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Bayesian inference for stochastic volatility models
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In this paper, we propose a new stochastic volatility
model based on a generalized skew-Student-t distribution
for stock returns. This new model allows a parsimonious
and flexible treatment of the skewness and heavy tails in the
conditional distribution of the returns. An efficient Markov
chain Monte Carlo (MCMC) sampling algorithm is devel-
oped for computing the posterior estimates of the model
parameters. Value-at-Risk (VaR) and Expected Shortfall
(ES) forecasting via a computational Bayesian framework
are considered. The MCMC-based method exploits a skew-
normal mixture representation of the error distribution. The
proposed methodology is applied to the Shenzhen Stock Ex-
change Component Index (SZSE-CI) daily returns. Bayesian
model selection criteria reveal that there is a significant im-
provement in model fit to the SZSE-CI returns data by using
the SV model based on a generalized skew-Student-t distri-
bution over the usual normal and Student-t models. Em-
pirical results show that the skewness can improve VaR and
ES forecasting in comparison with the normal and Student-t
models. We demonstrate that the generalized skew-Student-
t tail behavior is important in modeling stock returns data.

Keywords and phrases: Bayesian predictive information
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1. INTRODUCTION

Stochastic volatility (SV) models have been considered as
useful tools for modeling time-varying variances. Volatility

∗Dr. Carlos A. Abanto-Valle’s research was supported by CNPq grant
481159/2013-4. Dr. Caifeng Wang’s research was support by Research
Institute foundation of USTB No. 39390004. Dr. Ming-Hui Chen’s re-
search was partially supported by NIH grant # GM 70335.
†Corresponding author.

prediction is important mainly in financial applications, in-
cluding value-at-risk (VaR) estimation and other risk prac-
tices, where policymakers or stockholders are constantly fac-
ing decision problems that usually depend on measures of
volatility and risk. It is a well known fact that financial
returns from market variables are characterized by nonnor-
mality. The empirical distribution is more peaked, has heav-
ier tails than the normal distribution, and is often skewed.
These properties are crucial not only for describing the re-
turn distributions, but also for asset allocation, option pric-
ing, forecasting, and risk management.

Discrete-time formulations of SV models were introduced
by Tauchen and Pitts [62] and Taylor [63]. These models
directly connect to the type of diffusion processes used in
asset-pricing theory in finance [49] and capture the main
empirical properties often observed in the daily series of fi-
nancial returns [16] in a more appropriate way. Therefore,
the discrete-time formulations of SV models have emerged
as an alternative to generalized autoregressive conditional
heteroscedasticity (GARCH) models of Bollerslev [12].

In literature, the basic SV model with a conditional nor-
mal distribution for stock returns has been extensively stud-
ied. From a Bayesian standpoint, several MCMC-based al-
gorithms have been suggested to estimate the SV model.
For example, Jacquier et al. [40] used the single-move Gibbs
sampling within the Metropolis-Hastings algorithm to sam-
ple from the log-volatilities. Kim et al. [43], Mahieu and
Schotman [48], and among others approximated the distri-
bution of log-squared returns with a discrete mixture of sev-
eral normal distributions, allowing for jointly drawing the
components of the whole vector of log-volatilities. Shephard
and Pitt [58] and Watanabe and Omori [66] suggested the
use of random blocks, which contains some of the compo-
nents of the log-volatilities, to effectively reduce the auto-
correlation. However, in all of these, the normal distribution
was assumed as the basis for the parameter inference.

Unfortunately, the basic SV model with a conditional nor-
mal distribution for the returns is too restrictive to model
the usual leptokurtosis observed in financial return series
[See 46, 22, 39, 2, among others]. To account for the lep-
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tokurtosis, the SV model with Student-t is the most pop-
ular. Chib et al. [22], Jacquier et al. [39] and Abanto-Valle
et al. [2] exploited the well-known fact that the Student-t
distribution can be expressed as a particular scale mixture
of normal distributions. Alternatively, Choy et al. [24] repre-
sented it as a scale mixture of uniform (SMU) distributions.
In addition, there are other distributions that have been con-
sidered to model heavy tails in the context of SV models.
For instance, Liesenfeld and Jung [46] fitted the SV model
with a general error distribution (GED). Choy and Chan
[23] expressed the SV with a GED distribution as a SMU
distribution. Asai [9] used the SV model with contaminated
normal errors and compared it with the Student-t and the
GED using MCMC-based algorithms.

Besides, the empirical evidence on skewness in the distri-
bution of financial returns is well documented in literature
[37, 38, 50, 41, 20]. Corrado and Su [26] suggested that fat
tails and asymmetry jointly determine the so-called “volatil-
ity smile” in option pricing using the Black-Scholes approach
and the explicit account of them improves accuracy in op-
tion pricing, Chunhachinda et al. [25] showed that the intro-
duction of skewness significantly affected the construction of
the optimal portfolio, Mittnik and Paolella [50] argued that
skewness and heavy tails should be taken into account in
Value-at-Risk forecasts. Thus, Hansen [36] considered skew-
ness in a GARCH model using skew-Student-t distribution
errors allowing for both skewness and heavy tails to co-exist
in a time-varying volatility setup. In recent years, there are
more developments focusing on the skewness and heavy-tails
for financial returns in the class of SV models. For example,
Cappuccio et al. [14, 15] used the skew-GED and Tsiotas [65]
applied the skew-Student-t distribution to model skewness
and heavy tails in the conditional distribution of the returns.
In their MCMC sampling algorithms, the log-volatilities are
drawn using an inefficient single-move algorithm. Recently,
Nakajima and Omori [52] introduced the generalized hy-
perbolic (GH) skew Student’s t as the distribution of the
returns and represented the error distribution as a normal
variance-mean mixture with an inverse gamma distribution
being the mixing distribution.

Value-at-Risk (VaR) has become a benchmark for mea-
suring financial risk because it represents the market risk
as one number: the maximum loss expected on an invest-
ment over a given time period at specific level of confidence.
One drawback is that VaR measure is not sensitive to the
shape of the loss distribution in the tails. Artzner et al. [7, 8]
proposed an alternative coherent measure, called expected
shortfall (ES), which gives the expected loss (magnitude)
conditional on exceeding a VaR threshold.

In this paper, in order to account for skewness and heavy
tails simultaneously, we extend the SV model by assum-
ing a generalized skew-t (GST) distribution introduced by
Kim et al. [42] and hence term it as the SV-GST. We de-
velop an empirical framework for the posterior estimation of
the SV model using efficient MCMC and sequential Monte

Carlo (SMC) procedures. This includes a detailed sampling
procedure, volatility filtering, convergence diagnostics, and
model comparison. VaR and ES are estimated by simulation
using the MCMC output. The data used in this paper is the
SZSE-CI, which is an index tracking 40 securities traded
on the Shenzhen Stock Exchange. A more detailed descrip-
tion about this data set is given in Section 5. Our prelimi-
nary data analysis shows that this data set exhibits certain
interesting features in the stock returns, such as volatility
clustering and excess kurtosis and skewness.

The rest of the paper is organized as follows. Section 2
gives a brief review of the GST distribution, including some
of its properties. Section 3 presents the SV model with the
GST distribution as well as the Bayesian estimation pro-
cedure using MCMC methods. We discuss some technical
details about Bayesian model selection in Section 4. In Sec-
tion 5, we carry out a detailed analysis of the SZSE-CI data.
We conclude the paper with a brief discussion in Section 6.

2. THE GENERALIZED SKEW-T
DISTRIBUTION

We first introduce some notation that will be used
throughout the paper, then briefly review the generalized
skew-t (GST) distribution [42], and finally discuss the re-
lated properties of this distribution.

A univariate random variable X follows a scalar GST dis-
tribution, X ∼ GST (ζ, ω2, λ, ν1, ν2), if it has the following
stochastic representation

X = ζ + U−1/2ωδW + U−1/2ω(1− δ2)1/2ε,(1)

where ζ, λ and ν1 denote the location, asymmetry, and
shape parameters, respectively. The scale parameters are
denoted by ω2 and ν2, W ∼ N(0,∞)(0, 1), ε ∼ N (0, 1),
and U ∼ G(ν1/2, ν2/2) are independent. We use N(a,b)(·, ·),
N (·, ·), and G(·, ·) to denote the truncated normal in the
(a, b) interval, the normal distribution, and the Gamma dis-
tribution, respectively. We use the notation G(a, b) to in-
dicate a gamma distribution with mean a/b. Moreover, we
write δ = λ/

√
1 + λ2.

From (1), we have

E(X) = ζ +

√
2

π
k1ωδ,(2)

V (X) = ω2k2 −
2

π
k21ω

2δ2,(3)

where km = E(U−m/2) for m = 1, 2, and E(·) and V (·)
denote the expected value and variance, respectively. Special
cases of the GST include the skew-Student-t (ν1 = ν2), the
generalized Student-t (λ = 0) and the traditional symmetric
Student-t (λ = 0, ν1 = ν2). Moreover, the GST can capture
left-tailed or negative skewness when λ < 0, and right-tailed
or positive skewness when λ > 0.
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Figure 1. The GST distribution.

In order to interpret the parameters (λ, ν1, ν2) in relation
to skewness and heavyness of tails, some GST densities are
plotted in Figure 1, considering several combinations of the
parameter values λ, ν1 and ν2, with ζ and ω fixed at 0 and 1,
respectively. In Figure 1 (left panel), the densities are drawn
using λ = 0,−2,−4,−8 with ν1 and ν2 fixed at 5 and 1. As
mentioned earlier, λ = 0 corresponds to a symmetric gen-
eralized Student-t density. We can see that a more negative
value of λ implies a more negative skewness as well as heavier
tails. Figure 1 (center panel) shows the densities for ν1 at 2,
4, 10 and 15 with λ and ν2 fixed at −2 and 1. We can see that
as ν1 becomes larger, the density becomes less skewed, and
has lighter tails. Figure 1 (right panel) shows the densities
for ν2 at 1, 3, 9 and 12 with λ and ν1 fixed at −2 and 5. We
can see that as ν2 becomes larger, the density becomes more
skewed and has heavy tails. Hence, the skewness and heavy-
ness of the tails of the distribution are jointly determined by
the combination of the values of parameters λ, ν1 and ν2.

3. THE SV-GST MODEL

3.1 The model

In order to account for both the excess kurtosis and skew-
ness in stock returns, we introduce the stochastic volatility

model with generalized skew-t errors (SV-GST), which is
defined as

yt = e
ht
2 ξt,(4a)

ht+1 = μ+ ϕ(ht − μ) + σηηt,(4b)

where yt and ht are, respectively, the compounded return
and the log-volatility at time t, μ, ϕ and σ2

η denote the drift,
the persistence, and the variance of the volatilities process,
respectively. We assume that |ϕ| < 1, i.e., the log-volatility

process is stationary with the initial value h1 ∼ N (μ,
σ2
η

1−ϕ2 ),

moreover, ξt ∼ GST (ζ, ω2, λ, ν1, ν2) and ηt ∼ N (0, 1) are
independent.

To ensure model identifiability, we set ν1 = ν and ν2 = 1.
The parameters, ζ and ω, are restricted in such a way that
E(ξt) = 0 and V (ξt) = 1, because they imply the hypoth-
esis of martingale of the return series. Thus, we have ζ =

−
√

2
πk1δω and ω2 = [k2− 2

πk
2
1δ

2]−1, where k1 =
√

1
2

Γ( ν−1
2 )

Γ( ν
2 )

,

k2 = 1
ν−2 and δ = λ√

1+λ2
.

The SV-GST defined by (4a) and (4b) can be written
hierarchically using the stochastic representation of the GST
distribution in (1) as follows:

yt = (ζ + ωδWtU
− 1

2
t )e

ht
2 + e

ht
2 U

− 1
2

t ω(1− δ2)
1
2 εt,(5a)

ht+1 = μ+ ϕ(ht − μ) + σηηt,(5b)

Wt ∼ N(0,∞)(0, 1),(5c)

Ut|ν1, ν2 ∼ G(ν1
2
,
ν2
2
),(5d)

where εt and ηt are mutually independent and normally dis-
tributed with zero mean and unit variance. In this setup,
Equations (5a) and (5b) with λ = 0 (equivalently δ = 0)
and Ut = 1, ∀t = 1, . . . , T , define the SV model with a nor-
mal distribution (SV-N). Equations (5a), (5b) and (5d) with
λ = 0 define the the SV model with generalized Student-t
distribution (SV-GT). Equations (5a), (5b) and (5d) with
λ = 0 and ν1 = ν2 define the SV model with a Student-t
distribution (SV-T). Finally, Equations (5a), (5b) and (5c)
with Ut = 1, ∀t = 1, . . . , T yield the SV model with a skew
normal distribution (SV-SN).

3.2 Parameter estimation via MCMC

Denote θ = (μ, ϕ, σ2
η, ν, λ)

′ as the full parameter vector
of the SV-GST model, where ν is the degrees of freedom
parameter vector associated with the mixture distribution
and λ is the skewness parameter. Let h1:T = (h1, . . . , hT )

′

be the vector of the log volatilities, U1:T = (U1, . . . , UT )
′

and W1:T = (W1, . . . ,WT )
′ be the mixing variables, and

y1:T = (y1, . . . , yT )
′ be the information available up to time

T . The Bayesian approach to estimate the parameters in
the SV-GST model uses the data augmentation principle,
in which h1:T , W1:T and U1:T are considered as latent vari-
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ables. The joint posterior density of the parameters and la-
tent unobservable variables can be written as

p(θ,W1:T ,U1:T ,h1:T | y1:T )

∝ p(y1:T | θ,W1:T ,U1:T ,h1:T )

× p(h1:T | θ)p(W1:T )p(U1:T | θ)p(θ),(6)

where p(θ) is the prior distribution. Since the posterior den-
sity p(θ,W1:T ,U1:T ,h1:T | y1:T ) is analytically intractable,
we first sample the parameters θ and then draw the latent
variables W1:T , U1:T and h1:T from the posterior distri-
bution using the Gibbs sampling algorithm. The sampling
scheme is described in Algorithm 3.1. Sampling the log-
volatilities h1:T in Step 5 of Algorithm 3.1 is the most dif-
ficult task due to the nonlinear setup in the observational
equation (5a). In order to avoid the high correlations due
to the Markovian structure of the ht’s, in the next sub-
section we develop a multi-move block sampler to sample
h1:T by blocks (Shephard and Pitt 58, Watanabe and Omori
66, Abanto-Valle et al. 2). Details on the full conditionals
of θ and the latent variables U1:T and W1:T are given in
Appendix A.

Algorithm 3.1.

• Step 1. Set i = 0 and get starting values for the pa-

rameters θ(i) and the latent quantities W
(i)
1:T , U

(i)
1:T and

h
(i)
1:T .

• Step 2. Generate θ(i+1) in turn from its full conditional

distribution, given y1:T , h
(i)
1:T ,W

(i)
1:T and U

(i)
1:T .

• Step 3. DrawW
(i+1)
1:T ∼ p(W1:T | θ(i),U

(i)
1:T ,h

(i)
1:T ,y1:T ).

• Step 4. Draw U
(i+1)
1:T ∼ p(U1:T |

θ(i+1),W
(i+1)
1:T ,h

(i)
1:T ,y1:T ).

• Step 5. Generate h1:T by blocks as:

i) For l = 1, . . . ,K, the knot positions are generated
as kl, the floor of [T × {(l + ul)/(K + 2)}], where
the u′

ls are independent realizations of the uniform
random variable on the interval (0,1).

ii) For l = 1, . . . ,K, generate the block hkl−1+1:kl−1

jointly conditional on ykl−1:kl−1, θ(i+1),

W
(i+1)
kl−1+1:kl−1, U

(i+1)
kl−1+1:kl−1, h

(i)
kl−1

and h
(i)
kl
.

iii) For l = 1, . . . ,K, draw h
(i+1)
kl

conditional on y1:T ,

θ(i), W
(i+1)
kl

, U
(i+1)
kl

, h
(i+1)
kl−1 and h

(i+1)
kl+1 .

6. Set i = i + 1 and return to Step 2 until convergence is
achieved.

The prior distributions of the parameters are specified
as follows: μ ∼ N (μ̄, σ2

μ), ϕ ∼ N(−1,1)(ϕ̄, σ
2
ϕ), and σ2

η ∼
IG(T0

2 , M0

2 ), where IG(a, b) denotes an inverse gamma dis-
tribution with mean b/(a − 1). For ν, we assume a prior
based on Fonseca et al. [31], which has the form

p(ν) ∝
(

ν

ν + 3

) 1
2
{
ψ′

(
ν

2

)
− ψ′

(
ν + 1

2

)
− 2(ν + 3)

ν(ν + 1)2

} 1
2

,

(7)

where ψ(a) = d{log Γ(a)}
da and ψ′(a) = d{ψ(a)}

da are the
digamma and trigamma functions, respectively. To the skew-

ness parameter, we assume that λ ∼ t0.5(0,
π2

4 ), a Jeffreys’
prior suggested by Bayes and Branco [10], where tc(a, b) de-
notes the Student-t distribution with location a, scale b, and
c degrees of freedom.

3.3 Forecasting returns, volatility,
Value-at-Risk and Expected Shortfall

The K-step ahead prediction densities can be calculated
using the composition method via the following recursive
procedure:

p(yT+K | y1:T )

=

∫ [
p(yT+K | UT+K ,WT+K , hT+K)p(WT+K | θ)

× p(UT+K | θ)p(hT+K | θ,y1:T )

× p(θ | y1:T )

]
dhT+KdWT+KdUT+Kdθ,

p(hT+K | θ,y1:T )

=

∫
p(hT+K | θ, hT+K−1)p(hT+K−1 | θ,y1:T )dhT+K−1.

Numerical evaluation of the last integral is straightfor-

ward. To initialize the recursion, we use h
(i)
T and θ(i), for

i = 1, . . . , N , from the MCMC output. Given these N

draws, we sample h
(i)
T+k from p(hT+k | θ(i), h

(i)
T+k−1), W

(i)
T+k

from p(WT+k | θ(i)), and U
(i)
T+k from p(UT+k | θ(i)), for

i = 1, . . . , N and k = 1, . . . ,K, by using (5b), (5c) and

(5d), respectively. Finally, using (5a), we sample y
(i)
T+k from

p(yT+k | θ(i),W
(i)
T+k, U

(i)
T+k, h

(i)
T+k), for i = 1, . . . , N and

k = 1, . . . ,K.
To evaluate the performance of the model on VaR pre-

diction, the likelihood ratio test introduced in Kupiec [45]
is used to to test that the null hypothesis that the expected
proportion of the number of “beyond VaR” or “violation”
during the test periods is equal to α. The violation is for-
mulated by It(α) = I[yT+1 < V̂aRt(α)] for the left tail

and It(α) = I[yt > V̂aRt(α)] for the right tail, where I[.]

is an indicator function and V̂aRt(α) is the estimated VaR
at level α, which can be obtained by simulation using the
k-step ahead densities described below [See 18, 30, for a
detailed review]. Let xα be the number of violations, that

is, xα =
∑T+m

t=T+1 It(α) and α̂ = xα/m. The unconditional
test of Kupiec [45] is a likelihood ratio test with the χ2

1-
distributed test statistic defined as

LRuc = 2{log[α̂xα(1− α̂)m−xα ]− log[αxα(1− α)m−xα ]}.
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The Expected Shortfall (ES) is formally defined via
ESt(α) = E[yt|yt < V aRt(α)] for the left tail and ESt(α) =
E[yt|yt > V aRt(α)] for the right tail. Following Aas and
Haff [1] and Nakajima [51], we compute the measure de-
veloped by Embrechts et al. [29] for evaluating the perfor-

mance of the predicted ES, denoted by ÊSt(α). We define

δt(α) = yt−ÊSt(α) as an excess of return. Let δα be the αth
quantile {δt(α)}T+m

t=T+1. Next, define St(α) = I[δt(α) < δα]
for the left tail and St(α) = I[δt(α) > δα] for the right tail.

Write sα =
∑T+m

t=T+1 St(α). The measure of Embrechts et al.

[29] is given by D(α) = 1
2 (|D1(α)|+ |D2(α)|, where

D1(α) =
1

xα

∑
It(α)=1

δt(α),(8)

D2(α) =
1

sα

∑
St(α)=1

δt(α).(9)

As discussed in Aas and Haff [1] and Nakajima [51], D1(α)
is the standard back-testing measure for expected shortfall
estimates. Its weakness is that it strongly depends on the
VaR estimates without adequately reflecting the correctness
of these values; D2(α) is computed to correct this because
D2(α) measures an average difference between the return
and the estimated ES for the α-level tail of that difference
from all test periods. A smaller D(α) implies more precise
prediction of ES.

4. BAYESIAN MODEL COMPARISON

In this section, we describe three Bayesian model selec-
tion criteria: the deviance information criterion [60, 11, 17],
the Bayesian predictive information criterion (BPIC) [5, 6],
and the log predictive score (LPS) [35, 34, 28]. The first
one is directly obtained from the MCMC output. The oth-
ers are obtained by using the predictive distribution at each
time. The predictive distribution is evaluated numerically
by using the auxiliary particle filtering method of Pitt and
Shephard [54] described in Appendix C.

4.1 The deviance information criterion

Spiegelhalter et al. [60] introduced the deviance informa-
tion criterion (DIC) defined as

DIC = −2Eθ|y1:T
[log p(y1:T | θ)] + pD,(10)

where Eθ|y1:T
denotes the expectation taken with respect

to the posterior distribution of θ given the data y1:T . The
second term pD in (10) is the effective number of parameters,
which measures the complexity of the model. Specifically,
pD is defined as twice the difference between the deviance
evaluated at the posterior mean of the parameters and the
posterior mean of the deviance:

pD = 2[log p(y1:T | θ̄)− Eθ|y1:T
[log p(y1:T | θ)]].(11)

As pointed out by Stone [61], Robert and Titterington
[55], Celeux et al. [17] and Ando [6], the DIC suffers from
some theoretical drawbacks. First, in the derivation of DIC,
Spiegelhalter et al. [60, p. 604] assumed the specified para-
metric family of probability distributions that generate fu-
ture observations encompassing the true model. This as-
sumption may not always hold. Secondly, the observed data
are used both to construct the posterior distribution and to
compute the posterior mean of the expected log likelihood.
Thus, the bias in the estimate of DIC tends to considerably
underestimate the true bias. To overcome these theoretical
problems in DIC, Ando [6] proposed the Bayesian predictive
information criterion (BPIC) as an improved alternative of
DIC.

4.2 The Bayesian predictive information
criterion

Ando [5, 6] introduced BPIC, which is defined as

BPIC = −2Eθ|y1:T
[log{p(y1:T | θ)}] + 2T b̂,(12)

where b̂ is given by

b̂ ≈ 1

T

{
Eθ|y1:T

[log{p(y1:T | θ)p(θ)}]

− log[p(y1:T | θ̂)p(θ̂)] + tr{J−1
T (θ̂)IT (θ̂)}+ 0.5q

}
,(13)

q is the dimension of θ, Eθ|y1:T
[.] denotes the expectation

with respect to the posterior distribution, θ̂ is the posterior
mode, and

IT (θ̂) =
1

T

T∑
t=1

(
∂�T (yt,θ)

∂θ

∂�T (yt,θ)

∂θ′

)∣∣∣∣
θ=

ˆθ
,

JT (θ̂) =
1

T

T∑
t=1

(
∂2�T (yt,θ)

∂θ∂θ′

)∣∣∣∣
θ=

ˆθ

with �T (yt,θ) = log p(yt | y1:t−1,θ) + log p(θ)/T .

4.3 The log predictive score criterion

Scoring rules provide summary measures for the evalua-
tion of probabilistic forecast by assigning a numerical score
based on the predictive distribution and on the event or
value that materializes. The fit of the models studied here
will be assessed using log predictive scores [35, 34, 28]. The
average log predictive score for the one-step ahead predic-
tion is given by

LPS = − 1

T

T∑
t=1

log p(Yt | Y1:t−1, θ̂),(14)

where Y1:t−1 = (Y1, . . . , Yt−1)
′, θ̂ is an estimate of the

model parameters and p(Yt | Y1:t−1, θ̂) is the one-step ahead
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predictive density. The smaller the LPS value, the better the
model fits the data. In the application, we use θ̂ as being the
posterior mean obtained from the MCMC output. Although
an analytical evaluation of p(Yt | Y1:t−1, θ̂) is not possible,
this predictive density can be evaluated numerically by us-
ing the auxiliary particle learning (APF) method [54], which
is described in Appendix C.

5. ANALYSIS OF THE SZSE-CI DATA

5.1 The data

In this section, we carry out a detailed analysis of the
daily closing prices of the Shenzhen Stock Exchange Com-
ponent Index (SZSE-CI). The SZSE-CI is a capitalization
weighted index, which is composed with the 40 top com-
panies that issue A-shares on SZSE. The base is 1,000 and
the base day is July 20, 1994. The SZSE regularly inspects
the performance of the component shares, timely replaces
that of lower performance. The replacement will not be too
frequent and it is usually in January, March and September
each year.

The period for the SZSE-CI we consider is from February
16, 2005 to December 12, 2012, which yields 1,956 obser-
vations. The data set was obtained from the Yahoo finance
website, available to download at http://finance.yahoo.com.
Throughout, we work with the mean corrected returns com-
puted as

yt = 100× {(logPt − logPt−1)−
1

T

T∑
j=1

(logPj − logPj−1)},

where Pt is the closing price on day t.
Table 1 summarizes descriptive statistics for the corrected

compounded returns with the time series plot in Figure 2.
For the returns series, the sample mean, standard devia-
tion, skewness and kurtosis were 0.00, 1.98, −0.32 and 5.38,
respectively. Note that the kurtosis of the returns is > 3
and the skewness is slightly below zero. These evidences
imply that the daily SZSE-CI returns exhibit a departure
from the underlying normality assumption. Thus, we rean-
alyze this data set with the aim of providing a robust in-
ference by using the generalized skew-t distribution (GST).
In our analysis, we fit the SV-N, SV-T, SV-GT, SV-SN,
SV-ST and SV-GST models to the SZSE-CI data. All the
calculations were carried out by running the stand alone
codes developed by the authors using an open source C++
library for statistical computation along with the Scythe
statistical library [53], which is available for free download
at http://scythe.wustl.edu.

5.2 Parameter estimates

In all posterior computations, we simulate the ht’s in
a multi-move fashion with stochastic knots based on the
method described by [58, 9, 2, 3, 4]. We fix the number of

Table 1. Summary statistics for SZSE-CI mean corrected
returns

mean s.d. max min skewness kurtosis
Returns 0.00 1.98 9.16 −9.75 −0.32 5.38

Figure 2. SZSE-CI returns with sample period from February,
16, 2005 to December 12, 2012.

blocks K to be 30 in such a way that each block contains 62
h′
ts on average. We set the prior distributions of the common

parameters as: μ ∼ N (0, 100), ϕ ∼ N(−1,1)(0.95, 100) and
σ2
η ∼ IG(2.5, 0.025). For ϕ, its prior mean and variance are

0.0032 and 0.3328. This prior setup is equivalent to the uni-
form distribution on interval (−1, 1), which gives zero mean

and variance of 0.3333. We assume that λ ∼ t0.5(0,
π2

4 ), a
Jeffreys’ prior suggested by Bayes and Branco [10]. Finally,
for ν, we assume the prior suggested by Fonseca et al. [31].

For all of the models we considered, we generated 70,000
MCMC iterations. In all cases, the first 20,000 draws were
discarded as a “burn-in” period. In order to reduce the au-
tocorrelations between successive values of the simulated
chain, only every 20th values of the chain were stored.
With the resulting 2,500 values, we calculated the posterior
means, the 95% highest posterior density (HPD) intervals
[19, p. 219], and the convergence diagnostic (CD) statistics
[33]. If the sequence of the recorded MCMC output is sta-
tionary, it converges in distribution to the standard normal.
According to the CD, the null hypothesis that the sequence
of 2500 draws is stationary is accepted at the 5% level, i.e.,
CD ∈ (−1.96, 1.96), for all the parameters in all the models
considered here. Table 2 summarizes the results.

It is easy to see from Table 2 that the posterior means
of ϕ and 95% HPD intervals are very close to the unity,
which is consistent with the existing evidence of great per-
sistence in the log-volatility process. Additionally, the pos-
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Table 2. SZSE-CI returns: Estimation results for the SV-N, SV-T, SV-GT, SV-SN, SV-ST and SV-GST models. First row: Posterior mean. Second row: 95%
HPD interval. Third row: CD statistics. Fourth row: Inefficiency factors

Model
Parameter SV-N SV-T SV-GT SV-SN SV-ST SV-GST

1.1163 1.1218 1.1275 1.1051 1.1188 1.1028
μ (0.7131,1.5011) (0.5361,1.6635) (0.5456,1.6864) (0.7112,1.5342) (0.5781,1.6230) (0.5386,1.5908)

−1.31 −0.51 −0.30 0.26 −0.52 0.29
1.00 1.00 1.00 1.00 1.00 1.06

0.9820 0.9891 0.9890 0.9832 0.9889 0.9887
ϕ (0.9689,0.9939) (0.9801,0.9984) (0.9787,0.9978) (0.9710,0.9942) (0.9794,0.9979) (0.9793,0.9979)

−0.04 −0.27 0.94 −0.86 −0.53 −0.66
3.12 3.48 2.99 3.52 3.48 3.35

0.0174 0.0101 0.0100 0.0158 0.0097 0.0101
σ2
η (0.0092,0.0264) (0.0055,0.01536) (0.0054,0.0153) (0.0085,0.02390) (0.0049,0.0155) (0.0054,0.0157)

−0.12 0.08 −1.31 −0.35 1.15 0.54
6.11 6.18 6.97 6.44 6.79 6.78

– 9.1516 9.5762 – 9.3616 8.8054
ν – (5.9118,12.6834) (6.1546,13.3752) – (6.1809,13.2712) (6.3472,12.1114)

– −1.68 0.88 – 1.64 0.72
– 5.48 50.06 – 7.06 30.52

– – – −0.9271 −0.4612 −0.4655
λ – – – (−1.4190,−0.0901) (−0.8516,−0.0365) (−0.8624,−0.0468)

– – – −0.74 1.79 −1.61
– – – 18.83 3.97 3.88
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Figure 3. SZSE-CI data set: posterior smoothed mean of
mixture variable Ut.

terior means of ϕ under the SV-N and the SV-SN models
are slightly smaller than those under the other four models.
As expected, the posterior means of σ2

η under the SV-N and
SV-SN models are higher than those under the SV-T, SV-
GT, SV-ST and the SV-GST models, indicating that the
log-volatility process of the last four models is less variable
than that of the SV-N and SV-SN models. Under the SV-
T, SV-GT, SV-ST and SV-GST models, the magnitude of
the tail-heaviness is measured by the ν parameter. More-
over, under these four models the posterior means of ν are
9.1516, 9.5762, 9.3616 and 8.8054, respectively. Regarding
the skewness parameter, the posterior means of λ, in the SV-
SN, SV-ST and SV-GST models are −0.9271, −0.4612 and
−0.4665, respectively. For all the models considered here, λ
is significantly below 0, since all the three 95% HPD inter-

Figure 4. SZSE-CI data set. SV-N (solid line) and SV-GST
(dotted line).

vals do not contain zero. For the SV-ST and SV-GST, these
results support the necessity to model asymmetry and heavy
tails simultaneously. The magnitudes of the mixing parame-
ter Ut are associated with extremeness of the corresponding
observations. In the Bayesian paradigm, the posterior mean
of the mixing parameter can be used to identify a possi-
ble outlier (see, for instance, Rosa et al. [56]). The SV-T,
SV-GT, SV-ST and SV-GST models can accommodate an
outlier by inflating the variance component for that obser-
vation in the conditional distribution with smaller Ut value.
This fact is shown in Figure 3 where we plot the posterior
mean of the mixing variable Ut for the SV-T (left top panel),
SV-ST (right top panel), SV-GT (left bottom panel) and
SV-GST (right bottom panel) models, respectively. In Fig-
ure 4, we draw the smoothed mean of eht obtained from the
MCMC output for the SV-N model (solid line) and the SV-
GST model (dotted line). From a practical point of view, we
are mainly interested in whether there is a significant differ-
ence between the two series. Therefore, in the bottom panel
of Figure 4, we show the smoothed mean of the difference
of eht obtained from the SV-N and SV-GST models. Some
extreme returns make the differences more clear. This can
have a substantial impact, for instance, in the evaluation of
derivative instruments and several strategic or tactical asset
allocation topics.

In order to evaluate the sensitivity to the choice of the
priors, we use a set of 10 priors for ϕ ans σ2

η. In Table 3, we
report these results. Essentially the posterior estimates are
almost the same, implying that the results are not sensitive
to the priors we choose.

5.3 Model comparison and diagnostics

The main purpose of this section is to compare the
SV-GST with the other competing models. To assess the
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Table 3. SZSE-CI returns: Prior Sensitivity

Priors Posteriors

μ φ σ2
η μ φ σ2

η λ ν

1 N (0, 100) N(−1,1)(0.95, 100) IG(5.0, 0.025) 1.1052 0.9909 0.0079 −0.4545 8.8054
(0.4768,1.70422) (0.9820,0.9985) (0.0044, 0.0132) (−0.8427,−0.0384) (6.3472,12.1114)

2 N (0, 100) N(−1,1)(0.90, 100) IG(2.5, 0.025) 1.1176 0.9917 0.0072 −0.4462 8.9864
(0.3678,1.7652) (0.9819,0.9987) (0.0036,0.0130) (−0.8494,−0.0542) (6.3599,13.9385 )

3 N (0, 100) N(−1,1)(0.91, 100) IG(6.0, 0.025) 1.1127 0.9908 0.0082 −0.4526 8.9103
(0.4368,1.7604) (0.9805, 0.9985) (0.0042,0.0148) (−0.8246,−0.0539) (6.3909,12.9119)

4 N (−1, 100) N(−1,1)(0.92, 100) IG(4.0, 0.025) 1.1035 0.9929 0.0067 −0.4236 8.3768
(0.2301,1.7498) (0.9849,0.9991) ( 0.0031,0.0109) (−0.7944,−0.0192) (6.00989,12.5564)

5 N (−1, 100) N(−1,1)(0.93, 100) IG(1.5, 0.025) 1.1138 0.9900 0.0080 −0.4644 9.0574
(0.4858,1.6592) (0.9792, 0.9981) (0.0044.0.0163) (−0.8397,−0.0426) (6.15416,13.6562)

6 N (−1, 100) N(−1,1)(0.94, 100) IG(4.5, 0.025) 1.0953 0.9930 0.0060 −0.4389 8.7106
(0.0624,1.8416) (0.9843,0.9992) ( 0.0030,0.0113) (−0.8268, −0.0265) (6.1684,13.3611)

7 N (−1, 100) N(−1,1)(0.95, 100) IG(5.0, 0.025) 1.0965 0.9933 0.0058 −0.4456 8.6432
(0.1521,1.8172) (0.9853,0.9992) (0.0027,0.0099) (−0.8065, −0.0602) (5.8861,12.4514)

8 N (−1, 100) N(−1,1)(0.98, 100) IG(0.02, 0.02) 1.1167 0.9900 0.0089 −0.4592 9.0251
(0.4904,1.7144) (0.9791,0.9983) (0.0044,0.0156) (−0.8481, −0.0272) (6.0687,15.1378)

9 N (−1, 100) N(−1,1)(0.97, 100) IG(0.04, 0.04) 1.1074 0.9894 0.0112 −0.4727 9.3807
(0.5552,1.5998) (0.9752,0.9968) (0.0058,0.01952) (−0.8865, −0.0520) (6.7123.15.1211 )

10 N (−1, 100) N(−1,1)(0.98, 100) IG(0.08, 0.08) 1.1168 0.9843 0.0108 −0.4681 10.2256
(0.6621,1.5637) (0.9709, 0.9953) (0.0064,0.0222) (−0.8659,−0.0039) (7.0907,15.7129)
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Table 4. SZSE return data set. DIC: deviance information criterion, BPIC: Bayesian predictive information criterion, and LPS:
log predictive score

DIC BPIC LPS
Model Value Ranking Value Ranking Value Ranking

SV-N 7,568.1 6 11,190.0 6 2.9557 5
SV-T 7,504.8 5 7,605.6 4 2.0388 4
SV-GT 7,492.2 3 7,599.8 3 2.0384 3
SV-SN 7,495.3 4 11,000.6 5 3.0018 6
SV-ST 7,419.2 2 7,598.9 2 2.0370 1
SV-GST 7,398.2 1 7,595.5 1 2.0383 2

Table 5. SZSE returns. P-values of the diagnostics test using
the standardized innovations ςt. The BDS test developed by
Brock et al. [13] is used to test for the null hypothesis of

independent and identical distribution (iid)

Box-Ljung Test Jarque-Bera Test BDS Test

(p-value) (p-value) (p-value)

SV-N 0.2351 0.0000 0.0000
SV-T 0.1172 0.0186 0.1640

SV-GT 0.1200 0.0305 0.1267
SV-SN 0.2060 0.0000 0.0003
SV-ST 0.0984 0.4271 0.4471

SV-GST 0.0952 0.6317 0.4894

goodness-of-fit of the estimated models, we calculate the
values for the corresponding DIC, BPIC and LPS. For the
SV-N, SV-T, SV-GT, SV-SN, SV-ST and SV-GST mod-
els, the log-likelihood function, log p(y1:T |θ), was estimated
by using the APF with 10,000 particles. From Table 4, the
DIC and BPIC values indicate the SV-GST model is the
best model among all the models considered here, suggest-
ing that the SZSE-CI return data demonstrate a sufficient
departure from underlying normality assumptions and sym-
metry.

Finally, Table 5 reports the diagnostics test using the
standardized innovations, ςt (see its definition in Appendix
D). The rejections of Jarque-Bera test and Brock-Dechert-
Scheinkman (BDS) test imply the misspecification of the
model for the SV-N, SV-SN, SV-T, SV-GT. We accept the
SV-ST and SV-GST models. Figure 5 shows the quantile-
quantile plot for standardized innovations ςt. From this plot,
we can see that the SV-GST outperforms the other SV mod-
els for the SZSE-CI returns.

5.4 Forecasting and Value at Risk

In order to examine the performance of VaR and ES fore-
cast for the competing models, we use the data from Decem-
ber 13, 2012 to April 1, 2014 as validation period, giving
m = 310 trading days. In the moving window approach, we
use the first T observations in the period February 16, 2005
to December 12, 2012 to estimate the model and to forecast
the (T +1)th observation; the sample is then rolled forward

Figure 5. SZSE-CI data set: quantile-quantile plot of the
residuals ςt. The solid line plots the quantiles of the N (0, 1)
against the quantiles of the standard normal and the points
were the sorted values of ςt against the quantiles of the

standard normal.

by one observation, so that the second to the (T + 1)th
observations are used to forecast the (T + 2)th observation.
This process is repeated until the end of the sample, i.e., the
(T + m)th observation. We thus obtain 310 volatility fore-
casts, VaR and ES estimates with confidence levels of 5%
and 95%. The competing models are: RiskMetrics, SV-N,

496 C. A. Abanto-Valle et al.



Table 6. SZSE-CI return data set. Violation rate in 310
one-step-ahead forecast, P-values of the unconditional

coverage test, and the rank of the value-at-risk (VaR) at the
5% level

Violation LRuc D(0.05) D(0.95)
Rate (%)

RiskMetriks 0.073 0.1022 0.3511 0.2543
SV-N 0.062 0.1728 0.2030 0.1655
SV-T 0.068 0.1728 0.1060 0.1498
SV-GT 0.068 0.1728 0.1059 0.1351
SV-SN 0.068 0.1728 0.1039 0.0608
SV-ST 0.058 0.5248 0.0482 0.0158
SV-GST 0.061 0.3775 0.0500 0.0142

Table 7. MSPE for SZSE-CI returns

SV-N SV-T SV-GT SV-SN SV-ST SV-GST
4.3722 4.3455 4.3131 4.3321 4.3088 4.2867

SV-T, SV-N, SV-ST and SV-GST. The results of 310 one-
step-ahead forecasts are presented in Table 6. According to
the unconditional coverage test we accept the null hypoth-
esis that the achieved violation rate is equal to 5% for all
the models. According to the violation rate the SV-ST and
SV-GST give better performance than the other compet-
ing models. Similar results are obtained by comparing the
D(0.05) and D(0.95).

In order to evaluate the prediction accuracy of the SV-
N, SV-T, SV-N, SV-ST and SV-GST models, we use the
same moving window approach as in the VaR estimation.
We define the Mean Square Predictive Error (MSPE) as

MSPEg =

T+m∑
t=T+1

1

m

N∑
i=1

1

N
(y

(i,g)
t − yt)

2

where y
(i,g)
t is obtained by simulation using the

MCMC procedure described in section 3.3 and
g ∈ {SV-N, SV-T, SV-N, SV-ST,SV-GST} denotes the
model.

Table 7 shows that the SV-GST model outperforms the
other models using the MSPE. Thus, according to the
MSPE, the SV-GST model gives the best out-of-sample fit.
It is also important to emphasize that, in general, we do
not advocate the use of the SV-GST model in all situations
but recommend using the model discussed here to assess
the robustness of the conclusions, replacing the normal as-
sumption with a more flexible model if this provides a more
appropriate analysis.

6. DISCUSSION

In this article, we have proposed the stochastic volatility
model with generalized skew-t (SV-GST) errors as an alter-
native to the normal (symmetric) assumption in the con-

ditional distribution of the returns. The SV-GST model al-
lows a parsimonious yet flexible treatment of both the skew-
ness and the heaviness of the tails of the error distribution.
Within the Bayesian framework, we have developed a fast
and efficient MCMC sampling procedure to estimate all the
parameters and latent quantities in our proposed SV-GST
model. We used objective priors for the shape and the skew-
ness parameters, ν and λ, based on Fonseca et al. [31] and
Bayes and Branco [10], respectively. As a by-product of the
MCMC algorithm, we were able to produce an estimate of
the latent information process which can be used in finan-
cial modeling. The use of mixing variables, U1:T not only
simplifies the full conditional distributions required for the
Gibbs sampling algorithm, but also provides a mean for the
outlier diagnostics. We applied our methods to the anal-
ysis of the SZSE-CI return series, which showed that the
SV-GST model provides a better fit than the SV-N, SV-T,
SV-GT and SV-SN models in terms of parameter estimates,
interpretation and robustness aspects. On the other hand,
under the SV-GST model, the posterior mean and the 95%
HPD interval of the parameter ν were respectively 8.8054
and (6.3472, 12.1114), and the posterior mean and the en-
tire 95% HPD interval of the parameter λ were below 0,
indicating that there was a strong evidence of the skewness
and heavy tails of the error distribution in the SZSE-CI data
set. This fact was also found in the S&P 500, but it did not
appear in the FTSE100 index returns (see Supplementary
Materials). We found that the SV-GST model outperforms
the other models using the MSPE given the best out-of-
sample fit and it can be used to VaR and ES forecast.

A potential interesting future research topic is the further
investigation of the large observations by introducing jump
components or considering asymmetry threshold models.
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APPENDIX A. THE FULL CONDITIONALS

In this appendix, we describe the full conditional distri-
butions of the parameters and the mixing latent variables
U1:T and W1:T under the SV-GST model.

Full conditional distributions of μ, ϕ and σ2
η

The prior distributions of the common parameters are
specified as: μ ∼ N(μ̄, σ2

μ), ϕ ∼ N(−1,1)(ϕ̄, σ
2
ϕ), σ2

η ∼
IG(T0

2 , M0

2 ). We have the following full conditional for μ:

μ | h1:T , ϕ, σ
2
η ∼ N (

bμ
aμ

,
1

aμ
),(A.1)
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where aμ = 1
σ2
μ
+ (T−1)(1−ϕ)2

σ2
η

+ 1−ϕ2

σ2
η

and bμ = μ̄
σ2
μ
+

(1−ϕ2)
σ2
η

h1 +
∑T−1

t=1 (ht+1−ϕht)(1−ϕ)
σ2
η

. In a similar way, the con-

ditional distribution of ϕ is given by

p(ϕ | h1:T , μ, σ
2
η) ∝ Q(ϕ) exp{−aϕ

2
(ϕ− bϕ

aϕ
)2}I(|ϕ| < 1),

(A.2)

where Qϕ =
√

1− ϕ2 exp{− 1
2σ2

η
[(1 − ϕ2)(h1 − μ)2}, aϕ =

∑T−1
t=1 (ht−μ)2

σ2
η

+ 1
σ2
ϕ
, bϕ =

∑T−1
t=1 (ht−μ)(ht+1−μ)

σ2
η

+ ϕ̄
σ2
ϕ
and I(·) is

the indicator function. Since the closed form expression of
p(ϕ | h1:T , μ, σ

2
η) in (A.2) is not available, we sample from

it by using the Metropolis-Hastings algorithm with a trun-
cated N(−1,1)(

bϕ
aϕ

, 1
aϕ

) distribution as the proposal density.

Finally, the full conditional of σ2
η is IG(T1

2 , M1

2 ), where

T1 = T0+T andM1 = M0+[(1−ϕ2)(h1−μ)2]+
∑T−1

t=1 [ht+1−
μ− ϕ(ht − μ)]2.

Full conditional distributions of ν, λ, Ut and
Wt

We set ζ and ω in a way such that E(yt | ht) = 0 and

V (yt | ht) = eht . Thus, we have ζ = −
√

2
πk1δω and ω2 =

[k2 − 2
πk

2
1δ

2]−1, where k1 =
√

1
2

Γ( ν−1
2 )

Γ( ν
2 )

, k2 = 1
ν−2 and δ =

λ√
1+λ2

. Then the full conditional distributions of ν and λ

are given as follows:

p(ν | .)

∝
(

ν

ν + 3

) 1
2
{
ψ′

(
ν

2

)
− ψ′

(
ν + 1

2

)
− 2(ν + 3)

ν(ν + 1)2

} 1
2

×
(
1

2

)Tν
2

e
ν
2

∑T
t=1 logUt [Γ(

ν

2
)]−T

(
1

ω

)T

× e
− 1

2ω2(1−δ2)

∑T
t=1 Ute

−ht (yt−ζ−ωδWtU
− 1

2
t e

ht
2 )2

,

p(λ | .)

∝
(
1 +

2λ
π2

4

)− 3
4
(

1

1− δ2

)T
2

× e
− 1

2ω2(1−δ2)

∑T
t=1 Ute

−ht (yt−ζ−ωδWtU
− 1

2
t e

ht
2 )2

.

Since the above full conditional distributions are not in any
known closed form, we must simulate ν and λ using the
Metropolis-Hastings algorithm. The proposal density used
for ν and λ are N(2,∞)(μν , τ

2
ν ) and N (μλ, τ

2
λ), respectively,

with μυ = x − q′(x)
q′′(x) and τ2υ = max{0.001, (−q′′(x))−1} for

υ = ν or λ, where x is the value of the previous iteration,
q(.) is the logarithm of the conditional posterior density, and
q′(.) and q′′(.) are the first and second derivatives, respec-
tively.

Since Ut ∼ G(ν2 ,
1
2 ), the conditional distribution of Ut is

given by

p(Ut | ht,Wt, ν, λ)

∝ Q(Ut)U
ν+1
2 −1

t e
−Ut

2 [1+
e−ht (yt−ζe

ht
2 )2

ω2(1−δ2)
]
,(A.3)

where Q(Ut) = e
U

1
2
t δWte

−ht
2 (yt−ζe

ht
2 )

ω(1−δ2) . However, p(Ut |
ht,Wt, ν, λ) in (A.3) does not have a closed form expres-
sion, we shall sample from it by using the Metropolis-

Hastings algorithm with G(ν+1
2 , 1

2 [1+
e−ht (yt−ζe

ht
2 )2

ω2(1−δ2) ]) as the

proposal density. Finally, using Equations (5a) and (5c),
we obtain the full conditional distribution of Wt given by

N[0,∞)(
δU

1
2
t e−

ht
2 [yt−ζe

ht
2 ]

ω , 1
1−δ2 ).

APPENDIX B. THE BLOCK SAMPLER

In order to simulate h1:T = (h1, . . . , hT )
′ in the SV-ST

model, we consider a two-step process. First, we simulate h1

conditional on h2:T and then draw h2:T conditional on h1.
To sample the vector h2:T , we develop a multi-move block al-
gorithm. In our block sampler, we divide it intoK+1 blocks,
hkl−1+1:kl−1 = (hkl−1+1, . . . , hkl−1)

′ for l = 1, . . . ,K + 1,
with k0 = 1 and kK+1 = T , where kl − 1 − kl−1 ≥ 2 is
the size of the l−th block. We sample the block of distur-
bances ηkl−1:kl−2 = (ηkl−1

, . . . , ηkl−2)
′ given the end con-

ditions hkl−1
and hkl

instead of hkl−1+1:kl−1. In order to
facilitate the exposition, we omit the dependence on θ,
Wt+1:t+k and Ut+1:t+k, and suppose that kl−1 = t and
kl = t+ k+1 for the l−th block, such that t+ k < T . Then
ηt:t+k−1 = (ηt, . . . , ηt+k−1)

′ are sampled at once from their
full conditional distribution f(ηt:t+k−1|ht, ht+k+1,yt:t+k),
which without the constant terms is expressed in the log
scale as

log f(ηt:t+k−1|ht, ht+k+1)

= const− 1

2

t+k−1∑
r=t

η2r +

t+k∑
r=t+1

l(hr)

− 1

2σ2
η

[ht+k+1 − μ− ϕ(ht+k − μ)]2I(t+ k < T ).(B.1)

We denote the first and second derivatives of l(hr) with
respect to hr by l′ and l′′, where l(hr) = log p(yr |
ν, λ,Wr, Ur, hr) is obtained from Equation (5a). As (B.1)
does not have a closed form, we use the Metropolis-Hastings
acceptance-rejection algorithm (64, 21) to sample from
(B.1). We propose to use the following artificial Gaussian
state space model as a proposed density to simulate the
block ηt+1:t+k

ŷr = hr + ξr, ξr ∼ N (0, dr), r = t+ 1, . . . , t+ k,(B.2)

hr+1 = μ+ ϕ(hr − μ) + σηηr, ηr ∼ N (0, 1),(B.3)

r = t, t+ 1, . . . , t+ k − 1,
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where the auxiliary variables dr and ŷr for r = t+1, . . . , t+
k − 1 and t+ k = T are defined as follows:

dr = − 1

l
′′
F (ĥr)

,

ŷr = ĥr + drl
′
(ĥr).(B.4)

For r = t+ k < T , it follows that

dr =
σ2
η

ϕ2 − σ2
ηl

′′
F (ĥt+k)

,

ŷr = dr

[
l
′
(ĥr)− l

′′

F (ĥr)ĥr +
ϕ

σ2
η

[hr+1 − μ(1− ϕ)]

]
.(B.5)

We obtain the measurement equation (B.2) by a second-
order expansion of lr around some preliminary estimate of
ηr, denoted by η̂r, where ĥr is the estimate of hr equivalent
to η̂r, and

l
′′

F (hr) = E[l
′′
(hr)] = −1

2
− (ζ + ωδWtU

− 1
2

t )2

4ω2(1− δ2)
Ur,(B.6)

which is everywhere strictly negative. The expectation in
(B.6) is taken with respect to yr conditional on hr, Wr, Ur,
θ. Since (B.2)–(B.3) define a Gaussian state space model,
we can apply de Jong and Shephard’s simulation smoother
(27) to perform the sampling. We denote this density by g.
Since f is not bounded by g, we use the Metropolis-Hastings
acceptance-rejection algorithm to sample from f , as recom-
mended by Chib and Greenberg [21]. In the SV-SN case, we
use the same procedure with Ut = 1 for t = 1, . . . , T .

The procedure to select the expansion block ĥt+1:t+k is
described in the Algorithm B.1.

Algorithm B.1.

1. Initialize ĥt+1:t+k.
2. Evaluate recursively l

′
(ĥr) and l

′′

F (ĥr) for r = t +
1, . . . , t+ k.

3. Conditional on the current values of the vector of pa-
rameters θ, Ut+1:t+k, Wt+1:t+k, ht and ht+k+1, define
the auxiliary variables ŷr and dr using equations (B.4)
or (B.5) for r = t+ 1, . . . , t+ k.

4. Consider the linear Gaussian state-space model in (B.2)
and (B.3). Apply the Kalman filter and a disturbance
smoother [44] and obtain the posterior mean of ηt:t+k

(ht:t+k) and set η̂t:t+k (ĥt:t+k) to this value.
5. Return to Step 2 and repeat the procedure until achiev-

ing convergence.

Finally, we describe the updating procedure for h1 and
the knot conditions hkl

, for l = 1, . . . ,K. First, we sim-
ulate h1 from p(h1|h2,θ,y1:T ) by using the Metropolis-
Hasting (MH) algorithm with the normal density, N (μ +
ϕ[h2 − μ], σ2

η), as a proposal. Then, the acceptance prob-

ability is given by αMH = min{1, Q(hp
1)

Q(h
(i−1)
1 )

}, where Q(h1)

is the conditional density of y1 | θ,W1, U1, h1. Let hp
1 and

h
(i−1)
1 denote the proposal and the previous iteration val-

ues. As the density p(hkl
|hkl−1, hkl+1) does not have a

closed form, we use the MH algorithm with the proposal

N (
μ(1−ϕ)2+ϕ(hkl−1+hkl+1)

1+ϕ2 ,
σ2
η

1+ϕ2 ). As before, hp
kl

and h
(i−1)
kl

denote the proposal and the previous iteration values, re-
spectively. Thus, the acceptance probability is given by

αMH = min{1, Q(hp
kl

)

Q(h
(i−1)
kl

)
}, where Q(hkl

) is the conditional

density of ykl
given θ,Wkl

, Ukl
, hkl

.

APPENDIX C. THE AUXILIARY PARTICLE
FILTER

In the filtering problem the goal is to sample ran-

dom variates {h(1)
t , . . . , h

(N)
t } from the filtering distribution

p(ht|θ,y1:t). We employ the auxiliary particle filter (APF)
introduced by Pitt and Shephard [54], which allows us to
draw samples from the filtering distribution p(ht|θ,y1:t) by
numerical approximation.

First, let us consider {(h(1)
t−1, w

(1)
t−1), . . . , (h

(N)
t−1, w

(N)
t−1)} ∼

p(ht−1|θ,y1:t−1), where the probability density function,
p(ht−1|θ,y1:t−1), of the continuous random variable, ht−1, is
approximated by a discrete variable with random support. It
then follows that the one-step ahead predictive distribution
p(ht|θ,y1:t−1) can be approximated as:

p(ht | θ,y1:t−1) =

∫
p(ht | ht−1,θ)p(ht−1 | θ,y1:t−1)dht−1

≈
N∑
i=1

p(ht | θ, h(i)
t−1)w

(i)
t−1,(C.1)

where h
(i)
t−1 is a sample from p(ht−1 | θ,y1:t−1) with weight

w
(i)
t−1. The one-step ahead density, p(yt | θ,y1:t−1), is then

estimated by Monte Carlo averaging of p(yt | θ, ht) over the

draws of h
(i)
t ∼ p(ht | θ, h(i)

t−1) as follows:

p(yt | θ,y1:t−1) =

∫
p(yt | ht,θ)p(ht | θ,y1:t−1)dht

≈
N∑
i=1

p(yt | θ, h(i)
t )w

(i)
t−1.(C.2)

This recursive procedure needs to draw ht sequentially from
the filtered distribution, p(ht | θ,y1:t), which is updated as
described in the APF Algorithm.

The APF Algorithm

1. Posterior at t− 1:
{(h(1)

t−1, w
(1)
t−1), . . . , (h

(i)
t−1, w

(i)
t−1), . . . , (h

(N)
t−1, w

(N)
t−1)} ∼

p(ht−1 | θ,y1:t−1).

2. For i = 1, . . . , N , calculate μ
(i)
t = μ+ ϕ(h

(i)
t−1 − μ).

3. Sampling (k, ht):
For i = 1, . . . , N
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Indicator: ki such that P (ki = k) ∝ p(yt | μ(ki)
t )w

(ki)
t−1 .

Evolution:

h
(i)
t ∼ N (μki

t , σ2).

Weights: compute w
(i)
t as follows

w
(i)
t ∝ p(yt | θ, h(i)

t )

p(yt | θ, μ(ki)
t )

.

4. Posterior at t:
{(h(1)

t , w
(1)
t ), . . . , (h

(i)
t , w

(i)
t ), . . . , (h

(N)
t , w

(N)
t )} ∼ p(ht |

θ,y1:t).

The Log-likelihood Estimation Algorithm

1. Set t = 1 and obtain a sample h
(i)
t−1.

2. For each value of h
(i)
t−1 sample

h
(i)
t ∼ N (μ+ ϕ(h

(i)
t−1 − μ), σ2

η).

3. Estimate the one-step ahead density as

p(yt | θ,y1:t−1) ≈
N∑
i=1

p(yt | θ, h(i)
t )w

(i)
t−1.

4. Apply the filtering procedure in the APF Algorithm to

obtain {(h(1)
t , w

(1)
t ), . . . , (h

(i)
t , w

(i)
t ), . . . , (h

(N)
t , w

(N)
t )}.

5. Return the log likelihood ordinate

log p(y1:T | θ) = 1

T

T∑
t=1

log p(yt | θ,y1:t−1).

APPENDIX D. DIAGNOSTICS

In order to check the distribution assumptions of the
SV models, we use an approach similar to Kim et al. [43].
The diagnostics test is based on the probability integral
transform of the realizations yot+1 taken with respect to
the one-step-ahead prediction density p(yt+1 | y1:t,θ). The
probability integral transform, εt+1, is simply the cumu-
lative distribution function corresponding to the predic-
tion density p(yt+1 | y1:t,θ) evaluated at yot+1 : εt+1 =
Prob(yt+1 ≤ yot+1 | y1:t,θ). For t = 1, . . . , T , under
the null hypothesis that the true distribution of yot+1 is
p(yt+1 | y1:t,θ) (or equivalently, the model is correctly
specified), the εt+1 converges in distribution to indepen-
dent and identically distributed uniform random variables
on [0, 1] [see, 57, 59, 43, 32, 47, among others]. By let-
ting ςt+1 = Φ−1(εt+1), where Φ() denotes the standard
normal cumulative distribution function, a sequence of in-
dependent standard normal random variables ςt+1 is ob-
tained, which are the standardized innovations. The proba-
bility Prob(yt+1 ≤ yot+1 | y1:t,θ) can then be approximated

by

Prob(yt+1 ≤ yot+1 | y1:t,θ)

=
1

N

N∑
i=1

Prob(yt+1 ≤ yot+1 | y1:t, h
(i)
t+1,θ).
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