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Sequential process convolution Gaussian process
models via particle learning
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∗

The process convolution framework for constructing a
Gaussian Process (GP) model is a computationally efficient
approach for larger datasets in lower dimensions. Bayesian
inference or specifically, Markov chain Monte Carlo, is com-
monly used for estimating the parameters of this model.
However, applications where data arrive sequentially re-
quire re-running the Markov chain for each new data ar-
rival, which can be computationally inefficient. This paper
presents a sequential inference method for the process convo-
lution GP model based on a Sequential Monte Carlo method
called Particle Learning. This model is illustrated on a syn-
thetic example and an optimization problem in hydrology.
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Keywords and phrases: Sequential Monte Carlo, Opti-
mization, Spatial modeling, Bayesian statistics.

1. INTRODUCTION

Gaussian processes (GPs) have been widely used to model
the underlying process of interest in regression and classifi-
cation models (Neal, 1997, 1998; Rasmussen and Williams,
2006). Some of the major applications include computer ex-
periments (Sacks et al., 1989), and models of spatial and
spatio-temporal data (Cressie, 1991; Banerjee, Carlin and
Gelfand, 2003). One of the notable recent developments in
GP models is Bayesian inference which provides full ac-
counting of uncertainty, and can facilitate optimization via
statistical models. In this approach, a Gaussian process with
a chosen correlation function is specified as the prior for the
underlying process of interest. Combining the prior distribu-
tion with the likelihood using Bayes’ rule forms the poste-
rior distribution which can be sampled using Markov chain
Monte Carlo (MCMC). One drawback of these standard GP
models is that they require a matrix decomposition whose
complexity increases at a rate of the cube of the sample
size, which makes them impractical for applications with
moderately large datasets. In the machine learning litera-
ture, there is a wide range of sparse approximation methods
for GP regression to alleviate the large sample size problem.
The general idea is to map training data to a smaller set
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of basis points, and then perform exact posterior inference
on these basis points. Quiñonero Candela and Rasmussen
(2005) provides a unifying framework for these sparse ap-
proximations. One approach to learn these basis points is to
treat them as hyperparameters and maximize the evidence
over them (Snelson and Ghahramani, 2006). More details
about GPs and sparse approaches can be found in the book
by Rasmussen and Williams (2006).

An alternative framework that can help alleviate the
problem of large sample size is the process convolution ap-
proach to constructing a GP (Higdon, 2002; Calder, Hollo-
man and Higdon, 2002; Paciorek and Schervish, 2006). This
approach generates a GP by convolving a white noise process
with a smoothing kernel. Bayesian inference of the model
parameters again proceeds using MCMC. Although this ap-
proach is computationally efficient for applications with a
large sample size in low dimensions (due to the need to cre-
ate a grid of basis points), the batch nature of MCMC makes
it unsuitable for sequential problems. For example, design
points in computer simulation experiments are naturally
generated sequentially so that MCMC has to be repeated
for each new data arrival, which renders the whole infer-
ence process computationally demanding. Sequential prob-
lems are more naturally handled by inference methods that
update the model based only on the new data. A popular
approach is Sequential Monte Carlo (SMC), also known as
particle filtering (PF). In this article, sequential inference
for the process convolution GP model is developed based on
a SMC method called Particle Learning (Carvalho et al.,
2010). A similar approach, abbreviated as PLGP, has been
developed by Gramacy and Polson (2011) where a standard
GP is considered. Our model can be viewed as a member of
the family of sequential GP models, one that is specifically
targeted for low dimensional problems. The key features (as
shown in the examples) include being computationally effi-
cient as well as capable of modeling nonseparable anisotropy
in the process. Other couplings of GP with PF include the
work by Plagemann, Fox and Burgard (2007) which applies
GP regression and classification for learning proposal dis-
tributions of a PF, and Ko and Fox (2008) who investigate
the integration of GPs into different Bayes filters, including
unscented/extended Kalman filters and PF. A sequential ap-
proach makes sense for active learning (Angluin, 1987; Atlas
et al., 1990; Fine, Gilad-Bachrach and Shamir, 2000), how-
ever the active learning GP literature has primarily focused
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on non-sequential GPs (Seo et al., 2000); in our motivating
example we use our sequential GP approach for optimiza-
tion.

This article is organized as follows. Section 2 reviews
briefly the process convolution GP model (PCGP). Section 3
introduces Sequential Monte Carlo and Particle Learning.
Section 4 provides details of forming our Sequential Pro-
cess Convolution GP model (SPCGP). Section 5 illustrates
SPCGP on a set of 1-D synthetic sinusoidal data and a 2-
D optimization problem based on expected improvement.
Discussion and conclusions are given in Section 6.

2. PROCESS CONVOLUTION GP MODELS

A Gaussian process can be specified via discrete process
convolutions (Higdon, 2002) as follows:

z(s) ≈
m∑
j=1

k(uj − s;Q)x(uj), s,uj ∈ S ⊆ R
d,

where {u1, · · · ,um} is a set of basis points in S with even
spacing, x(·) is a White noise process with mean zero and
precision λ, and k(·;Q) is a symmetric kernel (e.g, Gaus-
sian) defined over S and parameterized by a precision ma-
trix Q. The choice of kernel directly relates to the covari-
ance of the resulting process, with wider kernels resulting
in smoother processes. The spacing of the basis points (or
equivalently m) needs to be chosen so that the bases are suf-
ficiently dense relative to the width of the kernel, although
adding additional bases beyond that tends to add compu-
tational expense without changing the process. A rule of
thumb given by Higdon is that for Gaussian kernels, the
spacing of the basis points should be equal to the standard
deviation of the kernel. More details on the choice of ker-
nel and the spacing can be found in Chapter 4 of Ferreira
and Lee (2007), Chapter 2 of Kern (2000), and Chapter 2 of
Liang (2012). In most applications, only a finite set of spa-
tial sites {s1, · · · , sn} ∈ S are of interest. In such cases, the
above representation can be written in matrix form, z = Kx,
where z = (z(s1), · · · , z(sn))�, x = (x(u1), · · · , x(um))�,
and K is a (n×m) matrix with elements Kij = k(uj − si).

In practice, the observation y(s) recorded at location s is
often decomposed in the following form,

y(s) = μ(s) + z(s) + ε(s),(1)

where the mean function μ(s) is usually taken as a constant
or a linear term represented by Fβ such that F denotes
the design matrix of attributes and β denotes the linear
coefficient vector; z(s) denotes the value of the underlying
zero-mean stochastic process at location s; ε(s) ∼ N(0, φ−1)
denotes the Gaussian measurement error with precision φ.
In the standard GP model framework, Bayesian inference
is usually done by specifying a zero-mean GP prior for the
stochastic component z. This is equivalent to imposing a

White noise process prior on x in the PCGP approach. As-
suming Q is fixed, Bayesian inference for PCGP can be done
by specifying conditionally conjugate priors for the param-
eters,

β ∼ Np+1(β0 , (φC)−1), φ ∼ G(ay , by),

x ∼ Nm(0 , (λIm)−1), λ ∼ G(ax , bx),

where Nm(mean, covariance) denotes the m-dimensional
Gaussian distribution, and G(shape, rate) denotes the
Gamma distribution. Combining with the likelihood, the
conditional posterior distributions of β and x are distributed
as Gaussian, whereas those of φ and λ are distributed as
Gamma. Sampling from these distributions can be done us-
ing Gibbs sampling (Geman and Geman, 1984) since they
are all in closed-form. When Q is fixed, the PCGP approach
usually runs much faster than the standard GP approach be-
cause its computational complexity is on the order of O(m3),
whereas that of the standard GP is O(n3), where we can
typically have m << n when d ≤ 3. However, when Q is
estimated as a parameter, its posterior distribution can not
be obtained in closed-form. The Metropolis-Hastings (MH)
algorithm (Metropolis et al., 1953; Hastings, 1970) is usu-
ally used to obtain posterior samples of Q, which increases
computational effort due to re-calculation of the likelihood
in each MCMC iteration.

3. SEQUENTIAL MONTE CARLO AND
PARTICLE LEARNING

In the state space models literature, there are two main
statistical inference problems: 1) sequential state filtering
and parameter learning which is characterized by the joint
posterior distribution of states and parameters at each point
in time, and 2) state smoothing which is characterized by
the distribution of the states conditional on all data and
marginalizing out all unknown parameters. That is, filter-
ing and learning is about inferring the hidden states and
parameters given only the currently available data at each
time point, and smoothing is about inferring the states from
the full dataset. In the setting of linear Gaussian models,
the Kalman filter (Kalman, 1960) provides analytical re-
cursion equations for both filtering and smoothing assum-
ing knowledge of parameters. For example, in the case of
filtering, updating of the model at time t + 1 is done by
treating the model fitting at time t as a prior, which is
then combined (using Bayes’ rule) with the likelihood of
new data arriving at time t + 1. If the model has unknown
static (independent of t) parameters, the full sequence of
updating equations with all data up to the current time
defines a likelihood which can be combined with a prior
for Bayesian inference (West and Harrison, 1997). Depend-
ing on the prior, the resulting inferential complexity can go
from being analytically tractable to intractable. For more
general model specifications, it is common to apply Sequen-
tial Monte Carlo (SMC) methods which are also known as
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particle filters. SMC provides a numerical alternative to the
inference problem of non-linear and/or non-Gaussian dy-
namical process, or when the parameters and their priors
do not lead to tractable posteriors. In this paper, the em-
phasis is on the filtering/parameter learning problem. SMC

uses a set of particles {Z(i)
t }Ni=1 to approximate the posterior

distribution of the state information Zt about the dynamic
process, conditional on the data up to time t. The main
task is to update the particle approximation from time t
to t + 1. Pure filtering of the state information (assuming
knowledge of parameters) can be done using the bootstrap
filter of Gordon, Salmond and Smith (1993) which upon ar-
rival of new data yt+1 propagates the particles via the state
evolution equation P (Zt+1|Zt), then resamples the propa-
gated particles with weights proportional to the likelihood
P (yt+1|Zt+1). Another method for the same problem would
be the Auxiliary Particle Filter (APF) of Pitt and Shephard
(1999) which is based on a resample-propagate approach.
Filtering with learning of unknown static parameters can be
done using the filter of Liu and West (2001) which extends
the APF by using a kernel approximation to the posterior
of the parameters, or by the filter of Storvik (2002) which
assumes that the posterior of the parameters depends on a
low-dimensional set of sufficient statistics that can be recur-
sively updated. Filtering algorithms can be used for learning
of parameters in static models (Chopin, 2002; Del Moral,
Doucet and Jasra, 2006). A new class of SMC algorithms
called particle learning (PL) (Carvalho et al., 2010) focuses
on the parameter learning part (as opposed to the filtering
part by other SMC methods) and hence is more suitable for
the sequential learning of static models. PL is based on a
resample-propagate approach as follows:

Resampling:

P (Zt|yt+1) ∝ P (yt+1|Zt)P (Zt|yt),

Propogation:

P (Zt+1|yt+1) =

∫
P (Zt+1|Zt,yt+1)dP (Zt|yt+1),

where Zt denotes a particle that contains the sufficient in-
formation and yt denotes the observation vector at time
t. Sufficient information at time t may include the hid-
den states, sufficient statistics of the parameters, or even
the parameters themselves. The above algorithm starts by
resampling the sufficient information Zt with probability
weights proportional to the predictive distribution of the
new data P (yt+1|Zt). Then, the new set of sufficient infor-
mation is propagated based on a state transition distribution

P (Zt+1|Zt,yt+1). Let {Z(i)
t }Ni=1 denote the set of particles

that approximates P (Zt|yt), the actual implementation pro-
cedure of particle learning can be summarized as follows:

1. Sample indices {ζ(j) : j = 1, · · · , N} with replace-
ment from a Multinomial distribution with weights pro-
portional to the predictive distribution, i.e., P (ζ(j) =

i) ∝ P (yt+1 |Z(i)
t ) for i = 1, · · · , N . Set {Z(j)

t }Nj=1 =

{Zζ(j)
t }Nj=1.

2. Draw Z
(j)
t+1 from P (Zt+1|Z(j)

t ,yt+1) to obtain a

new particle set {Z(j)
t+1}Nj=1 which approximates

P (Zt+1|yt+1).

The next section shows how to use PL to achieve sequential
inference for a process convolution GP model.

4. SEQUENTIAL PROCESS CONVOLUTION
GP MODELS

The default construction of PCGP is static in the sense
that there is no time component involved. To make se-
quential inference possible, the variable t is used to denote
the sequential ordering of the data and sufficient informa-
tion. The data are assumed to be sequentially independent.
As shown in the previous sections, definitions of the suffi-
cient information Zt and predictive distribution P (yt+1|Zt)
are the essential ingredients for the application of particle
learning. A PCGP with parameters {β,x, λ, φ,Q} as shown
in Section 2 has a predictive distribution of the following
form:

P (yt+1|ay,t, by,t,βt,Ct,x,Q)

≡ Tnt+1

(
2ay,t , Ft+1βt +Kt+1x ,

by,t
ay,t

(
Int + Ft+1Ct

−1F�
t+1

))
,(2)

where T denotes the Multivariate Student’s t distri-
bution, and yt+1 denotes the (nt+1 × 1) data vector
at time t + 1. Note that parameters {β, λ, φ} are in-
tegrated out from the distribution. Information about
these parameters is summarized by their sufficient statis-
tics {ay,t, by,t,βt,Ct} which are derived from their com-
plete conditional posterior distributions. Upon arrival of
a new data point/set {yt+1,Ft+1}, the predictive prob-
ability can be calculated based on the sufficient statis-
tics and parameters {x,Q}. Therefore, the sufficient in-
formation Zt would contain {ay,t, by,t,βt,Ct,x,Q}. If
{λ, φ, β} are also of interest, we can have Zt =
{ay,t, by,t,βt,Ct,x, λ, φ,β}. Suppose that the initial priors
are given by

β|φ ∼ Np+1(β0, (φC0)
−1), φ ∼ G(ay,0, by,0),

x|λ ∼ Nm(0, λ−1Im), λ ∼ G(ax,0, bx,0),

Q ∼ W ((ψH)−1, ψ),

where W denotes the Wishart distribution with degrees of
freedom ψ and mean (ψ × (ψH)−1) = H−1. The com-
plete conditionals for the parameters at time t are given
by

β|φ ∼ Np+1(βt , (φCt)
−1), φ ∼ G(ay,t, by,t),

x|λ ∼ Nm(μt,Σt), λ ∼ G(ax,t, bx,t),
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Figure 1. 1-d synthetic sinusoidal response (left) and data (right).

whereas the posterior of Q can not be obtained in closed-
form. The MH algorithm can be used to obtain posterior
samples of Q. The proposal for Q is simply taken to be a
Wishart distribution with a mean equal to the current value
of Q and such that tuning the degrees of freedom effectively
changes the variation of the proposal. The definitions for the
sufficient statistics are given in Appendix 1. In the prop-
agate step, the resampled sufficient information Zt is up-
dated to account for the new data {yt+1,Ft+1}. First, the
sufficient statistics are updated deterministically for time
t + 1 (as shown in Appendix 1). Then, the parameters are
sampled from their conditionals since they are needed to
compute the predictive density for the next data arrival.
That is, for each particle, the parameters {β, λ, φ,x,Q}
are sampled from the respective conditionals via a sin-
gle Gibbs or a MH step, correspondingly. The following
section applies our methodology to two illustrative exam-
ples.

5. EXAMPLES

5.1 1-D synthetic sinusoidal data

Our first experiment applies SPCGP on a set of 1-D sinu-
soidal data generated sequentially from the following func-
tion (Higdon, 2002):

z(s) =
1

2

{
sin

(πs

5

)
+ 0.2 cos

(4πs

5

)}
,

0 ≤ s ≤ 9.6.

A total of 50 data points are simulated by adding N(0, sd =
0.1) noise to the sampled points as shown in Figure 1. A
single data point is randomly selected without replacement
at each time step as an input to the model. A basis grid of
size 20 and the Gaussian kernel are chosen for the model.

The initial priors are given by

β ∼ N(0, φ−1), φ ∼ G(ay = 1, 0.001),

x|λ ∼ Nm(0, (λIm)−1), λ ∼ G(ax = 1, 0.001),

Q ∼ W ((ψH)−1 = (9.6/(20− 1))−2, ψ = 1).

We could use a Gamma distribution as the initial prior for
Q since it is essentially a scalar in this exercise. But to
keep things consistent with higher dimensions, we choose
the Wishart since it is equivalent to a Gamma. The prior
mean follows the rule of thumb given by Higdon (2006) for
setting the standard deviation (SD) of a Gaussian kernel to
the basis spacing. Note that β is a scalar which corresponds
to the intercept, and the linear component is not included.
The initial priors for β, φ, λ, Q are fairly non-informative
which allows modeling to depend largely on the data. Our
simulation uses 1,000 particles.

The posterior predictive mean and 90% interval are
shown in Figure 2 for t = {10, 20, 30, 40, 50}. When there
are a few data points, uncertainty around the data is smaller
than that at the unobserved sites. As more data points be-
come available, SPCGP quickly picks up the pattern with a
mean surface at t = 50 matching the general shape of the
true response. The bottom right panel of Figure 2 shows
the posterior predictive mean and 90% interval of PLGP
from the R package “plgp” (Gramacy, 2012). The means
from both models are similar, however, the credible inter-
val of SPCGP seems slightly smaller than that of PLGP.
For model validation, SPCGP and PLGP are re-run for 50
times with different starting random seeds (both models use
the same set of seeds) and their averaged prediction perfor-
mance is evaluated on a hold-out test sample of 200 data
points generated from the true response. We look at perfor-
mance metrics such as the empirical coverage, average in-
terval width, and interval score as defined by Gneiting and
Raftery (2007) for the 90% posterior predictive interval. The
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Figure 2. Posterior predictive mean and 90% interval from SPCGP at t = {10, 20, 30, 40, 50}, and for PLGP shown at the
bottom right panel.

empirical coverage is the percentage of the hold-out sample

that is within the interval. The average interval width is

the mean of the interval widths at the data locations in the

hold-out sample. The interval score is defined in Section 6.2

of Gneiting and Raftery (2007), which rewards a model for

having a narrow predictive interval, but also penalizes it

for each point outside of the interval depending on distance

and quantile level. In addition, the mean squared predic-

tion error (MSPE) is computed based on the mean of the

posterior predictive distribution and the hold-out sample.
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Table 1. Performance of SPCGP and PLGP

Models MSPE Empirical Avg. interval Interval
coverage width score

SPCGP 0.0114 0.9192 0.3719 0.4418

PLGP 0.0125 0.9610 0.4595 0.4826

Table 1 summarizes the average of these metrics over the
50 runs for SPCGP and PLGP. The empirical coverage of
SPCGP’s credible interval is closer to 90%, and it delivers
a smaller MPSE and interval score.

5.2 The Pump-and-Treat problem

The Pump-and-Treat problem (Matott, Leung and Sim,
2011) involves a groundwater contamination scenario based
on the Lockwood Solvent Groundwater Plume Site located
near Billings, Montana. Two plumes containing chlorinated
solvents developed due to industrial practices near the Yel-
lowstone River. Of interest is the plume located in the south-
ern section of the site. The primary concern is to prevent
the plume from migrating to and contaminating the Yellow-
stone River. The proposed remediation involves drilling two
pump-and-treat wells. This problem has been modeled using
a computer simulator where the inputs are pumping rates
for the two pump-and-treat wells, and the output is a cost
function which combines the financial cost of running the
wells with a large penalty for any contamination of the river
(the penalty ensures that any optimal solution will not allow
any contamination of the river). The two pumping rates can
be set between 0 and 20,000. The objective is to minimize
the cost function, that is, the expense of running the wells.
Because of the non-trivial time for each simulator run, it
is not possible to run the simulator at every possible com-
bination of inputs and find the one that has the minimum
cost. Instead, a computer simulation experiment approach
(Sacks et al., 1989) is taken to sequentially build a surro-
gate model while searching for the minimum of the surface
(Jones, Schonlau and Welch, 1998; Taddy et al., 2009; Gra-
macy and Lee, 2011). This method proceeds sequentially by
adding new design points (a pair of pump rates and the asso-
ciated cost) one-by-one based on some criterion and updat-
ing the model fit conditional on the new design point. Up-
dating of the model fit could be done with MCMC, however,
it could be computationally demanding since the MCMC has
to be repeated for every new design point. Instead, SPCGP
is applied to this problem. The model is setup by specify-
ing a (10× 10) basis grid and a compactly supported kernel
(Lemos and Sansó, 2009) defined as,

k(u− s;Q)

=

{
(1−DM (u, s,Q)2)κ if DM (u, s,Q) < 1
0 otherwise,

where

DM (u, s,Q) =
√
(u− s)�Q(u− s)

denotes the Mahalanobis distance with precision matrix Q.
The parameter κ governs the smoothness of the resulting
GP such that it is 2κ times differentiable. Isotropy can be
induced by having the kernel precision matrix Q as a di-
agonal matrix with identical diagonal elements. Such an
isotropic kernel is termed a Bézier kernel, whose compact
support has a radius equal to the square-root of the inverse
of the diagonal elements. Depending on Q, using a com-
pactly supported kernel allows the possibility of a sparse
kernel matrix K, which in turn allows dedicated matrix de-
composition routines to speed up the computation of the
likelihood. For the Pump-and-Treat problem, Q is treated
as a parameter to be estimated in order to handle possi-
ble anisotropy in the simulator output. The smoothness pa-
rameter κ is fixed at 3, which is a standard choice and the
shape of the resulting kernel resembles that of the Gaus-
sian. To choose a new design point for the simulator run,
the expected improvement (EI) approach (Jones, Schonlau
and Welch, 1998) is employed by choosing the point s that
maximizes

E[I(s)] = E[max(fbest − f(s)), 0],

where fbest denotes the current best point (inputs with
minimum response) and f(s) denotes the predicted out-
put response (from the current state of SPCGP) at in-
put s. The expected improvement balances locations with
small predicted means against locations with high un-
certainty that thus have some probability of being less
than the best minimum observed so far. Since finding
the maximizing s exactly would be another difficult prob-
lem, optimization is approximated by considering 200 can-
didate points in the input space generated using Latin
hypercube sampling (LHS) (McKay, Conover and Beck-
man, 1979) and then choosing the candidate point with
largest expected improvement. The initial priors are speci-
fied as

β ∼ N(0, φ−1), φ ∼ G(1, 0.0001),

x|λ ∼ Nm(0, (λIm)−1), λ ∼ G(1, 0.001),

Q ∼ W ((ψH)−1, ψ = 2),

where β denotes the mean level (intercept), and H is a di-
agonal matrix with diagonal elements equal to the square
of the basis spacing (Higdon’s rule-of-thumb). A narrow
G(1, 0.0001) prior is imposed on φ because a small nugget
has advantages even when the simulator is deterministic
(Gramacy and Lee, 2012). A total of 60 input points are
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Figure 3. Posterior predictive mean surfaces from SPCGP with g = 1 at t = {6, 9, 15, 30, 40, 50}.

considered, where the first 30 are generated from LHS to

build an initial model surface, and the remaining 30 are

chosen one-by-one sequentially using the EI approach de-

scribed above. A total of 1,000 particles are used for the

simulation.

The posterior predictive mean surfaces from SPCGP are

shown in Figure 3. For t = {6, 9, 15}, the mean surfaces illus-

trate the intermediate results during the process of generat-

ing the initial model surface for t = 30. Starting from t = 31,

the EI algorithm is deployed and it shows that most of the
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Figure 4. Posterior predictive mean surfaces from SPCGP (left) and PLGP (right) with g = 1 at t = 60. The ellipses depict
the orientation of the estimated kernels.

Figure 5. Posterior samples of the components of the SPCGP kernel covariance matrix.

latter design points considered are near the minimum of the
mean surface, as desired. The posterior predictive means
from SPCGP and PLGP at t = 60 are shown in the left
and right panels of Figure 4, respectively. The black ellipses
shown on the mean surface of SPCGP illustrate the orien-
tation of the kernel which depends on the mean estimate of
Q. They have been scaled down to reduce clutter for better
viewing. Both SPCGP and PLGP found a similar location
for the minimum of the simulator output surface. Figure 5
shows samples of the observation error SD versus samples of
the components of Q−1. The left, right, and middle panels
correspond to the kernel SD in the horizontal and vertical
directions, and the correlation, respectively. The mixing is
well behaved without any signs of particle degeneration. All
simulations were executed on a notebook computer with In-
tel Core 2 duo CPU at 2.4 GHz with 4 GB of RAM. To have
a brief sense of the speed of these models, we have recorded
the execution times for them while varying the number of
LHS candidates. The rationale is that when the simulator

output is a complex surface, e.g., being highly multimodal,
then it will require more data points and LHS candidates in
order to fully explore the surface. Tables 2 and 3 display the
execution times (in minutes) of SPCGP and PLGP versus
the number of LHS candidates (200, 500, and 1,000). The
top panel displays the average model updating time (exclud-
ing simulator time) for each design point, and the bottom
panel shows the total execution time for the full process.
For a small number of LHS candidates, PLGP is faster than
SPCGP. As we grow the number of LHS candidates to in-
crease the accuracy of the optimization, SPCGP becomes
significantly faster than PLGP. This example shows that
the speed of SPCGP is not much affected by the number of
LHS candidates. In addition, the gain in speed by using a
compactly supported kernel and sparse matrix computation
in the “spam” R package (Furrer and Sain, 2010) is signifi-
cant; it reduces the computing time required by a Gaussian
kernel by about 40% for this problem. Moreover, as with all
SMC based models, SPCGP is completely parallelizable in
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Table 2. Average updating time (minutes)

Number of LHS candidates
Model 200 500 1000

SPCGP 1.41 1.34 1.36

PLGP 0.06 1.66 8.38

Table 3. Total execution time (minutes)

Number of LHS candidates
Model 200 500 1000

SPCGP 101.28 101.99 115.12

PLGP 22.66 85.24 297.30

the propagation step because the particles can be updated
independently of one another up to having a unique com-
puting node for each particle.

6. DISCUSSION AND CONCLUSION

Sequential inference for a GP model based on MCMC
is inefficient because it requires re-running the MCMC for
every new data arrival, which can be computationally de-
manding due to slow convergence. In this article, we present
a sequential inference approach for the process convolution
GP model (SPCGP), which is based on a method called
Particle Learning. It allows parameter inference to be per-
formed sequentially for each new batch of data without hav-
ing to use MCMC. This convolution approach allows for the
handling of much larger datasets than would be computa-
tionally feasible under the standard GP approach, because
the computational expense is tied to the number of basis
points instead of the number of datapoints or prediction
points, although the convolution approach is only practical
for lower-dimensional problems because of the need to create
a grid of basis points. Another key advantage of our method-
ology is that anisotropy can be fully modeled by estimating
the kernel. Moreover, SPCGP is completely parallelizable in
the propagation step up to having a unique computing node
for each particle. Illustrations of SPCGP on a 1-D synthetic
dataset and a 2-D optimization problem show promising re-
sults in terms of model fitting, computational speed, and
robustness in optimization.

The use of a compactly supported kernel as shown in
the 2-D example induces a sparse kernel matrix which can
be exploited to speed up computation. Among the various
approximation methods for GP regression in the machine
learning literature, we have not come across research that
applies PL to sparse GPs. We believe that this is possible as
long as the predictive distribution in the resampling step and
the state transition in the propagation step are fully defined.
PL is a member of particle filters which are not limited to
linear and Gaussian models. For instance, Taddy, Gramacy
and Polson (2011) has employed PL in treed models (which

are clearly non-linear and non-Gaussian) based on a clever
definition of the predictive distribution and state transition.
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APPENDIX 1

The definitions of the sufficient statistics {ay,t, by,t,βt,
Ct,μt,Σt} are given as follows.

βt = C−1
t (Ft

�vt +Ct−1βt−1),

Ct = Ft
�Ft +Ct−1,

ax,t = m/2 + ax,0, bx,t = 0.5x�x+ bx,0,

ay,t = nt/2 + ay,t−1,

by,t = by,t−1 +
1

2
(s2t + (βt−1 − β̂t)

�R−1
t (βt−1 − β̂t)),

Rt = C−1
t−1 + (Ft

�Ft)
−1,

μt = ΣtφK
t�(yt − Ftβ),

Σt = (φKt�Kt + λIm)−1,

β̂t = (Ft
�Ft)

−1Ft
�vt, vt = yt −Ktx,

s2t = (vt − Ftβ̂t)
�(vt − Ftβ̂t).

Here, nt denotes the total number of observations up to

time t, yt = (yt−1�,y�
t )

�, Ft = (Ft−1�,F�
t )

�, and Kt =

(Kt−1�,K�
t )

� denote the (nt×1) data vector, (nt×(p+1))
design matrix, and (nt ×m) kernel matrix, respectively.
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