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Bayesian nonparametric density estimation
for doubly-truncated data

Yuhui Chen and Timothy Hanson
∗

A Bayesian nonparametric density estimator is presented
for doubly-truncated data. The estimator is based on a
Pólya tree prior, and readily extended to truncated regres-
sion. The approach nicely blends a standard parametric nor-
mal fit with the nonparametric maximum likelihood esti-
mator. Since the density is directly modeled, a standard
likelihood approach applies; inference is efficiently obtained
through an adaptive Markov chain Monte Carlo and no man-
ual tuning is required. The estimator is broadly illustrated
on simulated data, the quasar luminosity data of Efron and
Petrosian (1999), times of cancer diagnosis considered in
Moreira and Uña-Álvarez (2012), and the AIDS induction
time data of Lagakos, Barraj, and De Gruttola (1988).

Keywords and phrases: Pólya tree, Regression, Trunca-
tion.

1. INTRODUCTION

Doubly-truncated data arise across many disciplines, and
are usually the result of cross-sectional or retrospective sam-
pling within a time ‘window’ imposed by a database, or
where data are only seen above or below some threshhold.
Examples from epidemiology include the time to HIV in-
fection via blood transfusion (Bilker and Wang, 1996), and
diagnosis times of childhood cancer in Portugal (Moreira
and Uña-Álvarez, 2012). An urban planning example, the
life spans of buildings in and around Taiwan is investigated
by Chi, Tsai, and Hu (2004). An example from astronomy,
the luminosity of quasars, is provided by Efron and Pet-
rosian (1999). The analysis of heights of military personnel
(where there are minimum height requirements for entry) is
given by A’Hearn (2004).

This paper focuses on the Bayesian nonparametric es-
timation of densities in the presence of doubly-truncated
data. Truncated data occurs when a random variable xi is
only observed to occur because it happened in an interval
(ai, bi). For example, if xi is time at which prostrate cancer
is diagnosed, but the database only has information concern-
ing individuals who have retired, then we can only observe
xi|xi > ri years, where ri is when subject i retired.

The Bayesian approach that we develop essentially blends
the frequentist nonparametric maximum likelihood estimate
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(NPMLE) with a parametric estimate, so we first consider
a brief description of the NPMLE based on observed data
x1, . . . , xn, originally formulated by Turnbull (1976). Con-
sider the nonparametric ‘model’ F =

∑n
i=1 fiδxi where δx is

Dirac measure on x, xi are the observed data points trun-
cated to Ri = (ai, bi), and f = (f1, . . . , fn)

′ contains prob-
abilities that sum to one with a probability fi on xi. Let
x ∼ F . Then for each interval Ri,

Fi = P (x ∈ Ri) =
∑

j:xj∈Ri

P (x = xj) =
∑

j:xj∈Ri

fj .

In matrix form this is

(1) F = Jf .

Where J is the n × n matrix defined as Jij = 1
if xj ∈ Ri, otherwise 0. Now consider the likelihood,
L(F ) =

∏n
i=1 fi/Fi. Taking the partial derivatives of the

log-likelihood and setting equal to zero gives the likelihood
equations 1/fj =

∑n
i=1 Jij/Fi, or in matrix form

(2)
1

f
= J′ 1

F
,

where 1/f is the vector (1/f1, . . . , 1/fn) and 1/F is defined

similarly; see Efron and Petrosian (1999). The NPMLE f̂ is
obtained by starting with an intial set of values for f and
iterating between (1) and (2), rescaling after (2) so that∑n

j=1 fj = 1. Note that this provides a purely nonparamet-
ric estimator that is conditional on the observed truncation
intervals. A full likelihood can be formed that also includes
the truncation times; see Shen (2010) and Moreira and Uña-
Álvarez (2012). In this paper, we follow Turnbull (1976) and
consider the conditional NPMLE.

Efron and Petrosian (1999) give an improvement over
Turnbull’s (1976) iterative method (just described), involv-
ing the discrete hazard; they showed that the NPMLE
f̂ = (f̂1, . . . , f̂n) has the hazard function ĥ = (ĥ1, . . . , ĥn)
satisfying:

(3)
1

ĥj

= Nj +

n∑
i=1

JijQ̂i, j = 1, 2, . . . , n

where Nj =
∑n

i=1 I(ai ≤ xj ≤ bi) and Q̂i = Ŝ(bi)/F̂i with

Ŝ(bi) =
∑n

m=1 f̂mI(xm > bi) and F̂i =
∑n

m=1 f̂mJim =
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∑n
m=1 f̂mI(ai ≤ xm ≤ bi). Shen (2010) later generalized

Efron and Petrosian’s (1999) method for doubly truncated

data by an alternative derivation of ĥ and investigated the
consistency and the weak convergence of the NPMLE.

Wang (1989) provided a semiparametric approach for es-
timation on truncated data. By recognizing that the joint
likelihood of the observed data is the product of the marginal
likelihood of data x = (x1, . . . , xn)

′ and the conditional like-
lihood of the truncation intervals given x, and assuming a
parametric model for the conditional truncation probabili-
ties, the maximum likelihood estimates of the parameters
θ can be obtained by maximizing this conditional likeli-
hood. The estimated marginal distribution using θ̂ is com-
pleted using a nonparametric approach. Moreira and Uña-
Álvarez (2012) very recently introduced kernel-based den-
sity estimation for doubly truncated data. They gave two
approaches by smoothing a semiparametric estimator (as in
Wang, 1989) or smoothing the NPMLE (Turnbull, 1976).

The NPMLE behaves nicely when the sample size n →
∞, but for moderate sample sizes, it can have problems; e.g.
Woodroofe (1985, p. 168) shows that a frequentist estimator
can equal unity at min{x1, . . . , xn} with positive probabil-
ity. To avoid such difficulties, Gasparini (1996) developed a
nonparametric Bayesian approach for estimating F on left-
truncated data based on Dirichlet processes; the estimate is
the posterior expectation of F assuming the truncation val-
ues are fixed constant. Also see Tiwari and Zalkikar (1993).
Along these lines, Zhou and Luan (2005) proposed another
Bayesian nonparametric method for right censored and left
truncated data with Dirichlet process priors; they have im-
plemented their approach in an R function NPBayesT. There
has been no published Bayesian nonparametric approach to
doubly-truncated data that we are aware of.

In this paper we consider a Bayesian nonparametric esti-
mator for a density for continuous variables xi, based on
a finite Pólya tree prior. The estimator blends the mer-
its of both nonparametric and parametric modeling. Merits
include increased power and efficiency when the paramet-
ric family approximately holds, and also robustness against
misspecifying a completely parametric family. A potential
problem is that the Pólya tree is ‘centered’ at a parametric
family—we use the Gaussian family—and this may affect in-
ference in small samples when data are highly non-normal.
Section 2 reviews the Pólya tree prior centered at the normal
family; Section 3 develops an efficient algorithm for obtain-
ing inference using Markov chain Monte Carlo. In Section 4
we examine the estimator on simulated data and compare
it to the NPMLE. Section 5 examines the quasar luminosity
data first analyzed by Efron and Petrosian (1999). Section 6
compares our density estimator to the kernel-smoothed ver-
sions introduced by Moreira and Uña-Álvarez (2012). In Sec-
tion 7, we extend the truncated density estimation model to
truncated regression models and illustrate their use on AIDS
incubation time. Section 8 concludes the paper with a brief
discussion.

2. NORMAL CENTERED PÓLYA TREE
PRIORS

A finite normal centered Pólya tree (PT) prior for a ran-
dom distribution F with J ∈ N levels is characterized by
a collection of refined partitions of R and associated condi-
tional probabilities. We denote Φθ(·) as the normal cumu-
lative distribution function (or measure) with parameters
θ = (μ, σ2) and the corresponding density function as φθ(·).
The random distribution F is centered at Φθ by first defin-
ing partition sets at level j as the intervals

(4) Bj
θ(k) =

(
Φ−1

θ

{
(k − 1)/2j

}
,Φ−1

θ

{
k/2j

})
,

where j = 1, . . . , J and k = 1, . . . , 2j . The set Πj
θ = {Bj

θ(k) :
k = 1, . . . , 2j} partitions R up to a set of Lebesque measure
zero, and furthermore Φθ{Bj

θ(1)} = Φθ{Bj
θ(2)} = · · · =

Φθ{Bj
θ(2

j)} = 2−j . Note that a ‘parent’ set Bj
θ(k) in the

partition Πj
θ has two ‘offspring’ sets Bj+1

θ (2k − 1) and

Bj+1
θ (2k) in the partition Πj+1

θ , i.e. Bj
θ(k) = Bj+1

θ (2k−1)∪
Bj+1

θ (2k). A Pólya tree assigns a beta prior to each pair of
conditional offspring probabilities from a parent set. Define
these two conditional probabilities for Bj

θ(k) as

(5)
Yj+1(2k − 1) = F

{
Bj+1

θ (2k − 1)|Bj
θ(k)

}
Yj+1(2k) = F

{
Bj+1

θ (2k)|Bj
θ(k)

}
.

Note that, necessarily, Yj+1(2k − 1) + Yj+1(2k) = 1 and
B0

θ(1) = R. We consider the standard prior (Lavine, 1992)

(6)
{
Yj+1(2k−1),Yj+1(2k)

} ind.∼ beta
{
c(j+1)2, c(j+1)2

}
,

where j = 0, . . . , J − 1 and k = 1, . . . , 2j . Following Hanson
(2006a), F follows Φθ on sets in ΠJ

θ by requiring

(7) F
{
A|BJ

θ (k)
}
= Φθ(A)2

−J for all A ⊂ BJ
θ (k).

The parameter c, like the precision parameter in the Dirich-
let process (Ferguson, 1973, 1974), determines how closely
F follows the centering distribution, both in the prior and
the posterior. With c → ∞, the centering distribution Φθ

will be obtained.

Let Y = {Yj(k) : j = 1, . . . , J ; k = 1, . . . , 2j} and 	x
 de-
note the ceiling function, the smallest integer greater than
or equal to x. Define the vector of probabilities on sets in
the finest partition ΠJ

θ asVY = (VY(1), VY(2), . . . , VY(2
J))′,

where VY(k) = F{BJ
θ (k)} =

∏J
j=1 Yj(	2j−Jk
), the prod-

uct of J conditional probabilities associated with the set in
each partition Πj

θ. This product is the result of the multi-
plication rule for conditional probabilities and the nesting

B1
θ

(⌈
k/2J−1

⌉)
⊃ B2

θ

(⌈
k/2J−2

⌉)
⊃ · · · ⊃ BJ−1

θ

(
	k/2


)
⊃ BJ

θ (k).
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Given Y and θ, the density associated with F is given by:

(8) f(x|Y ,θ) = 2JVY
{
kθ(J ;x)

}
φθ(x)

where kθ(j;x) = 	2jΦθ(x)
 and the corresponding cumula-
tive distribution function is

F (x|Y ,θ) =

[
kθ(J;x)−1∑

k=1

VY(k)

]
+VY

{
kθ(J ;x)

}[
2JΦθ(x)− kθ(J ;x) + 1

]
.(9)

The prior specified by (4), (5), (6), and (7) is referred to
as a finite Pólya tree prior with J levels, centered at the Φθ

distribution with precision c, and is denoted

(10) F |θ, c ∼ PTJ (c,Φθ).

Given θ, the random aspects of F are the elements of Y . The
random F is centered at Φθ in the sense that E{F (A)} =∫
A
φθ(x)dx for all measurable A ⊂ R.

3. DENSITY ESTIMATION

The data is assumed to be generated in the following
manner. Random interval endpoints (ai, bi), including ±∞,
arise from a bivariate distribution G. Given (ai, bi), xi is
generated according to F restricted to the interval (ai, bi).
Note that if (ai, bi) = R then xi is untruncated, i.e. observed
as usual. The data is denoted D = {(xi, ai, bi)}ni=1.

Assume the Pólya tree model (10). We are interested
in estimating the density f(·) and cumulative distribution
function F (·). The likelihood of (Y ,θ) is given by

(11) L(Y ,θ) =

n∏
i=1

f(xi|Y ,θ)

F (bi|Y ,θ)− F (ai|Y ,θ)
,

where f(·|Y ,θ) and F (·|Y ,θ) are defined in (8) and (9).
Commonly used priors for μ and σ−2 for the underlying
normal case are μ ∼ N(m, v), independent of σ−2 ∼ Γ(a, b),
where m, v, a, and b are hyper-parameters. We have found
some small amount of prior information for σ2 to greatly
improve Markov chain Monte Carlo mixing. Throughout
this paper we set a = b = 1; this prior on σ−2 implies
P (0.47 < σ < 9.97) = 0.98. The prior for the precision pa-
rameter c is c ∼ Γ(5, 1) (Hanson, 2006), independent of μ
and σ2. The posterior density of (Y ,θ, c) is proportional to

π(Y ,θ, c|D) ∝ L(Y ,θ)× φm,v(μ)× Γ−1
(
σ2|a, b

)
× Γ(c|5, 1)×

J∏
j=1

2j−1∏
k=1

beta
(
Yj(2k − 1)|cj2, cj2

)
.

Due to truncation, the full conditional distributions are
intractable and Gibbs sampling is out of the question.
Through extensive trial and error, a simple, fast, and

highly effective approach is to use componentwise adap-
tive random-walk Metropolis-Hastings (ARWMH) (Haario,
Saksman, and Tamminen, 2005) for μ, log(σ), and log(c),
coupled with an adaptive block update of all the logit-
transformed conditional probabilities (Haario, Saksman,
and Tamminen, 2001). Let i(j, k) = 2j−1 + k − 1 and
wi(j,k) = log{Yj(2k − 1)/[1 − Yj(2k − 1)]} for j = 1, . . . , J
and k = 1, . . . , 2j−1. Then w = (w1, . . . , w2J−1)

′ con-
tains the logit-transformed conditional probabilities; note
that Yj(2k) = 1 − Yj(2k − 1). Crude starting values for
μ and σ2 are obtained by μ̂0 = n−1

∑n
i=1 xi and σ̂2

0 =
n−1

∑n
i=1(xi − μ̂)2 respectively. c is initialized to c0 = 1

and w0 = 0d, a vector of d zeroes, where d = 2J − 1. The
initial tuning values of the proposal distributions in AR-
WMH, with respect to μ, log(σ), log(c), and w, are V μ

0 = 1,
V σ
0 = 1, V c

0 = 1, and V w
0 defined as a d × d matrix with

diagonal elements 0.05 and all off diagonal elements 0. Re-
peat steps 1 to 4 below B+M times where B is the number
of samples omitted during the burn-in stage, and M is the
number of samples kept. In the simulation study section,
B = 30,000 and M = 30,000 are used and work well to
get good Markov chain mixing. Naive standard deviations
are first used for m0 iterations (we chose m0 = 20 for all
simulations and data analyses), then adaptive versions are
used.

Algorithm for fitting Pólya tree to doubly
truncated data

For m = 1, 2, . . . , B +M do:

1. Update μ via adaptive Metropolis-Hastings:

(a) μ∗ ∼ N(μm−1, V
μ
m−1); ρ =

π(Ym−1,θ
∗,cm−1)

π(Ym−1,θm−1,cm−1)
where

θ∗ = (μ∗, σm−1) and θm−1 = (μm−1, σm−1).

(b) u ∼ U(0, 1); if u < ρ then set μm = μ∗, otherwise
μm = μm−1.

(c) After m0 iterations, update V μ
m = m−2

m−1
V μ
m−1 +

sd
m−1

((m − 1)μ̄2
m−2 − mμ̄2

m−1 + μ2
m−1) + sdε where

μ̄m =
∑m

k=1 μk/m and μk is the sampled μ at the
kth iteration. Here, we set sd = 0.02 and ε = 0.001.

2. Update σ via adaptive Metropolis-Hastings:

(a) log(σ∗) ∼ N(log(σm−1), V
σ
m−1); ρ =

π(Ym−1,θ
∗,cm−1)

π(Ym−1,θm−1,cm−1)
where θ∗ = (μm, σ∗) and

θm−1 = (μm, σm−1).

(b) Generate u ∼ U(0, 1); if u < ρ then set σm = σ∗,
otherwise σm = σm−1.

(c) After m0 iterations, update V σ
m = m−2

m−1
V σ
m−1 +

sd
m−1

((m− 1)log(σ)
2

m−2 −mlog(σ)
2

m−1 + log(σ)2m−1)+

sdε, where log(σ)m =
∑m

k=1 log(σ)k/m and log(σ)k
is the sampled log(σ) at the kth iteration. We set
sd = 0.2.
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3. Update c via adaptive Metropolis-Hastings:

(a) log(c∗) ∼ N(log(cm−1), V
c
m−1); ρ =

π(Ym−1,θm,c∗)
π(Ym−1,θm,cm−1)

(b) Generate u ∼ U(0, 1); if u < ρ then set cm = c∗,
otherwise cm = cm−1.

(c) After m0 iterations, update V c
m = m−2

m−1
V c
m−1 +

sd
m−1

((m−1)log(c)
2

m−2−mlog(c)
2

m−1+log(c)2m−1)+sdε,

where log(c)m =
∑m

k=1 log(c)k/m and log(c)k is the
sampled log(c) at the kth iteration. We set sd = 0.5.

4. Update w ∈ R
2J−1 in a block via adaptive Metropolis-

Hastings:

(a) w∗ ∼ N(wm−1, V
w
m−1); obtain Y∗ from logistic trans-

formations on elements of w∗; ρ = π(Y∗,θm,cm)
π(Ym−1,θm,cm)

.

(b) Generate u ∼ U(0, 1); if u < ρ then set Ym = Y∗ and
wm = w∗, otherwise Ym = Ym−1 and wm = wm−1.

(c) After m0 iterations, update V w
m = m−2

m−1
V w
m−1 +

sd
m−1

((m − 1)w̄m−2w̄
′
m−2 − mw̄m−1w̄

′
m−1 +

wm−1w
′
m−1) + sdId×d and sd = 1.0/d, where

w̄m =
∑m

k=1 wk/m and the elements wk ∈ R
2J−1 are

the sampled w column vectors at the kth iteration.

The estimate of the density at a point with respect to
squared-error loss is the posterior mean

(12) f(x|D) ≈ 1

M

M∑
m=1

f(x|Ym,θm).

The cumulative distribution function is also estimated by
the posterior mean

(13) F (x|D) ≈ 1

M

M∑
m=1

F (x|Ym,θm)

where f(·|Y ,θ) and F (·|Y ,θ) are defined in (8) and (9) re-
spectively.

4. SIMULATION STUDY

We examine the performance of the proposed method on
data simulated under two scenarios. First, data are ran-
domly truncated to (−∞, 1.5) or (−1.25,∞), each with
probability one-half, and arise from a mixture of two nor-
mal distributions F = 0.5N(−1, 0.5) + 0.5N(1, 1) restricted
to either truncation interval. Five estimated densities (pos-
terior means over a grid) are plotted from different samples
of size n = 500, n = 1,000, n = 2,000, and n = 4,000, along
with the true density in Figure 1. We set J = 5, m = 0, and
v = 10. After a burn-in of 30,000 iterates, 30,000 were kept.
The chains mixed well with acceptance rates around 0.60,
0.65, 0.50, and 0.5 for μ, log(σ), log(c), and w respectively.
Figure 1 shows the estimator to estimate more accurately
as the sample size increases, capturing the bimodality of
the true density even though F is centered at the normal
distribution.

We investigate another simulation where data arises from
a bimodal distribution: xi ∼ F where F = 0.5N(−1, 0.5) +
0.5N(1, 0.5) randomly truncated to (ai, bi) in the following
manner. With probabilities 0.25, 0.25, and 0.5, (a) a = −∞
and bi ∼ U(0, 3), (b) bi = ∞ and ai ∼ U(−3, 0), (c)
ai ∼ U(−3,−1) and bi ∼ U(1, 3), respectively. Five esti-
mated densities from samples of size n = 500 are plotted
along with the true density; see the left panel of Figure 2.
We keep J = 5, m = 0, v = 10, and M = 30,000 after
a burn-in of B = 30,000 iterations. The Markov chains
mix well with acceptance rates 0.58, 0.52, 0.53, and 0.32,
for μ, log(σ), log(c), and w. To study the influence of the
proportion of truncation, we also generate data from the
same F = 0.5N(−1, 0.5) + 0.5N(1, 0.5) but under a dif-
ferent truncation scenario, (a) a = −∞ and bi ∼ U(1, 3),
(b) bi = ∞ and ai ∼ U(−3,−1), (c) ai ∼ U(−3,−1.5) and
bi ∼ U(1.5, 3) with probabilities 0.25, 0.25, and 0.50 respec-
tively; these data have typically larger truncation intervals,
so there is more information for the distribution function
and density. Accordingly, the density estimates in the right
panel of Figure 2 are more accurate (less variability and
more bias), as one would expect.

We investigate one last simulation and compare our es-
timated density and cumulative distribution functions with
the ones obtained from Efron and Petrosian (1999). The
DTDA package for R (Moreira et al., 2010) includes the func-
tion efron.petrosian for obtaining estimation results from
the approach of Efron and Petrosian (1999). Data are right-
truncated to lie in the interval (0, ui) where ui ∼ U(0.5, 3);
the true density is exponential, F (x) = 1 − e−x for x > 0.
The sample size considered is n = 500. We transform both
the data and the truncation intervals using the natural log
(so the resulting log-transformed data are right-truncated
extreme value). The estimated density and cumulative dis-
tribution functions are plotted in Figure 3 with J = 5 and
other prior settings as above. To obtain a density from Turn-
bull’s (1976) estimate, we simply difference the estimated
cumulative distribution function across a bin and set the bin
area to this value. Since the density is not identifiable past
the largest value x(n), we consider conditional density esti-
mation on (−∞, x(n)). The Bayesian estimator “smooths”
Turnbull’s NPMLE estimator somewhat toward the normal
centering density.

5. QUASARS DATA

Efron and Petrosian (1999) investigated truncated quasar
luminosity data via the NPMLE. The data presented
there are independently collected quadruplets, denoted as
(zi,mi, ai, bi), for i = 1, 2, . . . , n with n = 210. Here zi
is the redshift of the ith quasar, mi is the magnitude;
the lower bound ai is used to distinguish from non-quasar
objects, while the upper bound bi is used to exclude the
quasars with magnitude above bi, which cannot be observed
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Figure 1. Estimated densities from five data sets randomly generated at four different sample sizes n = 500, n = 1,000,
n = 2,000, and n = 4,000.

since they are too dim to yield dependent redshifts. We ob-
tained the quasars data from the R package DTDA (Mor-
eira, Uña-Álvarez, and Crujeiras, 2010); the distribution of
each luminosity in the log-scale xi = H(zi,mi) is trun-
cated to an interval (ai, bi), where H(·) represents a trans-
formation depending on the cosmological model (Efron and
Petrosian, 1999). We plot the estimated density and cu-
mulative functions from the proposed method as well as
the NPMLE method given in Efron and Petrosian (1999)
in Figure 4. Efron and Petrosian (1999) also considered a

parametric density of the form log{fd(x)} =
∑d

j=0 βjx
j

over a finite interval (the degree of the polynomial d picked
by large-sample hypothesis tests). Our cumulative distribu-
tion function tracks the NPMLE reasonably well, but al-
lows for extrapolation to the left of ai if one has faith in
the underlying normal model. As before, the NPMLE den-

sity estimate is a simple histogram constructed by differ-
encing the NPMLE and making the bin areas add up to
one. In the next section we compare our the Bayesian non-
parametric density estimate to a kernel-smoothed NPMLE.
FORTRAN code for carrying out the analysis on the
quasar luminosity data is available from the authors by re-
quest.

6. BAYESIAN AND KERNEL-SMOOTHED
DENSITY ESTIMATES ON A

CHILDHOOD CANCER DATA SET

Frequentist estimation of a density under double-
truncation was only recently proposed by Moreira and Uña-
Álvarez (2012). Moreira and Uña-Álvarez’s nonparametric
density estimator kernel-smooths Turnbull’s NPMLE (pre-
sented in the introduction). They also consider a kernel-
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Figure 2. Estimated densities from five doubly-truncated data of size n = 500; left panel has smaller truncation intervals.

Figure 3. Density and cumulative function estimations from the proposed method and the method presented in Efron and
Petrosian (1999).

smoothed semiparametric estimator as well which specifies a
parametric distribution G for the conditional densities of the
truncation times (a, b), given x. Moreira and Uña-Álvarez
(2012) illustrate their estimator on a data set comprised of
n = 406 diagnosis times in years for all childhood cancers in
North Portugal between January 1, 1999 and December 31,
2003. Diagnosis time xi is truncated to lie within (ai, bi)
where bi is the years between the child’s birth and Decem-
ber 31, 2003; ai is bi−5 (5 years is the window in which the
study took place). All of xi, ai, and bi are transformed to
lie within [0, 1] via t(x) = (x+ 5)/20.

Figure 5 gives our estimator for these data with J = 5,
c ∼ Γ(10, 1), and 30,000 iterates kept after a burn-in of

15,000. Also on the plot are the nonparametric, semipara-

metric, and naive kernel-smoothed estimators of Moreira

and Uña-Álvarez (2012) for bandwidth h = 0.035. The

naive kernel-smoothed estimator does not correct for trun-

cation. Overall, the Bayesian estimate tracks the frequen-

tist kernel-smoothed estimate up until about 0.8 (diagnosis

at 11 years), where the Bayesian estimate noticeably drops

below the others. This is likely a result of the Bayesian es-

timator attenuating to zero in the tails more quickly due to

the centering family; this may or may not be more accu-

rate depending on whether the true density also dies down

more quickly. It is not our intention to provide a comprehen-

sive comparison between these density estimators here, but
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Figure 4. Density and cumulative function estimations for quasars data from the proposed method and the method presented
in Efron and Petrosian (1999).

Figure 5. Doubly-truncated Portuguese childhood cancer
density estimates; kernel-smoothed NPMLE (smooth-solid),

Pólya tree estimate (spiky-solid), kernel-smoothed
semiparametric (dashed), and kernel-smoothed estimate

ignoring truncation (dotted).

rather show that they give similar results for this data set.
Hanson (2006b) compared kernel-smoothed and Bayesian
nonparametric density estimators (in this case a Dirichlet
process mixture) in a small simulation study and found the
Bayesian approach improved estimatation in moderate-to-
large sample sizes; the kernel-smoothed estimator worked
better for small samples. Also see Xu et al. (2013) for an ex-
tensive comparison between a Bayesian nonparametric den-
sity estimator and kernel-smoothed density estimator for the
null hypothesis test of unimodality; the Bayesian test does
significantly better overall.

7. TRUNCATED REGRESSION

The methods herein can be extended to semiparamet-
ric survival modeling using, e.g. linear models, for doubly-
truncated and censored data. In particular, the doubly-
truncated model can be extended to include covariates by
simply specifying θi = (z′iβ, σ

2) where β is a p-dimensional
vector of regression coefficients and zi is a p-dimensional vec-
tor of covariates associated with individual i. This is equiv-
alent to the model

xi = z′iβ + εi, εi
iid∼ F, F |c, σ ∼ PTJ (c,Φσ),

where Φσ is a mean-zero Gaussian distribution with vari-
ance σ2. Furthermore the probabilities at the first level are
fixed to Y1(1) = Y1(2) = 0.5 to ensure identifiability; this
produces a median regression model. The algorithm for ob-
taining posterior inference is changed slightly to update β
rather than μ using a block update akin to that used for the
logit-transformed elements of Y in w. This model without
truncation was considered by Hanson and Johnson (2002),
and further generalized to heteroscedastic error by Jara and
Hanson (2011). A purely nonparametric frequentist method
was introduced by Lewbell and Linton (2002).

We applied this model to the HIV incubation data of
Lagakos, Barraj, and De Gruttola (1988), also analyzed by
Shen (2012). There are 37 children and 258 adults in the
data set who were infected with HIV through blood trans-
fusion. The induction time xi (time from HIV infection to
diagnosis of AIDS) is truncated to Ri = (0, 8− yi) = (ai, bi)
where yi is the infection time and 8 years is the total time
by the end of the study (April 1977 through January 1986).
The truncated Pólya tree model was fit where θi = z′iβ,
zi = (1, 0) for children and zi = (1, 1) for adults. We
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Figure 6. Density estimates for AIDS induction data; regression model (left) and independent fits (right).

considered the model with J = 5, β ∼ N2(02, 100I2),
c ∼ Γ(5, 1), and σ−2 ∼ Γ(0.1, 0.1) for illustrative purposes.
After a burn-in of 30,000 iterates, 170,000 were kept; the
Markov chain mixing was reasonably good based on history
plots.

The posterior mean and 95% credible interval for β0 is
3.51 (3.18, 3.96) and for β1 is 1.20 (0.74, 1.50). The es-
timated median time to induction is estimated to be 3.51
years for children and 3.51 + 1.20 = 4.71 years for adults.
This agrees closely with Lagakos et al. (1988). The esti-
mated densities for children and adults are plotted in the
left panel of Figure 6. Fitting each group separately pro-
duces the right panel in Figure 6, with estimated median
time to induction 3.45 years with 95% CI (2.31, 4.52) for
children and 4.87 years for adults with 95% CI (4.59, 5.13).
All density estimates are “spiky”, but it is important to note
that they should be spiky. The data were recorded only to
the nearest quarter year (i.e. in three month increments), so
there is a great deal of “ties” among the observed truncated
induction times and these plots simply reflect this “piling
up of mass” at these relatively few discrete values. Note
that the NPMLE is also spiky—it places mass only on the
observed tied induction times. When fit separately, the chil-
dren’s density estimate is smoother, reflecting that only 37
observations go into it, whereas 258 go into the adults’ den-
sity.

Other authors have shown that Bayes estimators aris-
ing from nonparametric priors often mimic frequentist
estimates mixed with parametric fits. Susarla and Van
Ryzen (1976) show their survival curves reduce to Kaplan-
Meier (1958) estimators when the precision gets small.
Kalbfleisch (1978) finds Cox’s (1975) partial likelihood as
a limiting case of the gamma process proportional haz-
ards model. Johnson and Christensen (1986) obtain Turn-

bull’s (1976) estimator from grouped interval censored
data.

8. DISCUSSION

This paper considers the nonparametric (or rather, richly
parametric) estimation of a density in the presence of
doubly-truncated data. The density is modeled as a finite
Pólya tree with a type of “shrinkage prior” on the Pólya tree
conditional probability parameters. The estimator works
well in simulations and is compared to the NPMLE on sim-
ulated and real data. The Pólya tree resembles a smoothed
version of the NPMLE, but conveys some additional advan-
tages. Since the Pólya tree is centered at a parametric model,
the tails are estimated and so extrapolation is possible, if one
has some confidence in the centering family. The univariate
model can be extended to bivariate truncated data as sug-
gested in Yang, Hanson, and Christensen (2008); however,
dimensions higher than two are problematic as the number
of Pólya tree parameters grows exponentially with dimen-
sion unless the Pólya tree is marginalized.

We are currently working on fast approximations to max-
imizing the posterior with application to the k-sample prob-
lem with truncated data. Bilker and Wang (1996) suggest a
test using a semiparametric approach akin to Wang (1989);
note that Lagakos, Barraj, and De Gruttola (1988) consider
a nonparametric approach to purely left- or right-truncated
data whereas Chi, Tsai, and Hu, (2004) consider doubly-
truncated discrete data. Chen and Hanson (2014) use Pólya
trees for the k-sample problem in the presence of continuous,
censored data with excellent results. Their method, which
involves marginalizing the random F , cannot be directly ap-
plied here. However, if one rather takes the Pólya tree par-
tition to coincide with the endpoints of censoring and trun-
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cation intervals, left-truncated and right-censored data can
be accommodated rather easily, even with F marginalized.
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