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Adjusting nonresponse bias in small area
estimation without covariates via a Bayesian
spatial model
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Sometimes a survey sample is drawn from a large area
even if the estimate of interest is at a smaller subdomain
level. This strategy, however necessary, may cause small
sample problems. The estimation problem is further com-
plicated by survey nonresponse. We build a Bayesian hi-
erarchical spatial model that takes into account both small
sample size and nonresponse. This Bayesian model gives the
estimates of marginal satisfaction rates at subdomains even
when there is no covariate available via modeling the phase-
specific response rates and conditional satisfaction rates
given response status at subdomains. This method is illus-
trated using data from the 2001 Missouri Deer Hunter At-
titude Survey. Satisfaction, in this survey, refers to whether
respondents were satisfied with the Missouri Department of
Conservation’s deer management program. The estimated
satisfaction rates are lower after adjusting for nonresponse
bias compared to the satisfaction rates based only on re-
sponses.

Keywords and phrases: Nonresponse bias, Small area
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1. INTRODUCTION

Survey response rates have been declining for several
decades at the very least (de Leeuw and de Heer, 2002). Es-
timates based on the response alone lead to biases. Lessler
and Kalsbeek (1992) outlined partial solutions through ques-
tionnaire design and implementation. One common practice
when conducting mail surveys is to resend the survey to non-
respondents multiple times in an effort to increase response
rates (Dillman, 2000).

When there are multiple response phases in a survey, one
of the most important questions is how the late responses are
utilized in the data analysis. Lessler and Kalsbeek (1992) re-
viewed many frequency adjustment procedures in formulat-
ing and producing survey estimates. Bayesian approaches for
dealing with nonresponse have been examined, for example,
by Basu and de Braganca Pereira (1982), Albert and Gupta
(1985), and Forster and Smith (1998). However, the work
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presented in these articles require large sample sizes, which
is not always available. Today sample surveys are widely
used in practice to provide estimates not only for the total
population of interest but also for a variety of subpopu-
lations (subdomains) (Rao, 2003). Sometimes sample sizes
may be sufficient for inference of the total population, but
still too small to obtain accurate estimates for subdomains.
This is the small area estimation problem. Stasny (1991)
modeled the success rate, response rate given failure, and
response rate given success for each subdomain, and used
an empirical Bayes procedure in finding Bayesian posterior
distributions. A full Bayesian approach was extended and
proposed in Nandram and Choi (2002b), who used Bayes
factors for comparing ignorable and nonignorable models.
Nandram and Choi (2002a) and Nandram et al. (2005) also
used hierarchical Bayesian models for binary data or cat-
egorical data from small subdomains, but they considered
neither multiple response phrases nor spatial dependency
among small subdomains.

Making estimates for small subdomains with adequate
levels of precision often requires the use of “indirect” esti-
mators that borrow information from temporal or related ge-
ographic regions (Rao, 2003). For data collected over several
geographic regions, such as counties in a state, a typical ap-
proach is to include spatial random effects in the first stage
of a Bayesian hierarchical model. Conditional autoregressive
(CAR) (Besag, 1974) or similar models are used to fit the
spatial effects. Gao et al. (2014) used a bivariate Bayesian
hierarchical lineal mixed model to estimate hunter’s satis-
faction rate and response rate. The estimated satisfaction
and response rates were then aggregated at subdomain and
statewide levels. Gao et al. (2014) explicitly included non-
respondents through auxiliary covariates, but these kind of
covariates are not always available or hard to get in mail sur-
veys. Oleson and He (2008) proposed a Bayesian hierarchi-
cal model to estimate hunting success rates given response
phase and other phase-specific response rates. They used the
simultaneous CAR model of Clayton and Kaldor (1987) to
fit the spatial random effects in a generalized linear mixed
model for phase specific success rates, but assumed phase-
specific response rates were independently distributed and
that there was no spatial dependency among small subdo-
mains.

In this paper, we propose a bivariate Bayesian hierarchi-
cal spatial model to estimate satisfaction rates via model-
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ing phase-specific response rates and conditional satisfaction
rates given response statuses. Our approach is to utilize in-
formation from multiple response phases and neighboring
small subdomains in adjusting nonresponse bias. The pro-
posed model includes response phase as fixed effects and ran-
dom spatial effects following a 2-fold CAR model (Woodard,
1999), which not only borrows strength from neighboring
small subdomains, but also allows additional information
sharing between response and satisfaction rates. This model
does not included any other auxiliary covariates.

The data from the 2001 Missouri Deer Hunter Attitude
Survey (MDHAS) is analyzed in this paper. The goal is to
estimate 2001 firearms deer hunting permit buyers’ satisfac-
tion rates regarding the Missouri Department of Conserva-
tion (MDC) deer management program at both state and
county levels in the presence of nonresponse. In this analysis,
nonrespondents are those who did not return the 2001 MD-
HAS as well as those who returned the survey but did not
answer the question regarding satisfaction with MDC’s deer
management program. Among respondents the satisfaction
with MDC’s deer management program is defined as “satis-
fied” or “unsatisfied”, a binary outcome. The permit buyers’
satisfaction rates will be estimated at their Missouri county
of residence.

The rest of the paper is organized as follows. In Sec-
tion 2, a brief description of the data is given and summa-
rized at subdomain (county) levels. In Section 3, a bivariate
Bayesian hierarchical spatial model is specified. Multiple re-
sponse phases are fixed effects and county effects are spatial
random effects. Prior distributions for the parameters are
given. Bayesian computation via Gibbs sampling (Gelfand
and Smith, 1990) is described in Section 4. The full condi-
tional distributions are given in the Appendix. In Section 5
the 2001 MDHAS is analyzed. The article concludes with a
discussion in Section 6.

2. DATA

One of the objectives of the MDC’s deer management pro-
gram is to maintain the deer population at a level that pro-
vides maximum hunting and viewing opportunities but min-
imizes problems associated with deer. Social surveys are con-
ducted to gain a better understanding of residents and their
relationship with wildlife (Filion, 1980). The 2001 MDHAS
was designed to determine characteristics of 2001 firearms
deer permit buyers along with their attitudes and percep-
tions concerning deer populations, hunting, and manage-
ment in Missouri. MDC conducted a mail survey following
Dillman (2000). The questionnaires were initially mailed to
a simple random sample of 2001 firearms deer permit buyers
on February 26, 2002, with two follow-up mailings on April
3 and May 16. Excluding the undeliverable questionnaires
and non-Missouri residents, the total sample size was 9,040.
About 32.3% of the hunters responded to the initial mailing.
The 6,080 hunters who did not reply to the initial mailing
received the first follow-up mailing, and 23% of those re-
sponded. The 4,634 hunters who did not reply to the initial

and the second mailings received the last follow-up mailing,
and only 13% of those returned questionnaires. Overall, 55%
responded to the 2001 MDHAS. Among those who returned
the survey, 19 hunters did not answer the satisfaction ques-
tion about MDC’s deer management program. In general,
the item nonresponse is different from the unit nonresponse.
But we treat these 19 item nonresponses in the 2001 MD-
HAS data the same as the unit nonresponse after a detailed
examination. Nine of them were the second mailing respon-
dents and are similar to the unit nonrespondents in the 2001
MDHAS case. The other 10 were the first mailing respon-
dents. They did not answer several other opinion questions
regarding deer hunting and deer management in the survey
either. So, we consider them similar to the unit nonresponse
in terms of satisfaction towards MDC’s deer management
program. Therefore these 19 are defined as nonrespondents
in the analysis of satisfaction rate. This further reduced the
response rate for the satisfaction question.

In the 2001 MDHAS, hunters were asked to rank their sat-
isfaction on a scale from 1 to 5. A ranking of 1, 2, 3, 4, and
5 corresponded to excellent, good, fair, poor, and no opin-
ion, respectively. Among the 4,968 respondents, 24 marked
more than one ranking, while 198 had no opinion about
deer management in Missouri. Those 222 respondents are
excluded from the analysis. Therefore the response rate for
the question regarding satisfaction of MDC’s deer manage-
ment program is 53.82%. Rankings of excellent or good are
defined as satisfied with MDC’s deer management program,
while rankings of fair and poor are defined as not satisfied in
this analysis. After dividing the data across three response
phases and 114 counties, the number of respondents are as
low as 1 or 0 for some counties. For example, Dade County
and seven other counties have no data for the second and the
third response phases. Cooper and three other counties have
only one respondent for the second response phase. Caldwell
and twelve other counties have only one respondent for the
third response phase.

For each county i, let mi1 be the total number of ques-
tionnaire mailed in the first phase, nij (j = 1, 2, 3) be
the number of respondents at response phase j, and yij1
(j = 1, 2, 3) be the number of hunters among respondents
who were satisfied with the MDC’s deer management pro-
gram at response phase j. Let ni4 be the number of non-
respondents and yi41 be the number of hunters who were
satisfied with the MDC’s deer management program among
the nonrespondents. The relationship of these variables is
better described by a two-way contingency table for the ith

county in Table 1.
The marginal entries si1 and si2 are row sums for the

number of satisfied and the number of unsatisfied hunters,
respectively. Note that in Table 1, yi41 and yi42 are unob-
served; thus si1 and si2 are also unobserved. The correspond-
ing probabilities are presented in Table 2.

One way to obtain an estimate of satisfaction rate pi(=
pi11+pi21+pi31+pi41) is through conditional probabilities.
We use the pattern-mixture model approach (Little and Ru-
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Table 1. A two-way contingency table for observed and unobserved data

Phase 1 Phase 2 Phase 3 Nonresponse Total

Satisfied yi11 yi21 yi31 yi41 si1
Unsatisfied yi12 yi22 yi32 yi42 si2
Response ni1 ni2 ni3 ni4 mi1

Table 2. A two-way table of probabilities of observed and unobserved data

Phase 1 Phase 2 Phase 3 Nonresponse Total

Satisfied pi11 pi21 pi31 pi41 pi
Unsatisfied pi12 pi22 pi32 pi42 1− pi
Response qi1 qi2 qi3 1− qi1 − qi2 − qi3 1

Table 3. A two-way table of conditional probabilities for observed and unobserved data

Phase 1 Phase 2 Phase 3 Nonresponse Total

Satisfied πi1qi1 πi2qi2 πi3qi3 πi4(1−
3∑

j=1

qij) pi

Unsatisfied (1− πi1)qi1 (1− πi2)qi2 (1− πi3)qi3 (1− πi4)(1−
3∑

j=1

qij) 1− pi

Response qi1 qi2 qi3 1−
3∑

j=1

qij 1

bin, 2002) and factor the joint probability of response and
satisfaction as well as the joint probability of nonresponse
and satisfaction as

P (response, satisfaction)

= P (response)P (satisfaction | response),
P (nonresponse, satisfaction)

= P (nonresponse)P (satisfaction | nonresponse).

Define, for i = 1, . . . , I

πij = P (satisfaction | response to phase j), j = 1, 2, 3,

πi4 = P (satisfaction | nonresponse).
qij = P (response to phase j), j = 1, 2, 3.

The relationship of conditional probabilities are shown in
Table 3.

Our approach is first to estimate the conditional satis-
faction rates πij for j = 1, . . . , 4 and response rate qij for
j = 1, 2, 3 and characterize their spatial dependencies. Once
estimates for πij and qij are obtained, pi can be estimated
by using their relationship in Table 3.

3. HIERARCHICAL MODELS

3.1 Likelihood functions

For each subdomain i, let yi = (yi11, . . . , yi41, yi12, . . . ,
yi42), and pi = (pi11, . . . , pi41, pi12, . . . , pi42), i = 1, . . . , I
(the total number of subdomain of interest), assume that

(yi | mi1,pi)
ind∼

Multinomial(mi1, pi11, pi21, pi31, pi41, pi12, pi22, pi32, pi42).

The augmented likelihood function can be written as

[yi | mi1, pi11, pi21, pi31, pi41, pi12, pi22, pi32, pi42](1)

=
(
mi1!/

2∏
k=1

4∏
j=1

yijk!
) 2∏
k=1

4∏
j=1

pijk
yijk

∝
(
ni4

yi41

)( 4∏
j=1

πij
yij1(1− πij)

yij2

)

×
( 3∏

j=1

qij
nij (1−

3∑
j=1

qij)
ni4

)
.

We reparameterize the response probabilities (qi1, qi2, qi3)

into discrete hazard rates or conditional probabilities to sim-

plify the likelihood function. Define

hij =
qij

qij + · · ·+ qi,J+1
, j = 1, . . . , J,(2)

where qi,J+1 = 1−
∑J

i=1 qij , J = 3. In the example of 2001

MDHAS, hi1(= qi1) is the response rate of phase 1, hi2 is

the conditional probability of response at phase 2 given that

the hunter didn’t return the survey from phase 1, and hi3 is

the conditional probability of response at phase 3 given that
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the hunter didn’t return the survey from the previous two
phases. The likelihood function (1) now becomes a function
of the conditional probability of satisfaction and the condi-
tional probability of response, and is proportional to

∝
(
ni4

yi41

)( 4∏
j=1

πij
yij1(1− πij)

nij−yij1

)
(3)

×
( 3∏

j=1

h
nij

ij (1− hij)
mi1−

∑j
l=1 nil

)
.

Again, the number of satisfied nonrespondents are unob-
served. We treat yi41 as a latent variable.

3.2 Logistic linear mixed models

The logit link is the most common link for binary data.
Probit and complementary log-log links are other frequently
used links. Sometimes t-link is used as well. For a given mail-
ing phase j, we compared the logit, probit, complementary
log-log and t transformations for the observed satisfaction
and response rates. The logit and probit transformed data
fit normal much better than complementary log-log trans-
formed data did. T transformed data fit normal well when
its degree freedom is large which is essential the same as a
probit transformation. Since our data are fairly symmetric,
a skewed t-link (Chen et al., 1999) is not considered in this
case. Final results from using logit and probit links are very
similar for satisfaction, response rates at both subdomain
and statewide levels. We choose logit link for easy inter-
pretation. Therefore we propose the following linear mixed
models to estimate πij and hij ,

uij ≡ log

(
πij

1− πij

)
= θ1j + Z1i + e1ij ,(4)

vij ≡ log

(
hij

1− hij

)
= θ2j + Z2i + e2ij ,(5)

where θ1j and θ2j are the response phase effects j = 1, 2, 3,
Z1i and Z2i are the spatial effects, i = 1, . . . , I. Further-
more the θ1j and θ2j are treated as fixed effects with prior
distributions defined later in this section, the Z1i and Z2i

are treated as random effects with prior distribution defined
in section 3.3, and the e1ij and e2ij are the phase-county
random effects with

e1ij
ind∼ N(0, δ1j), j = 1, 2, 3,(6)

e2ij
ind∼ N(0, δ2j), j = 1, 2, 3.(7)

Note equation (4) defines πi1, πi2 and πi3 only. The question
of how to model πi4, satisfaction rate given nonresponse is
an important point of inquiry. It may be done by consid-
ering the possible linkage between response phase 2, 3 and
nonresponse for a given data set or a survey problem. Fil-
ion (1980) suggested one approach was to use the replies to
follow up mailings as a proxy for the nonrespondents. The
means of logit of the empirical satisfaction rates are 1.4213,

1.0913, and 1.1818 for phase 1, 2, and 3 respondents, re-
spectively. Note that the means for phase 2 and 3 are quite
close. This indicates that nonrespondents may have a sim-
ilar mean as the phase 3 respondents. To avoid the strong
assumption that satisfaction rates of nonrespondents (or its
logit) are the same as that of phase 3 respondents, we add
a different phase-county random effect term in the equa-
tion (8) to model πi4. The final data analysis results show
that the phase-county random effect term for nonorespo-
dents has larger variance, and this yields lower satisfaction
rates. In Gao et al. (2014), the same survey was analyzed by
using a different approach with individual covariates; their
estimated statewide satisfaction rate of nonrespondents was
0.7100, which is very close to our estimate 0.7092 in this pa-
per. This further indicates our model is reasonable for the
data. Therefore, we have

ui4 ≡ log

(
πi4

1− πi4

)
= θ13 + Z1i + e1i4,(8)

where

e1i4
ind∼ N(0, δ14), i = 1, . . . , I.(9)

In this way, πi1, πi2, πi3, and πi4 have the same underlying
spatial structure Z1i. In fact, πi3 and πi4 are the same up
to their respective phase-county random effects.

The usual way of modeling a probit or a logit model for
small area estimation is through the insertion of one ran-
dom term, a random area effect. But we include two random
terms, one for random county effect and the other one for
random phase-county interaction effect in equations (4), (5),
and (8). An alternative model is to replace the phase-county
random effect by relevant covariates if available.

In addition we assume that θ1j and θ2j are independent
and with normal distributions

θ1j
ind∼ N(μ1j , τ1j),

θ2j
ind∼ N(μ2j , τ2j),

where μ1j , τ1j , μ2j , and τ2j , j = 1, 2, 3 are fixed constants.

3.3 Joint prior distribution of spatial effects

The conditional autoregressive (CAR) models (Besag,
1974) are popular for spatial data collected over irregular
lattice structures such as counties in Missouri. However,
CAR models can be appropriate in univariate cases. Re-
call in section 3.2, Z1i and Z2i are spatial effects in model-
ing conditional satisfaction rates given response status and
phase specific response rates respectively. To model these
two spatial parameters jointly, a natural choice is a 2-fold
CAR model. We use the form provided in Woodard (1999)
and the following specification is used.

Let Z1 = (Z11, . . . , Z1I)
T , Z2 = (Z21, . . . , Z2I)

T , and Z =
(Z1

T ,ZT
2 )

T . We say that Z follows a 2-fold CAR model if(
Z | δ1, δ2, ρ1, ρ2, ρ3

)
∼ N2I(0,Σ),(10)
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where

Σ =

[
δ1B

−1
1 ρ3

√
δ1δ2B

− 1
2

1 B
− 1

2
2

ρ3
√
δ1δ2B

− 1
2

2 B
− 1

2
1 δ2B

−1
2

]
,(11)

Bk = I− ρkC, k = 1, 2,

and I is a I × I identity matrix, C = (Clm) is a I × I sym-
metric adjacency matrix, Clm = 1 if counties m and l share
a common boundary, Clm = 0 otherwise, including Cll = 0.
δ1 and δ2 are variance components. ρ1 and ρ2 are the spa-
tial dependency parameters in B1 and B2, respectively. ρ3
is a “bridging” or “linking” parameter between two spatial
effects and is bounded between −1 and 1. Let λ1 ≤ · · · ≤ λI

be the eigenvalues of the matrix C. Bk is positive definite
if λ−1

1 < ρk < λ−1
I and λ−1

I > 0, for k = 1, 2. For 2001
MDHAS, I = 114 and the numerical values of λ1 and λI

are −2.8931 and 5.6938, respectively (He and Sun, 2000).
It means that the density of Z exists if ρ1 and ρ2 are in
(−0.3457, 0.1756).

Uniform prior distributions are assigned for spatial de-
pendency parameters, ρ1, ρ2, and ρ3, on their corresponding
ranges as follows:

ρj ∼ U(λ−1
1 , λ−1

I ), j = 1, 2,

ρ3 ∼ U(−1, 1).

3.4 Prior distributions of variance
components

In the model, there are a few variance components,
δ1j , δ2j , δ1, and δ2. δ1j and δ2j are for the residual effects
of (6), (7), and (9). δ1 and δ2 are for the error terms in the
variance structure of the random effects (11). These vari-
ance components are assumed to have inverse gamma dis-
tributions with prespecified hyperparameters,

δ1j
ind∼ IG(a1j , b1j), j = 1, . . . , 4,

δ2j
ind∼ IG(a2j , b2j), j = 1, 2, 3,

δ1 ∼ IG(az1, bz1),

δ2 ∼ IG(az2, bz2).

3.5 Additional assumptions

Define θ1 = (θ11, θ12, θ13)
T , θ2 = (θ21, θ22, θ23)

T ,
π = (π11, . . . , πI1, . . . , π14, . . . , πI4), h = (h11, . . . , hI1,
. . . , h13, . . . , hI3), u = (u11, . . . , uI1, . . . , u14, . . . , uI4), and
v = (v11, . . . , v1I , . . . , v13, . . . , vI3). The π and u are 4I × 1
vectors. The h and v are 3I × 1 vectors. In addition to the
priors assumed for various parameters, the following prior
independence assumptions are common in Bayesian mod-
eling. Without the following independent assumptions, the
prior distribution will be too complicated to work with. Note
that the posterior distributions are not independent even we
assume that their prior distributions are independent.

(i) Given (θ2j , Z2i, δ2j), hij (or vij) is independent of (θ1j ,
Z1i, δ1j , δ1, δ2, ρ1, ρ2, ρ3); where i = 1, · · · , I and
j = 1, 2, 3.

(ii) Given (θ1j , Z1i, δ1j), πij (or uij) is independent of (θ2j ,
Z2i, δ2j , δ1, δ2, ρ1, ρ2, ρ3); where i = 1, · · · , I and
j = 1, 2, 3, 4.

(iii) Given (ρ1, ρ2, ρ3, δ1, δ2), Z is independent of (θ1, θ2,
δ11, δ12, δ13, δ14, δ21, δ22, δ23,);

(iv) (θ1, θ2, δ11, δ12, δ13, δ14, δ21, δ22, δ23, ρ1, ρ2, ρ3, δ1, δ2)
are mutually independent.

Note that Assumption (3.5) basically assumes that the prior
distribution of hij depends on only the parameters used in
equation (5). Similarly, Assumption (3.5) assumes that the
prior distribution of πij depends on only the parameters
used in equation (4) or (8). Assumption (3.5) assumes that
the prior distribution of Z depends on only the parameters
used in equation (10).

4. BAYESIAN COMPUTATION

The unknown parameters in the model are π, h (or equiv-
alently u, v), θ1, θ2, Z1, Z2, ρ1, ρ2, ρ3, δ11, δ12, δ13, δ14,
δ21, δ22, δ23, δ1, and δ2, a total number of 9I + 18 param-
eters. In the case of MDHAS, I = 114, resulting in a to-
tal of 1044 parameters. As it is not feasible to obtain the
closed form expression for a posterior distribution of such a
large dimension, MCMC methods (Gilks et al., 1996) such
as Gibbs sampling are used to evaluate the posterior distri-
bution. The full conditional posterior distributions needed
for the Gibbs sampling are given in Proposition 1 in the
Appendix. The missing value yi41 is also simulated by the
conditional distribution (yi41 | ·) given in (ii) of Proposi-
tion 1.

A few special sampling techniques are used to improve the
sampling efficiency. To sample δ1 and δ2, we use a transfor-

mation δ∗k = δ
−1/2
k , k = 1, 2. The conditional densities of δ∗1 ,

δ∗2 , uij , and vij are log-concave. The proof is given in Propo-
sition 2 in the Appendix. The adaptive rejection sampling
method (Gilks and Wild, 1992) is used to sample from these
log-concave conditional densities. The Metropolis-Hasting
algorithm (Robert and Casella, 2004) is used to sample the
conditional densities of ρ1 and ρ2 and the ratio of the two
uniforms method (Wakefield et al., 1991) is used to sample
the conditional density of ρ3. Other conditional densities
are standard distributions, such as normal, inverse gamma
or multivariate normal. All of these can be easily gener-
ated. In the multivariate normal case, spectral decomposi-
tion (Johnson and Wichern, 1988) of the adjacency matrix
C and Cholesky decomposition (Gelman et al., 2004) of vari-
ance matrix are used.

5. DATA ANALYSIS

5.1 Specification of hyperparameters

To implement the Gibbs sampling, the hyperparameters
should be specified. Proper selection of hyperparameters is
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one inherent difficulty with the parametric Bayes approach
(Carlin and Louis, 2000). Recall that the means of logit of
the empirical satisfaction rates for phase 1, 2, and 3 respon-
dents are 1.4213, 1.0913, and 1.1818 respectively. Therefore
we set μ11 = 1.4213, μ12 = 1.0913, and μ13 = 1.1818.

Similarly, the means of logit of the empirical response
rates for phase 1, 2, and 3 respondents are−0.8548,−1.4550,
and −2.3488 respectively. Therefore we set μ21 = −0.8548,
μ22 = −1.4550, and μ23 = −2.3488.

For the values of τ1j and τ2j , j = 1, 2, 3, we assume τ11 =
τ12 = τ13, and τ21 = τ22 = τ23. We have tried different
values such as 4, 10 and 100 for τ1j and for τ2j , and the
results are similar. The final results reported here are based
on τ1j = τ2j = 100, j = 1, 2, 3. The estimates of θ1j and θ2j
are very robust to the choices of (μ1j , τ1j), j = 1, . . . , 4 and
(μ2j , τ2j), j = 1, 2, 3. So are the estimated satisfaction rates
and response rates.

It is difficult to set the hyperparameters of the vari-
ance components. The choice of (a1j , b1j), j = 1, . . . , 4 and
(a2j , b2j), j = 1, 2, 3 can have some influence on the es-
timates of δ1j , j = 1, . . . , 4 and δ2j , j = 1, 2, 3, but not
the estimated satisfaction rates and response rates. There-
fore we begin with a noninformative constant prior for the
parameters δ1j , j = 1, . . . , 4, δ2j , j = 1, 2, 3, δ1, and δ2.
We then use the posterior distributions obtained based on
the constant prior to determine the hyperparameters. Let
m0 and v0 be the posterior mean and variance of the tar-
get parameters respectively. We choose hyperparameters for
IG(a, b) such that

b

a− 1
= 2m0,

b2

(a− 1)2(a− 2)
= 200v0.

Solving a and b for the above equations, the resulting hyper-
parameters values are listed in equations (12) to (15) except
(a14, b14). Based on the assumption that the satisfaction rate
given nonresponse is similar to the satisfaction rate given
response to the third phase, the same hyperparameters are
used for δ14 as for δ13, i.e., set (a14, b14) = (a13, b13).

To compare the estimates under the proposed priors with
the ones under the flat priors, see the scatter plots in Figures
1 and 2. Figure 1 displays the comparisons on the estimates
of conditional satisfaction rates. The estimates under pro-
posed priors are plotted along x-axis, and the estimates un-
der the flat priors are plotted along y-axis. The left column
is for comparing the estimates, and the right column is for
comparing the standard deviations of those estimates. The
first three rows are for mailing phase 1 to 3 respectively,
and the fourth row is for the non-respondents. Note that
the estimates and their standard deviations are almost the
same for mailing phase 1 to 3. The estimates under pro-
posed priors are slightly larger than the ones under the
flat priors for the non-respondents, while the correspond-
ing estimated standard deviations are much smaller. This is
because that the proposed priors borrow information from

Figure 1. Scatterplots of conditional satisfaction rate
estimates from proposed priors on x-axis vs ones with flat

priors on y-axis, (a)–(d): π̂ij , j = 1, . . . , 4; (e)–(h): standard
deviations of the estimates for j = 1, . . . , 4.

Figure 2. Scatterplots of response rate estimates from
proposed priors on x-axis vs ones with flat priors on y-axis,
(a)–(c): q̂ij , j = 1, 2, 3; (d)–(f): the corresponding standard

deviations for j = 1, 2, 3.

mailing phase 3. There is no data to estimate δ14 if there
is no information shared between mailing phase 3 and non-
respondents. The similar comparisons on the estimates of

522 X. Gao, C. He, and D. Sun



response rates are showed in Figure 2. Again, the estimates
and their standard deviations are almost the same for mail-
ing phase 1 to 3.

In summary, the results reported in this paper are based
on the following specifications.

• The hyperparameters for θ1j , j = 1, 2, 3 as

(μ11, τ11) = (1.4213, 100),

(μ12, τ12) = (1.0913, 100),

(μ13, τ13) = (1.1818, 100);

• The hyperparameters for θ2j , j = 1, 2, 3 as

(μ21, τ21) = (−0.8548, 100),

(μ22, τ22) = (−1.4550, 100),

(μ23, τ23) = (−2.3488, 100);

• The hyperparameters for δ1j , j = 1, . . . , 4 as

(a11, b11) = (2.0303, 0.1267),

(a12, b12) = (2.0066, 0.1303),

(a13, b13) = (2.0096, 0.4925),

(a14, b14) = (2.0096, 0.4925);(12)

• The hyperparameters for δ2j , j = 1, 2, 3 as

(a21, b21) = (2.0247, 0.0143),

(a22, b22) = (2.0339, 0.0428),

(a23, b23) = (2.0298, 0.0741);(13)

• The hyperparameters for δ1 as

(az1, bz1) = (2.2256, 0.3260);(14)

• The hyperparameters for δ2 as

(az2, bz2) = (2.1391, 0.0415).(15)

5.2 Bayesian estimation

The Gibbs sampling trace plots are examined for all
model parameters and some randomly selected spatial ef-
fects Z1i and Z2i and they converge after 1,000 iterations.
Final results presented here are based on 30,000 Gibbs cy-
cles after burn-in of the initial 2,000 iterations. The poste-
rior distributions are approximated by MCMC samples in
Figure 3, 4, and 5. The 90% credible intervals are given in
Table 4 along with the posterior means, medians, and stan-
dard deviations.

The Response Phase Effects. The posterior distributions
of θ11, θ12, and θ13 are given in Figure 3 (a), (b), and (c),
respectively. The 90% credible intervals of θ11, θ12, θ13 are
all positive. Posterior means are close to posterior medians.
The center of 90% credible intervals are very close to the
posterior means as well. The concentrations of the poste-
rior distributions are all away from zero to the right. To

Figure 3. Marginal posterior densities of (θ11, θ12, θ13, θ21,
θ22, θ23).

Figure 4. Marginal posterior densities of (ρ1, ρ2, ρ3) and
(δ1, δ2).

compare the response phase effects θ1j on conditional sat-
isfaction rates π1j , we see that the posterior distribution of
θ11 shifts to the right comparing with the distributions of
θ12 and θ13. The posterior distributions of θ12 and θ13 are
similar, but 90% credible interval of θ13 is slightly wider.
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Table 4. 90% credible intervals, posterior means, medians, and standard deviations of model parameters

Parameter 90% credible interval posterior mean (median) STD

θ̂11 (0.9375, 1.2904) 1.1178 (1.1191) 0.1075

θ̂12 (0.6505, 1.0252) 0.8430 (0.8462) 0.1139

θ̂13 (0.6008, 1.0395) 0.8373 (0.8378) 0.1431

θ̂21 (-0.8790, -0.7673) -0.8222 (-0.8216) 0.0343

θ̂22 (-1.3819, -1.2413) -1.3098 (-1.3089) 0.0426

θ̂23 (-2.0986, -1.9117) -2.0061 (-2.0059) 0.0567
ρ̂1 (0.1203, 0.1736) 0.1590 (0.1613) 0.0179
ρ̂2 (0.0183, 0.1700) 0.1205 (0.1355) 0.0509
ρ̂3 (0.5920, 0.9882) 0.8431 (0.8722) 0.1280

δ̂1 (0.0794, 0.1843) 0.1251 (0.1215) 0.0325

δ̂2 (0.0098, 0.0279) 0.0171 (0.0162) 0.0057

δ̂11 (0.0232, 0.1212) 0.0600 (0.0529) 0.0315

δ̂12 (0.0233, 0.1181) 0.0575 (0.0498) 0.0310

δ̂13 (0.0910, 0.4253) 0.2193 (0.1964) 0.1071

δ̂14 (0.1000, 1.2157) 0.4155 (0.2855) 0.3928

δ̂21 (0.0026, 0.0137) 0.0067 (0.0058) 0.0037

δ̂22 (0.0076, 0.0374) 0.0188 (0.0167) 0.0096

δ̂23 (0.0132, 0.0671) 0.0336 (0.0295) 0.0178

Figure 5. Marginal posterior densities of (δ11, δ12, δ13, δ14,
δ21, δ22, δ23).

The posterior distributions of θ21, θ22, and θ23 are given
in Figure 3 (d), (e), and (f), respectively. The 90% credible
intervals are all negative. Posterior means are close to the
posterior medians. The center of 90% credible intervals are
very close to the posterior means as well. The concentrations
of the posterior distributions are all away from zero to the
left. There is little overlap in the posterior distributions,

which indicates that response rates of the three phases are
very different. The response rates to the first phase are the
highest while the response rates to the third phase are the
lowest.

Spatial Dependencies. The posterior distributions of ρ1,
ρ2, and ρ3 are shown in Figure 4 (a), (b), and (c), respec-
tively. The posterior mean of ρ1 is 0.1590 with a standard
deviation of 0.0179. The posterior mean of ρ2 is 0.1205
with a standard deviation of 0.0509. Compared to the pos-
sible range of (−0.3457, 0.1756), the 90% credible interval
(0.1203, 0.1736) and the concentration of the posterior dis-
tribution of ρ1 indicates a strong spatial dependency for the
conditional satisfaction rates (Figure 4 (a)), and the 90%
credible interval (0.0183, 0.1700) and the concentration of
the posterior distribution of ρ2 indicate a moderate spatial
dependency for phase specific response rates (Figure 4 (b)).
The posterior mean of ρ3 is 0.8431 with a standard deviation
of 0.1280. Compared to its possible range of (−1, 1), the 90%
credible interval and the concentration of the posterior dis-
tribution of ρ3 indicate that spatial dependency between the
conditional satisfaction rates and the conditional response
rates is also strong. Thus the “bridging” parameter ρ3 in
(Z1,Z2) shows a certain degree of additional information
borrowing in the estimates of conditional satisfaction rates
and phase specific response rates. This indicates that coun-
ties with higher conditional satisfaction rates tend to have
higher response rates to the 2001 MDHAS.

Variance Components. The posterior distributions of δ1
and δ2 are shown in Figure 4 (d) and (e) respectively. Both
posterior distributions are approximately symmetric about
their means. The posterior mean of δ1 is 0.1251 with a stan-
dard deviation of 0.0325 while the posterior mean of δ2 is
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Figure 6. Estimates of response rates. (a)–(c): Frequency
estimates q̂Fij , (j = 1, 2, 3); (d)–(f): Bayesian estimates

q̂ij , (j = 1, 2, 3). (g): q̂i3 on a different scale.

0.0171 with a standard deviation of 0.0057. The 90% cred-
ible intervals are (0.0794, 0.1843) and (0.0098, 0.0279) re-
spectively. All the above indicate that the spatial variation
among conditional satisfaction rates is larger than the spa-
tial variation among phase specific response rates.

The posterior distributions of δ1j and δ2j are shown in
Figure 5 (a)–(g), respectively. All the distributions are right
skewed. The posterior means, medians, 90% credible inter-
vals, and standard deviations are given in Table 4. In general
δ1j (j = 1, . . . , 4) are larger than δ2j (j = 1, 2, 3). The pos-
terior mean or median of δ11 and δ12 are about the same.
The posterior mean or median of δ13 is larger than the pos-
terior mean or median of δ11 and δ12. The posterior mean
or median of δ14 is the largest among δ1j , j = 1 . . . , 4. The
posterior mean or median of δ21 is the smallest while the
posterior mean of median of δ23 is the largest among δ2j ,
j = 1, 2, 3. All these results indicate that the variances of
the phase-county effects are larger for the conditional sat-
isfaction rates than that of the phase-county effects for the
phase specific response rates.

Response Rates by County of Residence. The frequency
estimates of the survey response rates, q̂Fij = nij/mi1 for
j = 1, 2, 3 are shown in Figure 6 (a)–(c). The model-based

Bayesian estimates of conditional response rates are ĥij

for j = 1, 2, 3. Using the relationship of (2), the model-
based Bayesian estimates of the survey response rates, q̂ij
for j = 1, 2, 3 can be obtained easily. They are plotted in

Figure 6 (d)–(f). Clearly, the response rates are the high-
est for the first phase and the lowest for the third phase.
This is true for both the frequency and model estimates.
However, the Bayesian model gives more stable (smoother)
estimates than the frequency method, especially for coun-
ties with small sample sizes. The Bayesian estimates borrow
information from surrounding counties and the individual
estimates are pulled toward their local averages. The fre-
quency estimates are unstable with small sample sizes. For
example, for an increase of 1 respondent in a county with a
sample size of 8, the response rate will increase 12.5%.

Note that the Bayesian estimates q̂i3 seem to be over
smoothed comparing with q̂Fi3, see Figure 6 (c) and (f). We
have checked this and found that the over smoothing is not
related to the choice of priors. Figure 2 (c) shows that the
estimates of response rates are almost the same under the
flat priors and proposed priors, which are two very different
priors. We also fit the model with a different prior on ρ2. It
does not change the results on qi3. The over smoothing is
actually related to 1) much smaller counts (respondents) in
phase 3 than in phase 1 and 2; 2) the spatial structure on
response rates (all 3 phases are assumed the same spatial
structure). So the spatial pattern of estimated q̂i3 is domi-
nated by the spatial pattern of the estimated q̂i1 and q̂i2, see
Figure 6 (g). For this application, we do not have evidence
to assume the spatial structure of qi3 is different from the
spatial structure of qi1 or qi2. The model verification (see ses-
sion 5.3) also indicates this is a reasonable model. In other
cases, one may want to assume different spatial structures
for different phases. But, how to share information among
different phases and between satisfaction rate and response
rate is a question needed for further study.

Satisfaction Rates by County of Residence. The frequency
estimates of the conditional satisfaction rates given the re-
sponse phase, π̂F

ij = yij/nij for j = 1, 2, 3, are shown in
Figure 7 (a)–(c). Note that the frequency estimates of con-
ditional satisfaction rates given nonresponse are not avail-
able. The Bayesian estimates of the satisfaction rates given
response status, π̂ij for j = 1, . . . , 4, are shown in Figure 7
(d)–(g). At the county level, frequency estimates range from
0.3333 to 1.0 for the first response phase, and 0 to 1.0 for
the second and third response phases. In the third response
phase, there are 28 counties with conditional satisfaction
rates as 100%. We don’t expect this to be true. In fact
all these counties have small sample sizes. For example,
Reynolds county had 2 respondents in the third phase, and
both respondents were satisfied with MDC’s deer manage-
ment. On the other hand, the model-based Bayesian esti-
mates of conditional satisfaction rates are more reasonable,
as they range from 0.5710 to 0.8830 for the first response
phase, and from 0.5240 to 0.8480 for the second, and from
0.4670 to 0.9030 for the third response phase. The condi-
tional satisfaction rate estimates for nonrespondents range
from 0.5440 to 0.8290. Several counties have no data for
given response phases as shown by counties shaded in the
map ((Figure 7 (b) and (c)). In these cases, there are no

Adjusting nonresponse bias in small area estimation without covariates via a Bayesian spatial model 525



Figure 7. Maps of naive frequency estimates of π̂F
ij = yij/nij

and Bayesian estimates of π̂ij . (a)–(c): Frequency estimates
of π̂F

ij , (j = 1, 2, 3) for response phase 1, 2, and 3,
respectively; (d)–(g): Bayesian estimates of

π̂ij , (j = 1, . . . , 4) for response phase 1, 2, 3, and survey
nonrespondents, respectively.

frequency estimates, but Bayesian estimates are available.
Under the Bayesian model, individual counties borrow in-
formation from surrounding areas and estimates are pulled
toward their local averages (Figure 7 (d)–(g)).

Again our interest is to estimate the marginal satisfac-
tion rates pi at the county level. From Table 3, marginal
satisfaction rates for county i, i = 1, . . . , I are

p̂i = π̂i1q̂i1 + π̂i2q̂i2 + π̂i3q̂i3 + π̂i4(1−
3∑

j=1

q̂ij).(16)

The frequency marginal satisfaction rates are not available
because there are no data for nonrespondents. To make a
fair comparison, for each county we compare the following
two estimates as well.

• Conditional satisfaction rates given response to the sur-
vey

π̂i =
π̂i1q̂i1 + π̂i2q̂i2 + π̂i3q̂i3

q̂i1 + q̂i2 + q̂i3
, i = 1, . . . , I.

• The frequency counterparts

π̂F
i =

yi1 + yi2 + yi3
ni1 + ni2 + ni3

, i = 1, . . . , I.

The π̂F
i , π̂i, and p̂i are shown in maps in Figure 8 (a)–(c).

The overall spatial patterns are similar. The frequency esti-
mates of conditional satisfaction rates given response range
from 0.36 to 1.0 while the model-based estimates range from

Figure 8. All phase combined estimates. (a): π̂F
i , the naive

frequency estimate of all phase combined conditional
satisfaction rates; (b): π̂i, the Bayesian estimates of all phase
combined conditional satisfaction rates; (c): p̂i, Bayesian

estimates of marginal satisfaction rates.

Figure 9. Comparison of estimated satisfaction rates from
naive frequency method, π̂F

i and Bayesian method, p̂i when
sample sizes (a): ni < 25; (b): 25 ≤ ni < 50; (c):

50 ≤ ni < 100; (d): ni ≥ 100.

0.5475 to 0.8755. Again we can see that Bayesian estimates
are pulled toward their local averages and are smoother than
frequency estimates. In Figure 9 (a)–(d) we present 4 scatter
plots of π̂F

i vs p̂i by 4 categories of sample sizes or number
of respondents ni, where ni = ni1+ni2+ni3. It is clear that
the difference between Bayesian and frequency estimates is
large when sample sizes are small.
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Table 5. Statewide estimate of response rates and conditional
satisfaction rates by response phases

Phase j q̂Fj q̂j π̂F
j π̂j

1 0.3196 0.3196 0.7885 0.7884
2 0.1524 0.1525 0.7418 0.7417
3 0.0662 0.0663 0.7312 0.7309

nonresponse N.A N.A N.A 0.7097

5.3 Model verification and statewide
estimates

When the sample size is large, the frequency estimate is
a good estimate. Therefore, we can verify the model-based
estimates by comparing them with the frequency estimates
at state level. Let q̂j and q̂Fj be the statewide Bayesian and
frequency estimates of response rates for response phase j.
Let π̂j and π̂F

j be the statewide Bayesian and frequency
estimates of conditional satisfaction rates given response for
response phase j. Recall that for each county i, mi1 are the
total number of hunters who received the survey in the first
phase. nij for j = 1, 2, 3, are the total number of respondents
for the first, second, and third phase, respectively. ni4 is the
number of nonrespondents (Table 1). Let mi2 = mi1 − ni1

and mi3 = mi2−ni2, then mi2 and mi3 are the total number
of hunters who received surveys for the second and third
phases, respectively. Thus,

q̂j =

∑I
i=1 mij q̂ij∑I
i=1 mij

, j = 1, 2, 3,

q̂Fj =

∑I
i=1 nij∑I
i=1 mi1

, j = 1, 2, 3,

π̂j =

∑I
i=1 nij π̂ij∑I
i=1 nij

, j = 1, . . . , 4,

π̂F
j =

∑I
i=1 yij∑I
i=1 nij

, j = 1, 2, 3.

The results are given in Table 5.

Combined statewide Bayesian estimates of the response
rate for all phases, q̂, and the conditional satisfaction rate
given response, π̂, are defined as

q̂ = q̂1 + q̂2 + q̂3,

π̂ =

∑3
j=1 π̂j q̂j

q̂
.

Combined statewide frequency estimates of the response
rate for all phases, q̂F , and the conditional satisfaction rate
given response, π̂F , are defined as

q̂F =

∑I
i=1

∑3
j=1 nij∑I

i=1 mi1

.

π̂F =

∑I
i=1

∑3
j=1 yij∑I

i=1

∑3
j=1 nij

.

The marginal statewide satisfaction rate is defined as

p̂ =

∑I
i=1 mi1p̂i∑I
i=1 mi1

,

where p̂i is defined in (16).
The combined statewide estimates of response rates for

all phases are q̂ = 0.5384 and q̂F = 0.5382 from Bayesian
and frequency methods, respectively. The all phase com-
bined statewide estimates of conditional satisfaction rates
given response are π̂ = 0.768092 and π̂F = 0.768226. It
is a surprise to see that the Bayesian estimates match the
frequency estimates almost exactly. This indicates that the
Bayesian model fits the given data reasonably.

The marginal statewide Bayesian estimate of satisfaction
rate is p̂ = 0.741435 which is about 2.7% less than the fre-
quency estimate of conditional satisfaction rate given re-
sponse. In other words, without adjusting for nonresponse,
we would overestimate the number of satisfied hunters by
more than 9,000 since there were 357,552 Missouri hunters
who bought firearm deer hunting permits in 2001.

6. DISCUSSION

In this article, we have developed a Bayesian hierarchi-
cal model to estimate the satisfaction rates at subdomains
without covariates via modeling the phase specific response
rates and conditional satisfaction rates given response sta-
tuses and accounting for small sample size and survey nonre-
sponse. In this pattern mixture approach, there are no data
to estimate the conditional satisfaction rates given nonre-
sponse. We define a direct relationship to relate conditional
satisfaction rates given nonresponse to that of the third
phase response through a linear mixed model. Phase specific
response rates and satisfaction rates given response statuses
are then calculated and combined to get the marginal satis-
faction rates pi.

We find that there are spatial dependencies in condi-
tional satisfaction rates and phase specific response rates
among hunters’ Missouri county of residence. The response
phases affect the conditional satisfaction and phase specific
response rates. The effects on response rates are more promi-
nent than on the conditional satisfaction rates. In general,
the first phase has the highest conditional satisfaction rates
and response rates while the third phase has the lowest con-
ditional satisfaction rates as well as response rates. But the
response rates for the three phases are different while the
conditional satisfaction rates for the second and third phase
are similar.

At the county level, model-based estimates were more
reasonable than their frequency counterparts. For example,
frequency estimates range from 0.36 to 1.0. We do not ex-
pect any counties to have a hunter satisfaction rate of 100%.
Under the Bayesian model, the county borrowed informa-
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tion from surrounding areas and estimates are pulled toward
their local average, especially for counties with no data or
very small sample sizes. The model also gives an estimate
of conditional satisfaction rates given nonresponse for each
county.

The model-based statewide estimates of response rates
and conditional satisfaction rates given response to phases 1,
2 and 3 are very close to their frequency counterparts. This
is one way to evaluate the model-based estimates because
frequency estimates should be reasonable when sample sizes
are large. Overall we found that at the statewide level the
conditional satisfaction rates given nonresponse are lower
than the conditional satisfaction rates given response. The
marginal satisfaction rates are lower than the conditional
satisfaction rates given response. If we ignored nonresponse,
we would overestimate the number of satisfied hunters by
more than 9,000 statewide.

Gao et al. (2014) analyzed this 2001 MDHAS using a
bivariate Bayesian hierarchical linear mixed model to esti-
mate hunters’ satisfaction rate and response rate. Both esti-
mated rates were then aggregated at hunters’ county of resi-
dence and at the state level respectively. In addition to ran-
dom spatial effects to account for dependency among sub-
domains, they also included auxiliary covariates of hunters,
such as age and number of deer harvested. The overall esti-
mated statewide satisfaction rate was 0.7366 comparing to
an estimate of 0.7414 given in this article. The phase spe-
cific estimates of satisfaction rates were 0.7750, 0.7365, and
0.7100 for the first mailing phase, late mailing phase (the
second and third mailing combined), and nonresponse re-
spectively. Comparing to the results presented in Table 5,
the estimates from the two different approaches are very
close. Auxiliary information is not always available or hard
to obtain for surveys. In this article, we provide a way to
utilize the mailing phases and spatial data to assess and
adjust survey nonresponse when the main objective is to
estimate subdomain and overall satisfaction and response
rates. The model presented here is easier to implement than
the one provided in Gao et al. (2014) which used hunter
level data and had 21,947 parameters in the model. Here we
use subdomain level data. The model in section 3 has 1,044
parameters and takes less time to run.

The general approach presented here is applicable to
other surveys. However, one should be careful when specify-
ing link function in the linear mixed model. One also should
check assumptions for each survey carefully when linking
nonresponse to response through multiple survey phases.
One can also check if there are other auxiliary information
about survey respondents and nonrespondents. That auxil-
iary information may also be incorporated into the models.
Finally, it is best to collect satisfaction data on nonresponse
directly to further validate the model.
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APPENDIX

Proposition 1. Let y∗ = (y141, . . . , yI41), y
o = (y111, y121,

y131, . . . , yI11, yI21, yI31), and n = (n11, n12, n13, n14, . . . ,
nI1, nI2, nI3, nI4, ). Here y∗ is a I×1 vector, yo is a 3I×1
vector, and n is a 4I×1 vector. Let [Ω | others; data] denote
the conditional density of Ω given all other parameters and
(Ω | others; data) denote the conditional distribution of Ω
given all other parameters, where data are (yo,n). The full
conditional posterior distributions are as follows.

(i) [uij | others; data] = [uij | θ1,Z1, δ11, δ12, δ13, δ14,y
∗;

yo,n] for i = 1, . . . , I, j = 1, 2, 3 is proportional to

exp

{
uijyij1 − nij log(1+euij )− (uij−θ1j−z1i)

2

2δ1j

}
.

[ui4 | others; data] = [ui4 | θ1,Z1, δ11, δ12, δ13, δ14,y
∗;

yo,n] for i = 1, . . . , I is proportional to

exp

{
ui4yi41 − ni4 log(1+eui4)− (ui4−θ13−z1i)

2

2δ14

}
.

(ii) (yi41 | others; data) ∼ Binomial(ni4, πi4), where

πi4 =
eui4

1 + eui4
.

(iii) [vij | others; data] = [vij | θ2,Z2, δ21, δ22, δ23;n] for
i = 1, . . . , I, j = 1, 2, 3 is proportional to

exp

{
vijnij −mij log(1+evij )− (vij−θ2j−z2i)

2

2δ2j

}
,

where mi1 =
∑4

j=1 nij, mi2 = mi1−ni1, mi3 = mi2−
ni2.

(iv) (θ1j | others; data) = (θ1j | u,Z1, δ11, δ12, δ13, δ14) for
j = 1, 2 is

N

(
τ1j

∑I
i=1(uij − z1i) + δ1jμ1j

Iτ1j + δ1j
,

τ1jδ1j
Iτ1j + δ1j

)
.

(θ13 | others; data) = (θ13 | u,Z1, δ11, δ12, δ13, δ14) is
N(μ, σ2), where

μ =
δ14τ13

∑I
i=1(ui3 − z1i) + δ13τ13

∑I
i=1(ui4 − z1i)

Iτ13(δ13 + δ14) + δ13δ14

+
μ13δ13δ14

Iτ13(δ13 + δ14) + δ13δ14
,

σ2 =
δ13δ14τ13

Iτ13(δ13 + δ14) + δ13δ14
.
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(v) (θ2j | others; data) = (θ2j | v,Z2, δ21, δ22, δ23) for
j = 1, 2, 3 is

N

(
τ2j

∑I
i=1(vij − z2i) + δ2jμ2j

Iτ2j + δ2j
,

τ2jδ2j
Iτ2j + δ2j

)
.

(vi) (Z1 | others; data) = (Z1 | u,θ1,Z2, δ11, δ12, δ13, δ14,
ρ1, ρ2, ρ3, δ1, δ2) is

N

(
G−1

1

[ ρ3
(1− ρ23)

B
1
2
1 B

1
2
2 Z2√

δ1δ2
+C1

]
,G−1

1

)
,

where C1 = (c11, . . . , c1I)
T , c1i =

∑3
j=1

uij−θ1j
δ1j

+
ui4−θ13

δ14
, i = 1, . . . , I, and

G1 =

4∑
j=1

1

δ1j
II +

1

(1− ρ23)δ1
B1.

(vii) (Z2 | others; data) = (Z2 | v,θ2,Z1, δ21, δ22, δ23,
ρ1, ρ2, ρ3, δ1, δ2)

N

(
G−1

2

[ ρ3
(1− ρ23)

B
1
2
2 B

1
2
1 Z1√

δ1δ2
+C2

]
,G−1

2

)
,

where C2 = (c21, . . . , c2I)
T , c2i =

∑3
j=1

vij−θ2j
δ2j

, i =

1, . . . , I, and

G2 =

3∑
j=1

1

δ2j
II +

1

(1− ρ23)δ2
B2.

(viii) (δ1j | others; data) = (δ1j | u,θ1,Z1) for j = 1, . . . , 3
is

IG

(
a1j +

I

2
, b1j +

1

2

I∑
i=1

(uij − θ1j − z1i)
2

)
.

(δ14 | others; data) = (δ14 | u,θ1,Z1) is

IG

(
a14 +

I

2
, b14 +

1

2

I∑
i=1

(ui4 − θ13 − z1i)
2

)
.

(ix) (δ2j | others; data) = (δ2j | v,θ2,Z2) for j = 1, . . . , 3
is

IG

(
a2j +

I

2
, b2j +

1

2

I∑
i=1

(vij − θ2j − z2i)
2

)
.

(x) [δ1 | others; data] = [δ1 | Z1,Z2, ρ1, ρ2, ρ3, δ2] is pro-
portional to

exp
{−ZT

1 B1Z1

2δ1(1−ρ2
3)

+ ρ3

(1−ρ2
3)

ZT
1 B

1
2
1 B

1
2
2 Z2√

δ1δ2
− bz1

δ1

}
δ
az1+

I
2+1

1

.

Or equivalently [δ∗1 | others; data] = [δ∗1 | Z1,Z2,
ρ1, ρ2, ρ3, δ

∗
2 ] is

∝ exp
{
k11 ln(δ

∗
1) + k12δ

∗
1 − k13δ

∗
1
2
}
,

where δ∗1 = δ
−1/2
1 , δ∗2 = δ

−1/2
2 , k11 = 2az1 + I − 1,

k12 =
ρ3δ

∗
2

1− ρ23
ZT

1 B
1
2
1 B

1
2
2 Z2, and k13 =

ZT
1 B1Z1

2(1− ρ23)
+ bz1.

(xi) [δ2 | others; data] = [δ2 | Z1,Z2, ρ1, ρ2, ρ3, δ1] is pro-
portional to:

exp
{−ZT

2 B2Z2

2δ2(1−ρ2
3)

+ ρ3

(1−ρ2
3)

ZT
2 B

1
2
2 B

1
2
1 Z1√

δ1δ2
− bz2

δ2

}
δ
az2+

I
2+1

2

.

It is equivalent to that [δ∗2 | others; data] = [δ∗2 |
Z1,Z2, ρ1, ρ2, ρ3, δ

∗
1 ] is

∝ exp
{
k21 ln(δ

∗
2) + k22δ

∗
2 − k23δ

∗
2
2
}
,

where δ∗1 = δ
−1/2
1 , δ∗2 = δ

−1/2
2 , k21 = 2az2 + I − 1,

k22 =
ρ3δ

∗
1

1− ρ23
ZT

2 B
1
2
2 B

1
2
1 Z1, and k23 =

ZT
2 B2Z2

2(1− ρ23)
+ bz2.

(xii) [ρ1 | others; data] = [ρ1 | Z1,Z2, ρ2, ρ3, δ1, δ2] is pro-
portional to

|I− ρ1C| 12

× exp

{
−ZT

1 (I− ρ1C)Z1

2(1− ρ23)δ1

+
ρ3

(1− ρ23)

ZT
1 (I− ρ1C)

1
2B

1
2
2 Z2√

δ1δ2

}
.

(xiii) [ρ2 | others; data] = [ρ2 | Z1,Z2, ρ1, ρ3, δ1, δ2] is pro-
portional to

|I− ρ2C| 12

× exp

{
−ZT

2 (I− ρ2C)Z2

2(1− ρ23)δ2

+
ρ3

(1− ρ23)

ZT
2 (I− ρ2C)

1
2B

1
2
1 Z1√

δ2δ1

}
.

(xiv) [ρ3 | others; data] = [ρ3 | Z1,Z2, ρ1, ρ2, δ1, δ2] is pro-
portional to

|B1|
1
2 |B2|

1
2

[(1− ρ23)δ1δ2]
I
2

× exp

{
−1

2

[ ZT
1 B1Z1

(1− ρ23)δ1
− 2

ρ3Z
T
1 B

1
2
1 B

1
2
2 Z2

(1− ρ23)
√
δ1δ2

+
ZT

2 B2Z2

(1− ρ23)δ2

]}
.
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Proposition 2.
(a) The conditional densities of uij and vij in Proposition
1 are both log concave.
(b) The conditional densities of δ∗1 and δ∗2 in Proposition 1
are both log concave.

Proof. We only give a proof for part (b). Let f(δ∗1) be the
conditional density of δ∗1 . Clearly, up to a positive constant,

f(δ∗1) = exp
{
k11 ln(δ

∗
1) + k12δ

∗
1 − k13δ

∗
1
2
}
,

where k11, k12 and k13 are defined in Proposition 1. Thus,

log f(δ∗1) = k11 ln(δ
∗
1) + k12δ

∗
1 − k13δ

∗
1
2,

∂2 log(f(δ∗1))

∂δ∗1
2 = −k11

δ∗1
2 − 2k13.

The second derivative of log f(δ∗1) is negative since k11 > 0
and k13 > 0. The log-concavity of density of δ∗2 is similar
and is omitted.
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