S] =

∫
θ · p(θ|Y [S])dθ be,

respectively, the posterior mean of θ for Y and Y [S]. The
CM(S) is given by

(3) CM(S) = (θ̃[S] − θ̃)TWθ(θ̃[S] − θ̃),

where Wθ is chosen to be a positive definite matrix. A large
value of CM(S) corresponds to an influential set S regarding
the posterior mean.

Computationally, the proposed case influence measures
can all be approximated using only MCMC samples from the
full posterior distribution, p(θ|Y ). For diagnostic purposes,
it is desirable to derive computationally feasible approxima-
tions to these case influence measures. For completeness, we
include an important theoretical result regarding such ap-
proximations, whose proof can be found in [43], as follows.

Proposition 1. Assume that Assumptions C1–C4 in the
Appendix hold and NS is bounded by a fixed constant. We
have the following results:

(a) Dφ(S) = 0.5φ̈(1) × CP(S) + Op(N
−2) = 0.5φ̈(1) ×

CM(S) +Op(N
−2).

532 H. Zhu, J. G. Ibrahim, and Q. Chen



(b) θ̂[S] = θ̂+Op(N
−1) = θ̂− [JN (θ̂)]−1∂θ log pS(θ̂)[1 +

Op(N
−1)].

(c) θ̃[S] = θ̃ − [JN (θ̂)]−1∂θ log pS(θ̂)[1 +Op(N
−1)].

(d) Dφ(S) = 0.5φ̈(1)[∂θ log pS(θ̂)]
T [JN (θ̂)]−1

[∂θ log pS(θ̂)][1 + Op(N
−1)], where φ̈(1) = ∂2

uφ(u)|u=1

and pS(θ) = p(Y S |Y [S],θ) is the conditional distribution
of Y S given Y [S].

Proposition 1 establishes a direct connection between
Dφ(S), CP(S) and CM(S) for any φ(·) and the one-step ap-

proximation of θ̂[S] and θ̃[S] within the Bayesian framework.
Proposition 1 provides a theoretical and computational ap-
proximation of Dφ(S), denoted by AD(S; θ̃), as

(4) AD(S; θ̃) = [∂θ log pS(θ̃)]
T [JN (θ̃)]−1[∂θ log pS(θ̃)].

The θ̃ and JN (θ̃) can be easily computed from the
MCMC samples. Moreover, it is straightforward to com-
pute ∂θ log pS(θ) = ∂θ log p(Y |θ) − ∂θ log p(Y [S]|θ). As
an illustration, we consider a normal linear model to il-
lustrate the calculation of Bayesian case influence measures.

Example 1. We consider a normal linear model as Y = Xβ+
ε or yi = xT

i β + εi, where β and xi are p × 1 vectors, β is
unknown, ε = (ε1, . . . , εn)

T ∼ Nn(0, τ
−1I), and τ = 1/σ2

is assumed known for simplicity. We consider a conjugate
prior for β as Np(μ0, τ

−1Σ0). For a given set S, p(β|Y )
and p(β|Y [S]) are, respectively, given by

β|Y ∼ Np(β̃, τ−1(XTX+Σ−1
0 )−1)

and

β|Y [S] ∼ Np(β̃[S], τ−1(XT
[S]X [S] +Σ−1

0 )−1),

where β̃ = (XTX + Σ−1
0 )−1(XTY + Σ−1

0 μ0), β̃[S] =

(XT
[S]X [S] + Σ−1

0 )−1(XT
[S]Y [S] + Σ−1μ0), X [S] is X with

all xi deleted for i ∈ S, and Y [S] is Y with all yi deleted for

all i ∈ S. Note that XT
[S]X [S] = XTX −

∑
i∈S xix

T
i and

XT
[S]Y [S] = XTY −

∑
i∈S xiyi.

Let S = {i1, . . . , iNS
} and ES = [ei1 , . . . , eiNS

] be an
N ×NS matrix, where ek is an N × 1 vector with a 1 at the
k-th element and 0 elsewhere for k ∈ S. With some algebraic
calculations, we have

β̃[S] = β̃ − (XTX +Σ−1
0 )−1XT

S (INS
− PS)

−1êS ,

where XS = ET
SX, PS = ET

S PX0ES , in which PX0 =

X(XTX + Σ−1
0 )−1XT , and êS = ET

S (Y − Xβ̃). For the
KL divergence, we get

Dφ(S) = 0.5[τ(β̃ − β̃[S])
T (XT

[S]X [S] +Σ−1
0 )(β̃ − β̃[S])

− log |Ip − (XTX +Σ−1
0 )−1

∑
i∈S

xix
T
i |

−tr{(XTX +Σ−1
0 )−1

∑
i∈S

xix
T
i }].

Note that the posterior mode and the posterior mean are the
same in this example. If we set Wθ = Gθ = τ(XTX+Σ−1

0 ),
we have

CM(S) = CP(S) = τ(β̃ − β̃[S])
T (XTX +Σ−1

0 )(β̃ − β̃[S]).

Since log pS(θ) = −0.5τ
∑

i∈S(yi − xT
i β)

2 and JN (θ̃) =

τ(XTX +Σ−1
0 ), we have

AD(S; θ̃) = êTSXSτ(X
TX +Σ−1

0 )−1XT
S êS .

2.2 Cross validation and model complexity

Bayesian case influence measures (BCIM) and cross-
validation (CV) methods share the same strategy of split-
ting the data into two subsamples, but they differ from each
other in validation [33, 34, 13, 4]. BCIM divides the data
into a target sample Y S and a training sample Y [S] and

then estimates θ̃[S] based on the training sample Y [S]. Note

that all development below is valid for θ̂[S], but we focus on
the posterior mean from here on for notational simplicity.
BCIM for a given set S represents the influential level of S.
In contrast, the CV method divides the data into two sub-
samples including a training sample Y [S] for model fitting
and a validation sample Y S for assessing model fit. Com-
pared to BCIM, CV usually uses the predictive distribution
p(Ỹ S |Y [S]) for model validation, where Ỹ S is an indepen-
dent copy of Y S . One choice of the predictive distribution
is to use p(Ỹ S |Y [S], θ̃[S]), where θ̃[S] is estimated based on
Y [S]. Let NB be an integer and S1, . . . , SNB

is a sequence of
non-empty proper subsets of {(1, 1), . . . , (n,mn)}. The CV
estimator of the model p(θ|Y ) based on IS = (Sk)1≤k≤NB

is defined by

CVE(IS) = N−1
B

∑
S∈IS

log p(Y S |Y [S], θ̃[S])

= N−1
B

∑
S∈IS

log pS(θ̃[S]).

A challenging issue associated with BCIM and CV is
to calculate the θ̃[S]’s for all possible splits. Most BCIM
and CV methods split the data with a fixed size of the
training sample. There are two major categories of split-
ting schemes, including exhaustive data splitting and par-
tial data splitting. Exhaustive data splitting includes the
leave-M -out CV for all N ≥ M ≥ 1. For each fixed M ,
NB = N !/(M !(N−M)!) and IS is the set of all possible sets
with a fixed size M . However, except for relatively small M ,
it can be computationally restrictive to calculate BCIM and
CV for every possible subset of the M data. Alternatively,
one may consider partial data splitting methods, such as
V-fold CV [4, 41].

An interesting question is whether there is any other con-
nection between BCIM and CV besides the strategy of split-
ting the data. We can establish a connection between BCIM
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and CV by extending the well-known result on the asymp-
totic equivalence between CV and AIC [34]. We obtain the
following theorems, whose detailed proofs can be found in
the the Appendix.

Theorem 1. Let NS be a fixed constant. Then we have the
following results:

(i) Under Assumptions C1–C4 in the Appendix, CVE(IS)
has an asymptotic expansion as

(5) CVE(IS) = N−1
B

∑
Sk∈IS

log pSk
(θ̃)−MAD(IS)[1+op(1)],

where MAD(IS) = N−1
B

∑
Sk∈IS

AD(Sk; θ̃) is the mean of

the AD(Sk; θ̃)’s.
(ii) Under Assumptions C1, C2, and C5 in the Appendix,

we have

MAD(IS) = tr{[JN (θ̃)]−1KN (IS |θ̃)}
= N−1{tr[J−1

∗ K∗(IS)] + op(1)},

where JN (θ̃) = −∂2
θ log p(θ|Y )|

θ=
˜θ

and J∗ =

limN→∞N−1E[JN (θ∗)], in which the expectation is
taken with respect to the true data generator and
θ∗ denotes the pseudo-true parameter [6]. Moreover,
KN (IS |θ̃) = N−1

B

∑
Sk∈IS

[∂θ log pS(θ)]
⊗2|

θ=
˜θ
and

K∗(IS) = lim
N→∞

(NB)
−1

∑
Sk∈IS

E{[∂θ log pSk
(θ∗)]

⊗2},

where a⊗2 = aaT for any vector a.

Theorem 1 shows a direct connection between CVE(IS)
and MAD(IS) and an indirect connection between CVE(IS)
and BCIM. According to Proposition 1, we can use the av-
erage of the BCIMs to approximate MAD(IS) as follows:

(6) MAD(IS) = N−1
B

∑
Sk∈IS

CP(Sk) +Op(N
−1).

A similar approximation also holds for both CM(S)
and Dφ(S). Moreover, MAD(IS) is always nonnegative.
Throughout the paper, based on MAD(IS) and their ap-
proximations, we define the Bayesian case-deletion model
complexity (BCMC) measures as
(7)
BCMC(IS) = NN−1

S ×MAD(IS) ≈ N−1
S tr[J−1

∗ K∗(IS)].

We will show below that our BCMC measures can be
regarded as a generalization of many existing measures of
model complexity. We first consider single cluster deletion
(or the leave-one-out CV) for clustered data, in which the
Y i’s are independent for different i, but the components
in each Y i may be correlated. For the leave-one-out CV,
we denote ILOO = {{1}, . . . , {n}}. In this case, we have
NB = n, p{i}(θ) = p(Y i|θ),

KN (ILOO|θ̃)

= n−1
n∑

i=1

{∂θ log p(Y i|θ)}⊗2|
θ=

˜θ

→p K∗(ILOO) = lim
n→∞

E{KN (ILOO|θ∗)},

and

JN (θ̃)

= −n−1[
n∑

i=1

∂2
θ log p(Y i|θ) + ∂2

θ log p(θ)]|
θ=

˜θ

→p J∗ = lim
N→∞

E{JN (θ∗)},

where →p denotes convergence in probability. Let p∗ =
BCMC(ILOO) in this case. Using a uniform improper prior
for θ, that is, ∂2

θ log p(θ) = 0, p∗ is the measure of model

complexity in TIC. Furthermore, if the model p(Y |θ) is cor-
rectly specified, then p∗ reduces to p, the number of param-
eters, and MAD(ILOO) = p + op(1). In this case, p is the
measure of model complexity in AIC. For general priors, p∗
is the effective number of parameters in the network infor-
mation criterion (NIC) [27, 30]. Moreover, MAD(ILOO) is
also associated with the effective number of parameters, de-
noted by pD, in DIC, where pD = Eθ|Y [−2 log p(Y |θ)] +
2 log[p(Y |θ̃)]. Under the two conditions of approximately
normal likelihoods and a uniform improper prior for θ,
it can be shown that pD = tr{JN (θ̃)E[(θ − θ̃)⊗2]} +
op(1) [32]. Moreover, using the fact that E[(θ − θ̃)⊗2] =
JN (θ∗)

−1KN (ILOO|θ∗)JN (θ∗)
−1[1 + op(1)] [6], we can ob-

tain the following connections between pD and p∗: pD =
p∗ + op(1). Thus, MAD(ILOO) has many of the same prop-
erties as pD [32]. We also note that MAD(ILOO) is always
nonnegative, whereas pD is not.

Second, we consider multiple cluster deletion (or the
leave-M clusters-out CV) for clustered data. Specifically, we
focus on deleting every possible subset of the data from
M clusters and using it for validation. Let ILMO be the
set of all NB =

(
n
M

)
subsets with M clusters. If we set

S1 = {{i1}, . . . , {iM}}, then we have

E{[∂θ log pS1(θ∗)]
⊗2}

=
∑
ik,i′k

E{∂θ log p(Y ik |θ∗)∂θ log p(Y i′k
|θ∗)

T }

=

M∑
k=1

E{∂θ log p(Y ik |θ∗)
⊗2}.

Therefore, by doing exhaustive data splitting, we have

N−1
B

∑
Sk∈IS

E{[∂θ log pSk
(θ∗)]

⊗2}(8)

=
M

n

n∑
i=1

E{∂θ log p(Y i|θ∗)
⊗2},
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which yields that MAD(ILMO) = M×MAD(ILOO). Ifm1 =
· · · = mn, then BCMC(ILMO) = BCMC(ILOO). Similar
discussions also hold for V-fold CV [4, 41].

Third, we consider single observation deletion ISO =
{{(1, 1)}, . . . , {(n,mn)}} and examine MAD(ISO) for clus-
tered data. We have NB = N =

∑n
i=1 mi and

∂θ log p[(i,j)](θ) = ∂θ log p(Y i|θ)− ∂θ log p(Y i,[(i,j)]|θ),

where Y i,[(i,j)] denotes Y i with yi,j deleted. Then,

KN (ISO|θ̃) is given by

n∑
i=1

mi{∂θ log p(Y i|θ̃)}⊗2

−
n∑

i=1

∂θ log p(Y i|θ̃){
mi∑
j=1

∂θ log p(Y i,[i,j]|θ̃)}T

−
n∑

i=1

{
mi∑
j=1

∂θ log p(Y i,[i,j]|θ̃)}[∂θ log p(Y i|θ̃)]T

+

n∑
i=1

mi∑
j=1

{∂θ log p(Y i,[i,j]|θ̃)}⊗2.

Moreover, p∗ = tr[J−1
∗ K∗(ISO)] can be regarded as a mea-

sure of model complexity for clustered data. Even if the
model p(Y |θ) is correctly specified, p∗ does not reduce to
p, the number of parameters, and MAD(ISO) �= p + op(1).
Compared with p as the measure of model complexity in
AIC, p∗ = tr[J−1

∗ K∗(ISO)] accounts for the correlation
structure in the clustered data. Although one may con-
sider other case deletion mechanisms, we omit them here
for brevity.

Example 1 (continued). In this case, we have

CVE(IS) = − 0.5τN−1
B

∑
Sk∈IS

∑
i∈Sk

(yi − xT
i β̃[S])

2,

N−1
B

∑
Sk∈IS

log pSk
(θ̃) = −0.5τN−1

B

∑
Sk∈IS

∑
i∈Sk

(yi − xT
i β̃)

2,

MAD(IS) = N−1
B

∑
Sk∈IS

êTSk
XSk

τ(XTX +Σ−1
0 )−1XT

Sk
êSk

.

According to Theorem 1, we have

MAD(IS)

= N−1
B tr((XTX +Σ−1

0 )−1
∑

Sk∈IS

XT
Sk
XSk

)[1 + op(1)].

For the leave-one-out CV, BCMC(ILOO) can be approxi-
mated by

∑n
i=1 pii/n, where the pii’s are the diagonal ele-

ments of PX0. As Σ
−1
0 converges to zero, which corresponds

to a non-informative prior, BCMC(ILOO) converges to the
number of parameters in β.

2.3 Bayesian case-deletion information
criterion

Based on the development of BCMC(IS) and CVE(IS),
we develop a new model selection criterion, called the
Bayesian case-deletion information criterion (BCIC), to se-
lect an ‘optimal’ model from a pool of candidate models
{Ml : l = 1, . . . , L} for the same dataset. Specifically, for
model Ml and the deletion set IS , BCIC is defined as

BCIC(IS ,Ml) = − 2
∑

Sk∈IS

log pSk
(θ̃(Ml),Ml)(9)

+ (NBNS/N)Cn(IS , θ̃(Ml),Ml),

where θ̃(Ml) is an estimator of θ and pSk
(θ;Ml) denotes

p(Y Sk
|Y [Sk],θ) under model Ml and Cn(IS , θ̃(Ml),Ml)

is a penalty term, which is a function of the data,
the deletion set IS , and an estimator of θ(Ml). In (9),∑

Sk∈IS
log pSk

(θ̃(Ml),Ml) can be regarded as the condi-

tional deviance function evaluated at θ̃(Ml). We choose
an ‘optimal’ model, denoted by Mopt, which minimizes
BCIC(IS ,Ml), as follows:

Mopt(IS) = argminMl:1≤l≤LBCIC(IS ,Ml).

Different forms of the model penalty Cn(IS , θ̃(Ml),Ml)
lead to different criteria. Two popular choices of
Cn(IS , θ̃(Ml),Ml) are the AIC-type penalty and
the BIC-type penalty. For the AIC-type penalty,
Cn(IS , θ̃(Ml),Ml) = C0 × BCMC(IS), where C0 is a
positive scalar. In practice, similar to AIC, DIC, and
TIC [1, 35, 22, 32], it is common to set C0 = 2. For the
BIC-type penalty, Cn(IS , θ̃(Ml),Ml) = C0,n × BCMC(IS)
with limn→∞ C0,n = ∞. Similar to BIC, C0,n is often set
as log(N) or other functions of N . Therefore, BCIC can
be regarded as a generalization of existing model selection
criteria.

Different deletion sets lead to slightly different
BCIC(IS ,Ml) for all l. For instance, if we consider
the single cluster deletion ILOO and the single observation
deletion ISO, then we obtain different BCIC measures.
Thus, it is possible that Mopt(IS) may vary across IS . How-
ever, when we consider the leave-M clusters-out deletion for
clustered data, we are able to obtain an invariance property
of Mopt(IS). We are led to the following theorem.

Theorem 2. Assume that the Y i’s are independent and
Cn(IS , θ̃(Ml),Ml) = C̃0,n×BCMC(IS), where C̃0,n is inde-
pendent of IS and Ml, but it may depend on n. Then, we
have the following results.

(i) For the leave-M clusters-out CV, we have
BCIC(ILMO,Ml) =

(
n − 1
M − 1

)
BCIC(ILOO,Ml0) and

Mopt(ILMO) = Mopt(ILOO) for any M ≥ 1.
(ii) If BCIC(ILOO,Mopt(ILOO)) − BCIC(ILOO,Ml) 


Op(NBN
−3/2) for all Ml �= Mopt(ILOO), Assumption C6

holds, and we use MAD(IS) to approximate BCMC(IS),
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then Mopt(ILMO) = Mopt(ILOO) with probability 1 for any
M ≥ 1.

Theorem 2 shows that BCIC(IS ,Ml) and Mopt(IS) are
invariant for clustered data under different exhaustive split-
ting schemes. Due to Theorem 2, the two partitions of pri-
mary interest are now single cluster deletion (ILOO) and
single observation deletion (ISO). Under ILOO, BCIC can
be simplified as

BCIC(ILOO,Ml) = − 2(n− 1) log p(Y|θ̃(Ml),Ml)

+nC0,nMC(ILOO),

and under ISO, BCIC can be simplified as

BCIC(ISO,Ml) = − 2
[
N log p(Y|θ̃(Ml),Ml)

−
n∑

i=1

mn∑
j=1

log p(Yi,j |θ̃(Ml),Ml)

⎤
⎦

+NC0,nMC(ISO),

where MC(ILOO) and MC(ISO) are shown in Section 2.2.
Note that, unlike cross validation, there is not much addi-
tional computational cost associated with the BCIC proce-
dure except the programming efforts to calculate MC(IS).

3. SIMULATIONS AND REAL DATA
ANALYSIS

3.1 Simulation studies

In this section, several simulation studies were carried out
to investigate the finite sample performance of BCIC and to
compare BCIC with three existing Bayesian model selec-
tion criteria, including AIC, BIC, and DIC in linear mixed
models. Specifically, we set AIC = −2 log p(Y |θ̃(Ml)) + 2p,
BIC = −2 log p(Y |θ̃(Ml)) + log(N) × p, and DIC =
−2 log p(Y |θ̃(Ml))+ 2pD, where p is the number of parame-
ters in the model and pD is the effective number of parame-
ters, estimated by the posterior mean of the deviance minus
the deviance of the posterior means. We consider both the
leave-one cluster-out CV and the leave-one observation-out
CV, the AIC- and BIC- type penalties, and calculate their
associated BCICs.

Simulated datasets were generated from a linear mixed
model with a random intercept. Specifically, we consider the
following true model, given by yij = β0 + β1xij1 + β2xij2 +
bi + εij for i = 1, . . . , n and j = 1, . . . ,mi, where xij1 ∼
Exp(1), xij2 = j, bi ∼ N(0, τ−1ξ−1), and εij ∼ N(0, τ−1).
An additional covariate xij3 was simulated from a N(1, 1)
distribution. The true parameter values were taken to be
β0 = 2, β1 = β2 = 1, τ = 0.1, and ξ = 1 or ξ = 0.04,
for n = 10 or n = 20. The values of ξ=1 or 0.04 represent
a medium or high intracluster correlation coefficient (ICC).
We chose the priors as follows: π(β, τ,D−1) ∝ |D|−1/2τ−1

and b|τ,D ∼ Nnq(0, τ
−1(In ⊗ D)), where D−1 = ξ in this

simulation.
We considered five candidate models as follows:

M1 (true model) : yij |xij1, xij2 ∼ N(β0 + β1xij1

+β2xij2 + bi, τ
−1), bi ∼ N(0, τ−1ξ−1);

M2 : yij |xij1, xij2 ∼ N(β0 + β1xij2 + bi, τ
−1),

bi ∼ N(0, τ−1ξ−1);

M3 : yij |xij1, xij2, xij3 ∼ N(β0 + β1xij1

+β2xij2 + β3xij3 + bi, τ
−1), bi ∼ N(0, τ−1ξ−1);

M4 : yij |xij1, xij2, xij3 ∼ N(β0 + β1xij1

+β2xij2 + β3xij2xij3 + bi, τ
−1),

bi ∼ N(0, τ−1ξ−1);

M5 : yij |xij1, xij2, xij3 ∼ N(β0 + β1xij1

+β2xij2 + β3xij3 + β4xij2xij3 + bi, τ
−1),

bi ∼ N(0, τ−1ξ−1).

We generated 1,000 simulated datasets from M1 and then
calculated AIC, BIC, DIC, and BCIC for the five candidate
models M1–M5.

Tables 1 and 2 show the number of times out of 1,000 sim-
ulations that each rank was achieved for the true model M1
for all model selection criteria. The columns correspond to
the rankings of AIC, BIC, and DIC under different settings,
and the rows corresponds to the proposed BCIC criteria for
different choices of k and IS . Table 1 provides the results for
the setting with n = 10 and mi varying between 3 and 10,
representing deletion of moderate numbers of observations
in an unbalanced design, whereas Table 2 shows the results
for the setting with n = 20 and mi varying between 3 and
15, a setup with deletion of a relatively large number of ob-
servations in an unbalanced design. In the simulation, 1,000
burn-in and 5,000 Gibbs samples were used in the calcula-
tion. The convergence of the Gibbs sampler was checked by
trace plots, but was not included here.

With n = 10, mi from [3, 10], and ICC = 0.5, M1
was ranked number one 556 (= 349 + 118 + 53 + 33 + 3)
times by AIC, 548 times by BIC, 467 times by DIC, 390
times by BCIC(ILOO) and 544 times by BCIC(ISO) for
C0 = 2, and 462 times by BCIC(ILOO) and 561 times by
BCIC(ISO) for C0,n = log(N), respectively. With ICC in-
creasing to 0.96, M1 was ranked number one 675 times by
AIC, 887 times by BIC, 536 times by DIC, 452 times by
BCIC(ILOO) and 652 times by BCIC(ISO) for C0 = 2, and
582 times by BCIC(ILOO) and 875 times by BCIC(ISO) for
C0,n = log(N), respectively.

With n = 20, mi from [3, 15], and ICC= 0.5, M1 was
ranked number one 719 times by AIC, 847 times by BIC, 571
times by DIC, 614 times by BCIC(ILOO) and 724 times by
BCIC(ISO) for C0 = 2, and 737 times by BCIC(ILOO) and
837 times by BCIC(ISO) for C0,n = log(N), respectively.
With ICC increasing to 0.96, M1 was ranked number one
727 times by AIC, 966 times by BIC, 587 times by DIC,
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Table 1. Ranks of the true model M1 for BCIC, AIC, BIC, and DIC in the linear mixed model. The number of clusters is
n = 10 and the number of individuals within each cluster, mi, varies between 3 and 10. Two levels of the intracluster

correlation coefficient (ICC) are considered

BCIC AIC BIC DIC
Rank 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

ξ = 1 (ICC = 0.5)
BCIC(ILOO) with C0 = 2

1 349 33 7 1 0 285 104 0 1 0 249 78 45 17 1
2 118 96 15 5 0 121 111 2 0 0 109 82 22 19 2
3 53 48 55 17 0 84 72 14 3 0 62 48 45 16 2
4 33 40 38 36 4 57 69 14 8 3 35 55 36 20 5
5 3 16 12 11 9 1 38 7 3 2 12 10 15 9 5

BCIC(ISO) with C0 = 2
1 504 33 5 2 0 393 151 0 0 0 361 112 47 23 1
2 43 164 27 1 0 95 140 0 0 0 69 98 43 22 3
3 7 28 78 16 0 45 66 16 2 0 30 46 39 12 2
4 2 8 14 50 2 15 32 17 9 3 6 14 32 20 4
5 0 0 3 1 11 0 5 4 4 2 1 3 2 4 5

BCIC(ILOO) with C0,n = log(N)
1 360 64 28 10 0 360 98 2 2 0 265 113 58 23 3
2 125 95 40 14 0 98 165 9 0 2 117 87 43 23 4
3 47 41 30 17 5 60 65 8 5 2 48 40 32 17 3
4 20 18 17 19 3 21 40 11 4 1 20 22 20 12 3
5 4 15 12 10 5 9 26 7 4 0 17 11 10 6 2

BCIC(ISO) with C0,n = log(N)
1 420 86 45 10 0 497 59 4 1 0 334 133 69 23 2
2 136 140 66 23 1 45 314 7 0 0 131 129 62 40 4
3 0 7 15 19 5 4 17 20 4 1 2 9 24 6 5
4 0 0 1 17 3 2 4 6 7 2 0 1 7 11 2
5 0 0 0 1 4 0 0 0 3 2 0 1 1 1 2

ξ = 0.04 (ICC = 0.96)
BCIC(ILOO) with C0 = 2

1 431 16 5 0 0 451 1 0 0 0 306 98 45 3 0
2 137 50 11 2 0 191 9 0 0 0 119 48 29 4 0
3 69 37 41 11 0 132 21 3 2 0 60 44 42 12 0
4 38 28 41 76 0 113 34 28 8 0 51 41 56 35 0
5 0 0 1 5 0 0 0 4 2 0 0 1 2 3 0

BCIC(ISO) with C0 = 2
1 619 26 7 0 0 650 2 0 0 0 449 144 52 7 0
2 51 78 17 4 0 139 11 0 0 0 61 48 34 7 0
3 5 24 58 10 0 73 19 5 0 0 18 27 41 11 0
4 0 3 17 80 0 25 33 30 12 0 8 13 47 32 0

BCIC(ILOO) with C0,n = log(N)
1 502 53 19 8 0 572 7 2 1 0 359 135 78 10 0
2 106 44 26 13 0 163 18 7 1 0 100 43 36 10 0
3 39 18 35 23 0 84 23 7 1 0 45 22 34 14 0
4 28 16 18 41 0 68 14 15 6 0 31 31 23 18 0
5 0 0 1 9 0 0 3 4 3 0 1 1 3 5 0

BCIC(ISO) with C0,n = log(N)
1 670 117 69 19 0 852 18 5 0 0 520 215 115 25 0
2 5 14 23 26 0 29 35 4 0 0 13 13 27 15 0
3 0 0 7 32 0 5 11 18 5 0 3 3 21 12 0
4 0 0 0 17 0 1 1 8 7 0 0 1 11 5 0
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Table 2. Ranks of the true model M1 for BCIC, AIC, BIC, and DIC in the linear mixed model. The number of clusters is
n = 20 and the number of individuals within each cluster, mi, varies between 3 and 15. Two levels of the intracluster

correlation coefficient (ICC) are considered

BCIC AIC BIC DIC
Rank 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

ξ = 1 (ICC = 0.5)
BCIC(ILOO) with C0 = 2

1 581 23 9 1 0 557 57 0 0 0 427 113 68 6 0
2 95 44 15 2 0 126 30 0 0 0 84 42 25 5 0
3 29 18 42 14 0 88 14 1 0 0 35 38 27 2 1
4 14 17 35 59 0 76 26 21 2 0 25 24 56 19 1
5 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0

BCIC(ISO) with C0 = 2
1 690 28 6 0 0 662 62 0 0 0 503 139 76 6 0
2 24 61 21 4 0 82 28 0 0 0 41 41 23 5 0
3 5 12 66 10 0 79 13 1 0 0 24 30 37 2 0
4 0 1 8 62 1 24 25 21 2 0 3 7 40 20 2

BCIC(ILOO) with C0,n = log(N)
1 598 59 56 24 0 705 28 4 0 0 452 159 112 14 0
2 102 34 29 15 1 101 79 1 0 0 93 44 34 9 1
3 15 6 12 22 0 33 10 11 1 0 20 10 18 6 1
4 4 3 4 13 0 8 11 5 0 0 6 4 10 4 0
5 0 0 0 2 0 0 0 1 1 0 0 0 2 0 0

BCIC(ISO) with C0,n = log(N)
1 639 78 86 34 0 817 18 2 0 0 508 182 132 15 0
2 80 24 13 22 1 29 104 7 0 0 62 35 28 13 2
3 0 0 2 16 0 1 6 11 0 0 1 0 12 5 0
4 0 0 0 4 0 0 0 2 2 0 0 0 4 0 0

ξ = 0.04 (ICC = 0.96)
BCIC(ILOO) with C0 = 2

1 584 16 10 0 0 610 0 0 0 0 443 107 57 3 0
2 85 39 20 2 0 145 1 0 0 0 78 39 26 3 0
3 47 31 57 9 0 140 2 2 0 0 52 43 42 7 0
4 11 12 31 45 0 71 19 8 1 0 14 31 45 9 0

BCIC(ISO) with C0 = 2
1 714 27 8 0 0 749 0 0 0 0 537 136 73 3 0
2 12 59 19 0 0 89 1 0 0 0 28 35 26 1 0
3 1 11 85 10 0 106 0 1 0 0 19 38 40 10 0
4 0 1 6 46 0 22 21 9 1 0 3 11 31 8 0

BCIC(ILOO) with C0,n = log(N)
1 676 72 75 16 0 833 4 2 0 0 532 169 127 11 0
2 39 20 23 16 0 89 7 1 1 0 40 31 22 5 0
3 10 3 18 13 0 35 6 3 0 0 11 15 14 4 0
4 2 3 2 11 0 9 5 4 0 0 4 5 7 2 0

BCIC(ISO) with C0,n = log(N)
1 727 98 112 33 0 960 9 1 0 0 586 213 155 16 0
2 0 0 6 14 0 5 11 4 0 0 1 7 9 3 0
3 0 0 0 6 0 1 2 3 0 0 0 0 4 2 0
4 0 0 0 3 0 0 0 2 1 0 0 0 2 1 0

610 times by BCIC(ILOO) and 749 times by BCIC(ISO)
for C0 = 2, 839 times by BCIC(ILOO) and 970 times by
BCIC(ISO) for C0,n = log(N), respectively.

These results indicate that there is no single model selec-
tion criterion that can dominate the rest. Considering differ-

ent BCIC approaches, BCIC(ISO) outperforms BCIC(ILOO)

for both the AIC- and BIC-type penalty terms, the BIC-type

penalty term outperforms the AIC-type penalty term, and

BCIC(ISO) with the BIC-type penalty has the best perfor-

mance within the BCIC model selection criteria. Compared
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with other existing model selection criteria, BCIC(ISO) with
C0,n = log(N) performs similar to BIC, while BCIC(ISO)
with C0 = 2 performs similar to AIC. The performance of
DIC and BCIC(ILOO) with C0,n = 2 or C0,n = log(N) are
among the worst in all scenarios.

3.2 Yale infant growth data

We consider the Yale infant growth data, which stud-
ies whether cocaine exposure during pregnancy may lead to
the maltreatment of infants after birth, such as physical and
sexual abuse. There are a total of 298 children with 3,176
records recruited from two exposure groups, the cocaine ex-
posure group and the unexposed group. In this dataset, a
unique feature is that different children had different num-
bers of visits, ranging from 2 to 30 (interquantile range:
7–13), as well as different patterns of visits during the study
period. See Merikangas et al. [26] for a detailed descrip-
tion of the study design and data collection. We apply the
proposed BCIC method and compare it to existing model
selection criteria for these data to illustrate the application
of BCIC.

Multivariate adaptive splines for the analysis of longitu-
dinal data (MASAL) was used to analyze the Yale infant
growth data in Zhang [40]. [40] selected the MASAL model

yij = xT
ijβ + εij ,

where the xij are the potential fixed effects covariates, given
by

xij = (1, d, (d− 120)+, (d− 200)+, (ga − 28)+,(10)

d(ga − 28)+, (d− 60)+(ga − 28)+,

(d− 490)+(ga − 28)+, sd, s(d− 120)+)T ,

in which d and ga are the age at visit and gestation age, re-
spectively, and s is the indicator for gender with 1 indicating
a girl and 0 indicating a boy. In addition, we assume that
εi = (εi1, . . . , εimi)

T ∼ N(0,Σi(τ, ξ)) and Σi(τ, ξ) is deter-
mined by the dispersion parameter τ and additional param-
eters ξ. During this reanalysis, we considered two covariance
structures for Σi(τ, ξ), these being the AR(1) and compound
symmetry (CS) structures, along with four sets of fixed ef-
fect covariates: (a) xij ; (b) (x

T
ij , (d− 120)+(ga − 28)+); (c)

(xT
ij , (d−200)+(ga−28)+); (d) (xT

ij , s(d−200)+). The com-
binations of different covariance structures and fixed effects
lead to a total of eight candidate models. The same priors
of Section 3.1 were used in the real data analysis. The ad-
ditional correlation coefficient parameters in the AR(1) and
CS structures had independent Unif(−1, 1) priors.

Table 3 shows the values of AIC, BIC, DIC, and four
BCIC measures normalized by NB as well as the ranks of
all eight candidate models for each criterion. The best model
selected by the different criteria are slightly different – AIC,
BIC, and DIC ranked the mixed model with the fixed ef-
fects of xT

ijβ and the AR(1) covariance structure as the
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best model, and the four BCIC criteria ranked the model
with the fixed effects (xT

ij , (d− 200)+(ga− 28)+)Tβ and the
AR(1) covariance structure as the best model. However, the
numerical values of the criteria for the models ranked from
1–4 (all the models with the AR(1) covariance structure)
and for the models ranked from 5–8 (all the models with
the CS covariance structure) are almost indistinguishable,
implying great uncertainty of the ranking decision. Further-
more, the finding that models with the AR(1) covariance
structure always provide a better fit to these data than the
models with the CS covariance structure is consistent with
the longitudinal nature of this dataset.

4. DISCUSSION
We have systematically examined the connection between

Bayesian case influence measures and Bayesian predictive
methods. Based on these connections, we have developed
a BCMC measure for quantifying the effective number of
parameters in a given statistical model and a BCIC measure
for comparing models. We have systematically investigated
some properties of BCIC and BCMC and their connections
with cross-validation and other existing information criteria.
We have shown that BCIC is a valuable tool for Bayesian
model assessment.

APPENDIX: ASSUMPTIONS AND PROOFS
We need to introduce some notation. Let FN (θ) =

∂θ log p(θ|Y ) and FN,[S](θ) = ∂θ log p(θ|Y [S]). Under cer-

tain conditions [6], the posterior mode θ̂ converges to the
θn∗ that minimizes E{− log p(θ|Y )}, where the expecta-
tion is taken with respect to the true distribution of Y .
For simplicity, we further assume that θn∗ = θ∗ for all n.
We use || · || to denote the Euclidean norm of a vector or a
matrix and use λmax(A) and λmin(A) to denote the largest
and smallest eigenvalues of a symmetric matrix A, respec-
tively. We use the mathematical symbols (e.g., O(N−1))
and the stochastic-order symbols, such as Op(1), op(1), and
Op(N

−1) throughout.
The following assumptions are needed to facilitate the

technical details, although they are not the weakest possible
conditions. Since we develop all results for general paramet-
ric models, we only assume several high-level assumptions
as follows.

Assumption C1. θ̂ and θ̂[S] for all S are consistent estimates
of θ∗ ∈ Θo.

Assumption C2. Let Δ(θ) = θ − θ∗ and suppose

log p(θ|Y ) = log p(θ∗|Y ) + Δ(θ)TFN (θ∗)

− 0.5Δ(θ)TJN (θ∗)Δ(θ)[1 + op(1)]

and

log p(θ|Y [S]) = log p(θ∗|Y [S]) + Δ(θ)TFN,[S](θ∗)

− 0.5Δ(θ)TJN,[S](θ∗)Δ(θ)[1 + op(1)]

uniformly for all θ ∈ B(θ∗, δ0/
√
N) = {θ :

√
N ||θ − θ∗|| ≤

δ0}. Moreover, N−1/2FN (θ∗) = Op(1), N
−1/2FN,[S](θ∗) =

Op(1), maxS∈IS supθ,θ′∈B(θ∗,N−1/2δ0)
||JN,[S](θ) −

JN,[S](θ
′)|| = op(N),

0 < inf
θ∈B(θ∗,δ0N−1/2)

λmin(n
−1JN (θ))

≤ sup
θ∈B(θ∗,δ0N−1/2)

λmax(N
−1JN (θ)) < ∞,

and

0 < min
S∈IS

inf
θ∈B(θ∗,δ0N−1/2)

λmin(N
−1JN,[S](θ))

≤ max
S∈IS

sup
θ∈B(θ∗,δ0N−1/2)

λmax(N
−1JN,[S](θ)) < ∞.

Assumption C3. Assume that for small δ0 > 0, if NS ≤ N0,
a fixed constant, then

max
S∈IS

sup
θ∈B(θ∗,δ0)

||∂θ log pS(θ)|| = Op(1)

and

max
S∈IS

sup
θ∈B(θ∗,δ0)

||∂2
θ log pS(θ)|| = op(N).

Assumption C4. log p(θ|Y ) and log p(θ|Y [S]) for all S ∈ IS
are Laplace regular [19].

Assumption C5. limNIS
→∞ N−1

B E[KN (IS |θ∗)] = K∗(IS)

and limN→∞ N−1E[JN (θ∗)] = J∗, where the expectation
is taken with respect to the true data generator. Moreover,
for a small δ0 > 0, we have

sup
θ∈B(θ∗,δ0)

||KN (IS |θ)− E[KN (IS |θ)]|| = op(1)

and

sup
θ∈B(θ∗,δ0)

||JN (IS |θ)− E[JN (IS |θ)]|| = op(1).

Assumption C6. Each component of N−1
B

√
N{KN (IS |θ∗)−

E[KN (IS |θ∗)]} is asymptotically tight.

Remarks: Assumptions C1 and C2 are very general condi-
tions and have been widely used to examine the asymptotic
properties of the extremum estimator, such as the maxi-
mum likelihood estimate in general parametric models such
as time series models [3]. Sufficient conditions of Assump-
tions C1 and C2 have been extensively discussed in the lit-
erature [3]. Assumption C3 is needed to examine the asymp-
totic properties of the three case influence measures for each
S ∈ IS . Most models with a smooth likelihood automat-
ically satisfy Assumption C3. Assumption C4 is needed to
use the Laplace approximation formula [19, 36]. Assumption
C5 is ensured by the law of large numbers [38]. Assump-
tion C6 is usually ensured by central limit theory. Recall
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that pS(θ) = p(Y S |Y [S],θ). If pS(θ) only depends on a
few observations in Y [S], then we can apply the theory of
U-statistics to establish Assumption C6 [37].

Proof of Theorem 1. It follows from Assumptions C1–C3
that we can expand log pSk

(θ̃[Sk]) at θ̃ for each S and obtain

∑
Sk∈IS

log pSk
(θ̃[Sk])

=
∑

Sk∈IS

log pSk
(θ̃) +

∑
Sk∈IS

∂θ log pSk
(θ̃)TΔSk

[1 + op(1)],

where ΔSk
= θ̃[Sk] − θ̃. It follows from Proposition 1 (c)

that

∑
Sk∈IS

log pSk
(θ̃[Sk])

=
∑

Sk∈IS

log pSk
(θ̃)−

∑
Sk∈IS

[∂θ log pSk
(θ̃)]T [Jn(θ̃)]

−1

∂θ log pSk
(θ̃)[1 + op(1)],

which yields Theorem 1 (i). Theorem 1 (ii) directly follows
from Assumptions C1, C2, and C5.

Proof of Theorem 2. We consider the exhaustive split-
ting for the leave-M clusters-out CV. For any Sk =
{{i1}, . . . , {iM}}, we have

log pSk
(θ̃(Ml),Ml) =

M∑
l=1

log p(Y il |θ,Ml),

∑
Sk∈IS

log pSk
(θ̃(Ml),Ml)

=

(
n− 1
M − 1

) n∑
i=1

log p(Y i|θ,Ml),

and

∑
Sk∈IS

E{[∂θ log pSk
(θ∗)]

⊗2}

=

(
n− 1
M − 1

) n∑
i=1

E{∂θ log p(Y i|θ∗)
⊗2}.

Therefore, we have

BCIC(ILMO,Ml) =

(
n− 1
M − 1

)
BCIC(ILOO,Ml),

which yields Theorem 2 (i). Theorem 2 (ii) directly follows
from Assumption C6.
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