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Inference functions in high dimensional Bayesian

inference

JUHEE LEE* AND STEVEN N. MACEACHERN'

Nonparametric Bayesian models, such as those based on
the Dirichlet process or its many variants, provide a flexible
class of models that allow us to fit widely varying patterns
in data. Typical uses of the models include relatively low-
dimensional driving terms to capture global features of the
data along with a nonparametric structure to capture lo-
cal features. The models are particularly good at handling
outliers, a common form of local behavior, and examination
of the posterior often shows that a portion of the model is
chasing the outliers. This suggests the need for robust in-
ference to discount the impact of the outliers on the overall
analysis. We advocate the use of inference functions to de-
fine relevant parameters that are robust to the deficiencies
in the model and illustrate their use in two examples.

KEYWORDS AND PHRASES: Nonparametric Bayes, Dirichlet
process, Loss function.

1. INTRODUCTION

The timeless question of how to handle outliers in a data
set has been debated since the earliest days of Statistics. One
approach involves screening the data and ripping out cases
that appear to be outliers before a subsequent, typically
non-robust, analysis is performed. Equivalently, a model is
expanded through inclusion of enough parameters to “knock
out” the outlying cases. A second approach focuses on the
use of inferential techniques that are resistant to the pres-
ence of outliers. These two approaches are embodied in the
work of Gauss (least squares) and Laplace (least absolute
deviations) on regression [24]. The two approaches have tra-
ditionally been viewed as opposites, but recent work shows
that they can be encompassed in a single framework through
penalized likelihood techniques [13, 22]. While much work on
how to handle outliers has been classical in spirit, Bayesians
have pursued these two approaches and added a third.

The primary Bayesian approach to handling outliers in-
volves creation of a generative model for both the “good
cases” and the “outliers”. This view is in keeping with
the purest of Bayesian philosophies, expressed, for exam-
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ple, in [20], where a Bayesian should, in principle, be able
to express uncertainty about all unknowns in a single, com-
prehensive model. Taking a simple, normal theory inference
problem concerning a single mean as an exemplar, typical
models for outliers include the mean-shift models or vari-
ance inflation models that we describe in Section 2. These
models mimic the classical approach of including extra pa-
rameters for the outlying cases and add a prior distribution
on the parameters. Not knowing which cases are outliers, the
model formally becomes a mixture model with a good com-
ponent and an outlier component. In practice, it is hoped
that the models will assign the outliers to the outlier compo-
nent and that their impact will be eliminated for inference
for the mean of the good component. The success of this
method rests on the analyst’s ability to properly model the
distribution of the outliers as well as that of the good data.

The second Bayesian approach departs from the mod-
elling tradition of Bayesian methods and instead focuses on
producing an inferential strategy that performs well. With
our exemplar, this is generally accomplished by placing a
thick-tailed sampling density on the data. The presumed
normal sampling distribution is replaced by a distribution
that is not log-concave. The resulting update with Bayes’
Theorem discounts the outliers, effectively removing them
from the posterior calculation if they are extreme enough.
With a focus on inference, we might expect this method to
work well for some inferences but not for others, breaking
the cohesiveness of a collection of Bayesian inferences. In-
deed, the implementation we have just described focuses on
estimation of the mean. We would not expect it to work well
for probability statements about individual cases and, as a
consequence would not expect good performance for mea-
sures that require a description of case-specific distributions
such as a predictive distribution or the Bayes factor.

The third Bayesian approach takes a different tack.
Rather than attempting to model good and bad compo-
nents of the data or to use a relatively inflexible model that
targets a specific inference, the problem is recast as den-
sity estimation. A Bayesian version of a density estimator is
created, with the goal of estimating the density from which
the data come, both good and bad. The models used for
density estimation are high- or infinite-dimensional and can
fit a wide array of patterns in the data. Typical models fall
under the heading of nonparametric Bayesian models of one
variety or another. Popular models for density estimation
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include those based on the Dirichlet process [16], the Pélya
tree [11], or a log-gaussian process [14].

In this work, we focus on the third approach, considering
nonparametric Bayesian approaches which we have found
to provide flexible, outlier-accommodating models for the
data. Formally, these methods place a prior distribution on
the space of distribution functions to express a full range of
uncertainty about the form of the distribution function. The
methods are designed to allow consistent estimation of es-
sentially any distribution. Consequently, when outlying data
are observed in a tail area (e.g., some cases are far from the
bulk of the data), the posterior distribution assigns most
of its mass to distributions that have a bump (or bumps)
near the outlying data. The resulting density estimates de-
rived from the posterior distribution show both the general
pattern of the good data and the outliers’ departure from
this pattern [2, 17]. Since the resulting posterior distribution
provides a comprehensive view of both good and bad data,
but does not split the two parts into separate components,
one might surmise that the traditional inference functions
inherited from low-dimensional parametric Bayesian mod-
els will lead to suboptimal inference. This is exactly the
pattern that we observe, with clarity in simple settings and
more opaquely in more complicated settings. To repair our
inferential paradigm, we advocate a more tailored use of in-
ference functions in the analysis.

Classical statistics provides a wealth of information about
robust inference functions. [9] is the classic reference for a
wide variety of robust inference functions, including linear
combinations of order statistics, trimmed means, and M-
estimators. In the classical development, especially where
M-estimators are concerned, the distribution from which the
data come, F'| is considered fixed but unknown and inference
is cast as an optimization problem. A “loss function” is spec-
ified, and the loss function determines the inferential target.
The target minimizes the expected loss. Under the squared
error loss, the target is the mean; under the absolute er-
ror loss, the median; and so on. Relying on the convergence
of the empirical cumulative distribution function to F, a
wealth of results are derived on consistency and asymptotic
normality of the resulting estimators. These inference func-
tions can be applied to Bayesian posterior distributions. For
the Bayesian, the inference function maps F into a sum-
mary, say 1. The posterior distribution over F' thus yields a
posterior distribution over the summary 7. The distribution
of n is then summarized.

In the sequel, we investigate the sensitivity of Bayes deci-
sion problems to the inference function when the parameter
space is high-dimensional. Our particular focus is on the con-
trast between simple, low-dimensional Bayesian models and
flexible, high-dimensional Bayesian models. We find a dif-
ference between the two situations. For the simpler models,
inference changes little as the inference function is varied; for
the more flexible models, inference can vary considerably as
the inference function varies. In general, inference under the
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outlier-accommodating (high-dimensional) models changes
dramatically when outliers are removed from a data set and
the inference function is not robust. Inference changes little
when the inference function is robust. The pattern differs for
typical parametric models where removal of outliers either
(i) changes the inference considerably under a wide array of
inference functions or (ii) changes the inference little under
a wide array of inference functions. Whether pattern (i) or
pattern (ii) appears depends on the details of the paramet-
ric model. Transitional cases which lie between these two
patterns can also occur.

The remainder of the paper is organized as follows. Sec-
tion 2 describes standard Bayesian approaches for outliers.
Section 3 describes inference functions and our general ap-
proach to their use in Bayesian problems. Sections 4 and 5
report illustrative analyses of Newcomb’s data and a set of
longitudinal data on exercise histories. The last section con-
cludes with a final discussion.

2. STANDARD APPROACHES

The standard Bayesian approaches to handling outliers is
either to model them or to discount them by using a thick-
tailed likelihood. We make these procedures more concrete
with a simple illustrative model. Let Y ,, be a vector of data
consisting of n observations which are ideally conceived of as
a random sample from some population. A Bayesian model
for Y, is specified by a likelihood for Y;, i = 1,...,n, con-
ditional on parameters and a prior distribution for the pa-
rameters:

Y;|0~F(-]0), fori=1,...,n.

In a parametric model, F' and G lie in parametric fami-
lies, and they are often taken to be a conjugate pair. That
is, they have a specific form such as F' following a normal
distribution with mean  and known variance o2, leading

to the conditional statement ¥; "“<” N(6,02). The distri-
bution G addresses uncertainty about the overall center
of F, say N(u,72). This simple model leads to a poste-
rior distribution for § which is N((772u + no=23) /(772 +
no=2), (172 +no"2)71) where y represents the sample mean
of y,,. Whether we supplement the posterior distribution
with one symmetric loss function or another makes little
difference to the inference on the center. Quadratic loss, ab-
solute loss, and others with thin enough tails all lead to 6 as
the center of F. This model does not admit the possibility
of outliers in the data.

In practice, data often contain outliers. Aberrant points
in the data arise for many reasons including “failure” of the
experiment, data recording errors, and unexplained causes.
Figure 1(a) presents a histogram and kernel density esti-
mate of a famous data set from Newcomb’s experiments on
the passage time of light. Panel (b) shows a predictive den-
sity estimate from a mixture of Dirichlet processes (MDP)
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Figure 1. (a) Histogram of observed passage times with a
kernel density estimate. (b) Predictive density estimate under
a mixture of Dirichlet processes model.

model. Details of the data and various analyses will be pre-
sented in Section 4. For now, we note that the data show an
extreme outlier near —40 and a more modest outlier near 0.

Few applied statisticians would hesitate to trim the ex-
treme outlier, and we believe that many would also trim
the modest outlier before proceeding with their analysis.
Rather than trimming the cases, we consider approaches
that are more in keeping with Bayesian principles. We do so
for two reasons: First, the outliers are easy to spot in this
simple setting while they are often difficult to spot in more
complicated settings. Second, if modelling approaches are
to work anywhere, they should certainly work here. Oddly,
the Bayesian principles we allude to are most clearly de-
scribed in the non-Bayesian book, [9]. Their arguments are
essentially those of Bayesian model averaging [7, 19] for a

model supplemented with case indicators for potential out-
liers.

The most basic Bayesian outlier model supplements the
basic distribution with a portion of the model devoted to
outliers. A standard modification adds a mixture component
to account for outliers: e ~ Beta(a, ) and v; ~ Bernoulli(e).
If v; = 0, then Y; is drawn from the basic model; if v; = 1,
then Y; is drawn from a N(6, 302) distribution. An alternate
form of the model specifies a location shift for each outlying
case with the location-shift distribution centered at 0. With
a complete model in hand, Bayesian inference proceeds via
the usual prior distribution to posterior distribution update.
Inference focuses only on the non-outlying component of the
model.

The second Bayesian approach avoids attempting to
model the outlying process directly, but appeals to prop-
erties of thick-tailed likelihoods. These likelihoods, particu-
larly those which are not log-concave, downweight outliers.
A traditional choice replaces the N(6, %) distribution in the
basic model with a t¢-distribution with location 6, scale o,
and, say v degrees of freedom. The resulting posterior distri-
bution for # is less influenced by outliers than is the poste-
rior distribution from the basic model. There is generally no
claim that this model captures the data-generating mecha-
nism, but rather that it provides useful inference about the
center of the distribution. It can be related to the mixture
model for outlying data by noting that the t-distribution is a
scale mixture of normals, setting the probability that an ob-
servation is an outlier to 1, and using a continuous mixture
over variance shifts. This precludes the possibility of condi-
tioning only on the non-outlying portion of the model for in-
ference and implicitly mixes over “inliers” as well as outliers
(corresponding to variance deflation). These first two strate-
gies typically provide similar inference for the center of the
distribution but may differ substantially for other inferences.

The third approach fits a nonparametric Bayesian model
from the perspective of density estimation. Instead of mod-
eling outliers with a distinct component of the model, we
can accommodate them by using a flexible prior distribu-
tion that is able to capture nearly any pattern in the data.
A standard model of this form is a mixture of Dirichlet pro-
cesses (MDP) model. The model is referred to as “nonpara-
metric” because it does not assume any specific form for G,
that is, G is constructed with infinite number of parame-
ters. Formally, instead of restricting the form of G to be in
a parametric family, we consider the Dirichlet process (DP)
prior for G [5].

(2) G ~ DP(a),

where « consists of two parts, the total mass parameter M
and the base distribution Gg. To take advantage of the flex-
ibility of GG, we introduce a latent parameter 6; into the
model. Conditional on G, the 6; are a random sample from
G. The G in (2) is almost surely a discrete distribution func-
tion and it yields positive probability for ties in 6;’s. To
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smooth the distribution, Y; | 6; ~ N(6;,0?), where o2 ac-
counts for only a fraction of the variation in the basic model.
The posterior distribution for G under this model is a mix-
ture of Dirichlet processes [1].

We introduce a n-dimensional random cluster member-
ship indicator vector s = (s1,...,5s,) to denote a partition
of 0;’s into p (< n) clusters. Define the vector s by letting
s; = j if and only if 6; is in cluster j. We define clusters of 6;’s
by matching their values. That is, we let 6; = 67 for all i’s in
cluster j, 7 = 1,...,p. The common cluster-specific param-
eter 07 represents the location of cluster j. For partition s,
we let ¢; be the size of cluster j and represent the sizes of the
p clusters as a p-dimensional vector, ¢ = (c1,...,¢p). The
posterior simulation can be implemented using a Pélya urn
scheme. That is, given 64,...,0,, the parameter 6,41 may
either join cluster j with probability, ¢;/(M +n), or open a
new singleton cluster by itself with probability, M/(M +n).
Given s, 07 & Go. The standard inference from a fit of this
model proceeds through the predictive distribution, most
commonly with its mean. [18] contains a recent review of
DP based models, including details of computational meth-
ods.

3. ROBUST INFERENCE FUNCTIONS

We take as our goal estimation of the loosely defined cen-
ter of the distribution from which the good data come. To
do so, we focus on describing the posterior distribution of
this center. To measure the center, we formalize our defini-
tion through the use of an inference function. The inference
function is defined as a function that maps F into the tar-
get of inference, say 1. That is, n is a measure of the center
implied by a chosen inference function. The posterior dis-
tribution on F' then determines a posterior distribution on
7, and this opens the door to the usual summaries, both
graphical and numerical, of the distribution of 7.

The choice of inference function, I{ '}, implicitly defines
our measure of the center of a distribution. The inference
function is specified by a criterion which is to be minimized.
For example, the quadratic loss criterion p(y —n) = (y —n)?
leads to n = 6 through the minimization;

(3) 7 = argmin, . /p(y —n")dF(y).
Assuming that the mean exists (we henceforth assume that
our inference functions all lead to unique minimizers), our
measure of the center becomes the mean. In a similar fash-
ion, an absolute loss inference function targets the median of
F. A robust inference function based on Huber’s loss targets
the minimizer of equation (3) under a quadratic loss which
is linearized in the tails [9]. For these inference functions and
others, the inference provides a mapping, I{F'} — 7.

For the basic model or the standard Bayesian outlier
model (mixture or t-distribution), the inference functions
above all match n to 6. That is, when F has mean 6,
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I{F} — 6. The consequence of this under the basic model
is that the posterior distribution on the center is the poste-
rior distribution of 6, that is, N((772p + no=2g)/(r72 +
no=2), (772 + no=2)71). The specific choice of inference
function is immaterial, so long as it is symmetric.

The mapping becomes much more important when we
work with a flexible model, as is the MDP model. We retain
our focus on a future observation, Y which, under our
model is presumed to come from the convolution of G with
a normal kernel. This distribution, call it H, has a posterior
distribution. Conceptually, we wish to describe the posterior
distribution of I{H}. In practice, we fit the MDP model
with a Markov chain Monte Carlo method and approximate
a draw of H with a finite representation of H.

The details of inference for the hierarchical model with
(1) and (2) are as follows. The Markov chain produces a
sequence of draws of a finite-dimensional object connected
to G. For the t-th sample from the Markov chain, we have
a finite number of mixture components associated with ob-
servations in the data set and an infinite number of mixture
components not associated with any observation. Making
use of our earlier notation, the standard representation for
a draw of the chain,

O | y.s®,0°0) =
P ®

CJ new *(t)

(4) ;:1 T TA AN LN
M new * * *
Far [ £ 10g(en)as

splits the ¢-th sample into two terms. The first captures the
components associated with data while the second concerns
the remaining mixture components. To handle the second
term, we sample 6* using the stick-breaking process [21] to
provide a close approximation to H. The inference function
is then used to map H into a value for its center, n. This
process is repeated for many draws of the Markov chain,
resulting in many values of 7.

The flexibility of the distribution H implies that the
choice of inference function matters. Individual draws of H
will upweight or downweight different components of the
mixture. If the tail of a distribution is upweighted, the mean
will be pulled strongly in the direction of that tail while a
more robust measure of center will move less. This is partic-
ularly relevant in the case of Newcomb’s data, as the weight
given to the two outliers will have large or small impact on
7. The divergence of the different measures will be shown in
the next section.

We note that our method differs from computing the cen-
ter of the predictive distribution (which would lead to a sin-
gle summary number). Our interest focuses on the center
of the distribution from which the data arise, and under a
Bayesian model this center has a posterior distribution. The
distribution can be summarized in the usual ways, either



graphically through kernel density estimates or histograms,
or numerically by moments or quantiles. When concerned
with outliers, a good measure of center will be robust to
modest changes in the data set. In particular, a good mea-
sure will have a posterior distribution that changes little
when outliers are included in or removed from the data.

4. EXAMPLE 1: NEWCOMB'’S DATA

We analyzed Newcomb’s classic data set on the speed of
light [23]. 66 measurements were taken on the passage time
of light which were then transformed to create the standard
data set. See Figure 1(a) for a histogram of the data with
a kernel density estimate. The center of this distribution is
around 30 nanoseconds and there appear to be one or pos-
sibly two outliers at —44 and —2 in the left tail. These two
measurements are distant from many of the other measure-
ments recorded.

Let Y; denote the i-th measurement of passage time. The
basic model consists of a normal likelihood with unknown
mean and variance and is completed with a normal prior
distribution for the unknown mean and an inverse-gamma
prior distribution for the unknown variance.

0?2 ~1G(ay,by)

0~ N(M77_2)7
w N(8,0?).

(5) Y; 0,0 X
We contrast the behavior of several approaches, consid-
ering two main models and a variety of inference func-
tions. The first model follows from the thick-tailed strat-
egy. Instead of the normal likelihood in (5), we define
Wi =/v/(v—2)(Y; —0)/o for any v > 2 and let W, ~ ¢,
where v is the degrees of freedom of a ¢ distribution.

The second model pursues the flexible modelling strategy
by placing a Dirichlet process on G. In this model, we use
a split of the variation in o2, allocating one portion to the
base cdf GGy and the other portion to the smoothing kernel
for Y; | 6;. We have found this split to work well in many
circumstances. It is due to [8].

0o ~ N(p, 72), k ~ Unif(0,1), 0 ~1G(ay, by )
G ~ D(MGy)
where M is fixed and Gy is N(6p, (1 — k)o?)
6 ~ G
Yi| 0 k,o® % N0, ko?),

where 6y, 02 and k can be interpreted as measures of lo-
cation, scale and smoothness, respectively. The model with
the DP implicitly assumes an infinite mixture of normals
for G. We note that although 6, is the mean of Gy, it is not
the mean of the realized G. In this and other variants of the
MDP model, techniques to handle this discrepancy must be
used [3, 15].

All of these models require values for the hyperparam-
eters. For the parametric Bayesian model with the normal

likelihood, let p = 23.60, 72 = 2.04%, a, = 5 and b, = 10.
For the parametric Bayesian model with the t-distribution,
we let v = 4 and used the same values of y, 72, a, and
b,. Similarly, we used the same hyperparameter values and
fixed M =1 for the MDP model.

The three models were fit to the data with standard
Markov chain Monte Carlo methods. For each model, the fit
resulted in T parameter vectors, harvested after each iterate
of the Markov chain. After supplying an inference function,
this resulted in T values for the center of the distribution,
N,...,nr. For the MDP model, the computational tech-
nique mentioned in Section 2 was used to handle the infinite
sum. Three inference functions were considered: those that
generate the mean, the median, and Huber’s estimator with
a bending constant of 1.5 standard deviations. Under the
normal model and the ¢t model, all three inference functions
map the distribution into #. Under the more flexible MDP
model, the inference functions result in different centers.

Figure 2(a) provides the posterior distributions of the
center of the distribution of Y™ under the models and in-
ference functions described above. The figure presents den-
sity estimates arising from the 7' center samples produced
by the Markov chain Monte Carlo sampling algorithm. As
expected, the posterior distribution of the center under the
normal model is heavily impacted by the outliers on the low
side. The thick-tailed t-distribution performs as advertised,
effectively discounting the outliers and moving the distribu-
tion of the center to the right. For these two models, there
are no differences between our three inference functions.

The MDP model shows the impact of the inference
function. When the center is defined as the mean, the
MDP model discounts outliers less than the thick-tailed
t-distribution. This is a consequence of the small fraction of
outliers (2 cases out of 66) and the mechanics of the MDP
model which involve shrinking the latent 6; for the outliers
toward 6y. The impact of the inference function is seen when
we turn to the Huber estimator and the median as the mea-
sure of center. The distributions of these measures of center
are stacked on top of one another and are difficult to dis-
tinguish in the figure. They are more concentrated than the
other distributions and are moved toward the right due to
a heavier discounting of the outliers.

The difference between the three inference functions un-
der the MDP model is easily explained. The posterior dis-
tribution on H, the convolution of G and the smoothing
kernel, assigns its probability to H that have two bumps in
the far left tail. These bumps correspond to the two outly-
ing observations. The H in keeping with the data vary in
the weight given to these bumps, and the precise location of
the bumps also varies. This variation results in a relatively
large spread under the quadratic inference function (i.e., for
the mean). In contrast, under an absolute inference function
(i.e., for the median), the exact amount of mass assigned to
the bumps and their precise location is immaterial. It is
enough to know that a small amount of mass is located in
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Figure 2. Distribution of the center of the distribution of Y;
with all the 66 observations in (a) and with 64 observations
after deleting two outliers in (b). The black solid line is for
the parametric Bayesian model with normal likelihood. The
pink long-dashed line is for the parametric Bayesian model

with the t— likelihood. The red dashed, blue dotted, and dark

green dash-dotted lines are for the MDP model with inference
functions that yield the mean, the Huber estimate and the

median, respectively.

the left tail. The result is a measure of center that is quite
stable across plausible (in the posterior) distributions H.
Figure 2(b) illustrates the impact of removing the two
outliers on the posterior distributions of the center. The
distributions of the center do not move from panel (a) to
panel (b) under the MDP model with the median and with
Huber’s estimator. In contrast, the distributions of the cen-
ter under the normal model and under the MDP model with
the mean are shifted greatly toward the right and become
almost identical to those under the MDP model with the
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median and with Huber’s estimator. Note that the spread
of the distributions of the center decreases a lot under the
normal model and the MDP model with the mean.

5. EXAMPLE 2: THE EXERCISE DATA

Blackmoor and Davis studied the connection between ex-
ercise and eating disorders [6]. Their study involved longitu-
dinal tracking of 231 teenage girls. Among the 231 subjects,
138 subjects were hospitalized for an eating disorder and the
remaining 93 subjects served as a control group. The sub-
jects were followed over time and multiple observations from
a subject were obtained at intervals of two years starting at
age eight. Along with age, the estimated amount of exer-
cise in hours per week was recorded. Since the subjects were
hospitalized at different ages, the number of observations
varies. Let Y}, x}; and 2; represent the amount of exercise
of subject i at the j-th time point, the age of the subject
at the j-th time point and the binary group indicator for
subject 7 (0 for control and 1 for the hospitalized group),
respectively. Following the suggestion in [6] and consistent
with diagnostic plots, we took a logarithmic transformation
of Y/, Yij = logy(Y}; + 5/60). The addition of 5/60 fol-
lows [6] and is included to handle zero values of Y};. Also,
let z;; = xgj — 8, subtracting the smallest age in the data
set from all ages. We consider a hierarchical linear mixed
model which allows subject-specific intercepts and slopes.
These subject-specific parameters are random effects, allow-
ing for subject-specific departures from the global pattern.
The model consists of two levels: within a subject, we regress
the amount of exercise on the subject-specific covariate, age
(x;5). At the subject level, the intercept and slope of subject
i depend on its group indicator, z;.

: Bio = Yoo+ Y012 + Uio

Subject level =
) Bii = Y10+ 7112 + Ui
Within-subject level = Y;; = Bio + Biixij + 7,

where u; = (u;0,u;1) represents the random effects for sub-
ject 7 and r;; represents a random error for the j-th time
point of subject i. The r;; is drawn from N(0,0?) and w; is
drawn from MVNy(0q, V) where 0y represents (0,0)7. Fol-
lowing the convention when working with random effects,
the r;; and u; are (conditional on variance parameters)
mutually independent. To complete the model, we assign
prior distributions to the unknown regression parameters,
Yo = (Y00,7%01) and v; = (y10,711), and to the variance
parameters o2 and .

MVN2 (%0, o), v1 ~ MVN2 (4, 1),
IG(a,b), U ~ Inv — Wishart (%, v).

Yo ~
(6) o ~

We first apply the low dimensional model described above
and examine whether or not there is evidence that a more
complex model allowing full support for the distribution of



the random effects u;, GG, is needed. To fit the parametric
Bayesian model, we set the priors of 7, v; and o2 to be cen-
tered at the estimates from a frequentist linear mixed model
using the R function, Ime. Thus, 4, = (—0.276,—0.354),
1 = (0.064,0.240), ¢ = 3 and b = 0.77. We use dispersed
priors for the variances, taking ¥ = ¥; = ¥ = diag(1)
and setting v = 4.

To examine the adequacy of the latent random effects
distribution in the low dimensional parametric model, we
use a diagnostic driven by preposterior expectation. The
heart of the diagnostic is to note that, if one has writ-
ten the correct model and has a large number of cases,
two distributions should be approximately the same—the
prior distribution of the random effects and the average
of the posterior distributions of the effects, with the av-
erage taken across subjects. To pin this distribution down,
we must condition on values for the fixed effects and the
hyperparameters. Let & = (v9,71,V,0?) and fix & Let

Vi =Yij— (oo +7012:) — (Yo +7112:) T35 = Uoi+u1iTij+7ij.

Our model states that u; nder MVN3 (02, %) and Y* |
w; indep N(ug; +u1;x5, 02). The consequence of conditioning
is that the data and latent variates for different subjects are
now independent of one another.

The following calculation applies to each subject, and so
we drop the subscript denoting the subject from the formu-
las. We use ¢(+) to denote the density of w and f(- | u) to
denote the conditional density of Y* | uw. Fix an arbitrary
(measureable) set A € R2.

EV' {P(uec A|Y")}

//Ag(" | Y)duh(Y")dY™
/A / g f(Y" | w)dY“du

/A g(u)du

Pu e A),

(7) =

where h(Y") = [ f(Y" | w)g(u)du is the marginal distri-
bution of Y*. This simple calculation establishes that the
expected posterior probability content of A equals its prior
probability content.

In this particular data set, we have 231 observations. The
preposterior expectation result in (7) holds conditional on
& = &, for each u;. The assumption which we intend to
assess is that the form of the model is correct. Under this
assumption, the form of the sampling distribution is correct
and there also exists a value of £, £, for which the u; form
a random sample from G(- | ;). Under mild conditions and
this assumption that the form of the model is true, the pos-
terior distribution on £ tends to a degenerate distribution at
the true value [2], and so we fixed £ at their posterior means
based on all the observations. Alternatively, the estimates
from the equivalent mixed linear effect model can be used
for £,. In addition to providing a value of & to condition

on, our large number of subjects enables us to appeal to the
law of large numbers to establish the following approximate
equality.

n

BV {Pue AV}~ S Plu; € A| V) /n,

i=1
where the calculation is understood to condition on €. Ap-
plying this result to rectangular sets A implies that a his-
togrammed version of the prior distribution should match a
histogrammed version of the average posterior distribution
(here, using the average of the prior density over A and the
average of the average of subject specific posterior densities
over A to create the histograms). Extending this, we find
that the prior density for w should be a near match for the
average posterior density for wu.

Figure 3 presents a graphical diagnostic motivated by the
previous argument. The figure shows a discrepancy between
the two densities, g(u; | &) and > ;" g(u | Y;*,&)/n,
which suggests that the presumed form is inappropriate for
the data. The average posterior density shows left skewness
for ug, a slow “rotation” of contours as the density declines,
and irregularity of contours in the low-density region. In
other words, the posterior distribution of u; departs from
a bivariate normal distribution, and so we must consider a
more elaborate model for its distribution, G. We have found
this diagnostic to be useful in a range of problems involving
latent random effects.

The model we consider stretches that given in (6) to a
more complex (infinite dimensional) model through use of
the nonparametric Bayesian technology. We assume the fol-
lowing MDP model

U ~ Inv — Wishart(Uy, v),
G ~ DP(MG)
where Gg is  MVNgy(02, ¥),

iid

M ~ Gamma(aps, bar),

We use the same hyperparameter values as in the parametric
Bayeisan model. We calibrate the prior for M using function
DPelicit in the R package, DPpackage [10] by setting the
mean number of clusters and the standard deviation of the
number of clusters among our 231 subjects to be 20 and 10.
This yields M ~ Gamma(2.46,2.06). The model was then
fit via Markov chain Monte Carlo.

The estimated marginal predictive distributions of ug and
u1 have longer left than right tails as shown in Figure 4. Mul-
timodality is evident in the predictive distribution of wug.
These features match the departures from normality sug-
gested by the contour plots in Figure 3. They also suggest
the need to consider a variety of inference functions and to
examine the impact of the choice of inference function on
the center of the distribution of Y at different covariate
values. We consider three different ages, 2’ = 8,10, 12. As in
Section 4, we consider quadratic, Huber, and absolute infer-
ence functions, leading to the mean, Huber’s summary and
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Figure 3. Contour plots of g(u | &) in (a) and the average of
g(u; | €, Y) over n = 231 subjects under the model

assuming that u; id MVN3(0q, ¥).

the median as definitions of the center. Figure 5 presents
the posterior densties of the three measures of center at
' = 8,10,12 for the control group. Interestingly, we find
that the distribution of the median is considerably less con-
centrated than that of the mean or Huber’s summary. These
data have no clear outliers to trim, and we believe the mod-
erate non-normality of the random effects distribution is in
keeping with use of the mean as a summary of the center of
the distribution of Y™¢%.

6. CONCLUSIONS

Today’s data sets differ in fundamental ways from data
sets in the past. They often fall in the realm of “big data”,
both in terms of sample size and in terms of the complexity
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Figure 4. Estimates of the marginal predictive distributions of
ug in (a) and uy in (b).

of structures within the data. In these settings, it is often
difficult to visually identify outliers. The models used to
analyze those data have reacted to the novel features of the
data, and the most successful of them are high- or infinite-
dimensional (e.g., nonparametric Bayesian). These models
do a superb job of picking up the global patterns in the
data. They often operate much like a structured version of
a density estimator, reacting to the local wiggles and other
unusual features found in the data, whether these features
represent the phenomenon under study (i.e., are good data)
or do not (i.e., are outliers). The sheer size and complexity
of the data also prevent us from realistically believing that
we can write a formal model that both accounts for and
distinguishes between the good data and the outliers.
There are many arguments that support the use of flexi-
ble Bayesian models. One of the most compelling arguments
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Figure 5. The posterior distribution of the center of the
distribution of Y™ at (v}, z; = (8,0),(10,0) and (12,0).
The black solid lines, blue dotted lines, and red dashed lines
show the distributions for the MDP model under quadratic,

Huber, and absolute inference functions, respectively.

taps in to the value in enlarging the support of the prior dis-
tribution. This applies directly to models that include ran-
dom effects, where the standard “independent draws from
some parametric distribution” can easily be replaced by “in-
dependent draws from some distribution” [3]. Diagnostics
such as the one we present in Section 5 are useful for con-
firming the need to move to a model with larger support.
However, the value that comes from large support also comes
at a cost—the inability to discount outliers in the fitting pro-
cess as is done with a thick-tailed likelihood, for example.
This leaves us in a quandary, with a preference for use of
the flexible models but with a susceptibility of standard in-
ferential methods to deficiencies in the data. The problem
is aggravated by our inability to easily identify the outliers
in complex-data settings.

Identification of the problems that come with the use
of outlier-tracking models demands that we rethink how
we make inference. Our recommendation is to think long
and hard about the choice of inference function, and con-
sequently, the target of inference. We note that our use of
inference functions differs greatly from applying an inference
function to the predictive distribution of a future observable
or applying it as a loss function in a decision-theoretic con-
text. In the former case, the inference function generates a
single estimate; in the latter, the inference function is ap-
plied to a parameter which is already defined. In our context,
the inference function defines the parameter of interest, and
our methods allow us to examine the distribution of this
parameter. Explicit consideration of the inference function
broadens the collection of parameters that one might con-
sider (e.g. expectiles [4]). Modern computational tools al-
low us to quickly explore a variety of inference functions, as
shown in the examples.

The flexible models used in this paper have been based
on the Dirichlet process. The details of these models do
not drive our results, and similar results would be obtained
for the many competing models, including Pdlya trees, nor-
malized random measures, and log-Gaussian processes. A
promising direction for these models is the creation of a hy-
brid between use of a purely flexible model and writing a
model that includes a component for outliers. We have seen
the success of a head-and-tail strategy whereby the “head”
of the model captures the good data and the “tail” of the
model is used to sweep up the departures from the model
[12]. These models suggest the use of hybrid inference strate-
gies that make use of conditioning (on the head of the model)
and inference functions (applied to the head).

Our work conveys the important message through the
two examples that a good choice of the inference function
can properly handle local features of the posterior distri-
bution under a high-dimensional model. A robust inference
function prevents inferences from being driven by local fea-
tures but still reacts to the large-scale patterns in the data.
One of remaining challenges is to develop classes of inference
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functions appropriate for use in even more complicated sit-

uations.
Received 5 November 2013
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