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Joint models: when are treatment estimates
improved?
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Treatments affect many aspects of disease; for example, a
drug may improve symptoms, prolong survival, and cause se-
rious side effects. A broader perspective on clinical effective-
ness, considering multiple outcomes, requires analyses that
account for relationships among outcomes. So-called joint
modeling induces such relationships via shared parameters.
Practical questions arise, including “When do we require a
joint model?” and “How much do we gain by its use?” Moti-
vated by these questions, we compare Gaussian joint models
with shared latent parameters to separate models for each
outcome individually. When we assume a single longitudi-
nal measurement, known error variances, and no censoring,
joint and separate treatment effect posteriors converge as
the priors become improper. This result still holds when we
add multiple longitudinal measurements and unknown er-
ror variance, but not when we make the prior informative
for at least one treatment effect (longitudinal or survival).
Joint models also improve inference under some censoring
scenarios. Our results suggest that joint models are most
useful when an information imbalance allows abundant in-
formation in one outcome to compensate for a paucity of
information in another.

AMS 2000 subject classifications: Primary 62F15; sec-
ondary 62H20.
Keywords and phrases: Joint longitudinal-survival mod-
eling, Bayesian learning, Multiple outcomes, Bimodal pos-
teriors.

1. INTRODUCTION

Medical treatments rarely affect a single aspect of dis-
ease; rather, they manifest a spectrum of measurable fea-
tures that may be elevated to “primary outcomes” or rele-
gated to “side effects”. Imagine a drug that simultaneously
reduces some symptoms, prolongs survival, and causes seri-
ous side effects. In considering this therapy, patients and
clinicians must trade off outcomes. Quality of life domi-
nates in terminal patients seeking palliation, while survival
trumps side effects in patients seeking a cure. Multiple out-
comes also complicate statistical analysis. For example, af-
ter a patient dies, she cannot report her symptom sever-
ity, and more symptom-prone patients experience worse sur-
vival. Relationships among outcomes can bias estimates or
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sacrifice efficiency in single-outcome analyses. Ignoring miss-
ing symptom reports from patients who die early biases our
estimate of the treatment effect on symptoms. Considering
only survival underestimates the treatment’s total effect on
disease.

Let Z1 and Z2 represent two health outcomes of interest.
If they share a measurement scale, a standard multivariate
distribution may serve as the joint distribution, [Z1, Z2],
enabling standard models. However, variables on different
scales preclude “brand name” joint distributions. Copula
models handle this by constructing a joint using cumulative
distribution functions. So-called joint models instead induce
a joint distribution using conditional specification.

Three approaches to joint modeling may be distin-
guished [26]. First are models for survival, Z2, conditional
on longitudinal predictors, Z1, written [Z2|Z1] [14, 21]. En-
dogenous or error-prone predictors may themselves require
a model, [Z1]. Some authors model the predictor and plug
it into a survival model [22, 11], while others simultaneously
fit a latent trajectory and a survival model that depends on
this [24].

A second class comprises survival events that censor lon-
gitudinal data collection [20]. Censoring matters when the
missing outcomes differ systematically from the observed
outcomes. For example, if patients with the worst symptoms
drop out, the remaining data paints a too-rosy picture. Hu
and Sale [12] showed that longitudinal predictions improve
when the missing data mechanism, [Z2], is modeled. Ex-
amples include pattern-mixture models and selection mod-
els [15].

A final approach reflects the health outcomes perspective,
emphasizing multiple dimensions of health [17]. In our clin-
ical trial example, patients value treatment effects on both
symptoms and survival. Shared parameter models assume
independence between outcomes given a shared latent vari-
able, u, specified via [Z1|u] and [Z2|u]. Marginalizing these
over the distribution [u] yields a joint distribution. These
approaches trade the benefit of symmetrical outcome mod-
els against the added complication of latent variable mod-
els [13].

After more than a decade of development, joint models
now accommodate myriad data quirks, as recent reviews at-
test [18, 23, 3]. However, the properties and performance
of joint models tend to receive less attention in the litera-
ture [10]. Exceptions include papers on residuals [19], sam-
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ple size and power [2], robustness [28], and less paramet-
ric approaches [1, 27]. The original work on bias [5] and
efficiency [4] prioritized the survival outcome. More recent
comparisons show less benefit of joint modeling in other set-
tings [7, 6].

Our work springs from two practical questions: “When do
we require a joint model?” and “How much do we gain by
its use?” To answer these, we compare posteriors from joint
models to those of corresponding longitudinal- or survival-
only models. Strong assumptions permit analytical methods,
while simulations crack more realistic models. We conclude
that inference improves when a joint model allows abundant
information in one outcome type to compensate for an in-
formation deficit in another. Section 2 highlights such an
asymmetry in longitudinal symptom and survival data from
a real-world oncology trial. Section 3 specifies a Gaussian
joint model for balanced data: one symptom observation
and one survival time. With known error variance and im-
proper priors, the treatment effect posteriors are the same in
joint and separate models. This also holds in Section 4 when
we use simulation to model multiple symptom observations.
However, informative priors on one submodel can produce
an asymmetry that facilitates joint modeling benefits. When
censoring depends on the latent variables (Section 5), the
joint model can sometimes improve posterior measures. We
conclude in Section 6 with discussion and suggestions for
future work. Algebraic details are relegated to a technical
appendix.

2. CLINICAL TRIAL EXAMPLE

Previously-analyzed cancer clinical trials inspire our ap-
proach [8]. Our models are simpler, to permit focus on the
relative merits of joint and separate models, but the inferen-
tial targets remain treatment effects on symptoms and sur-
vival. In the trial, patients were randomized to treatment or
control, then self-reported their symptoms on a continuous
scale. Progression-free survival (PFS) extended from enroll-
ment to disease progression or death, whichever came first.
Censored survival times were rare (< 10%), and patients
provided a median of 14 symptom reports.

We construct a shared random effects model, which as-
sumes symptoms and survival are independent given a la-
tent variable [23]. Person i reports her symptoms ni times,
forming the vector z1i = (z1i1, . . . , z1ini)

′, and contributes a
single survival time, z2i. Collecting all participants’ symp-
tom, survival, and latent variables into z1, z2, and u, con-
ditional independence leads to a simple joint likelihood,
f(z1, z2|u,θ) = f(z1|u,θ)f(z2|u,θ). The parameter vector
θ contains the treatment effects of interest, as well as error
variances, etc. We require a prior for these parameters, π(θ),
and a distribution for the latent variables, p(u). Bayes rule
yields the full posterior,

(1) f(u,θ|z1, z2) =
f(z1, z2|θ,u)π(θ)p(u)∫

f(z1, z2|θ,u)π(θ)p(u)dθdu
.

In the clinical trial example, we model the symptoms, z1,
and the log survival time, z2, as Gaussian, i.e.,

z1ij ∼ Normal(X1ijβ1 + ui, σ
2
1)

z2i ∼ Normal(X2iβ2 + αui, σ
2
2)(2)

ui ∼ Normal(0, σ2
u) ,

where i = 1, . . . , N indexes individuals and j = 1, . . . , ni

indexes time. The two predictor vectors, X1 and X2, in-
clude treatment assignment, and the treatment effects are
elements of β1 and β2. A single latent variable ui links
the two models; it appears as an intercept in the longitu-
dinal mean and as a scaled intercept αui in the log sur-
vival mean. To complete the Bayesian model, we place vague
Normal(0, 100) priors on β1, β2, and α and mildly infor-
mative Gamma(1, 1) priors on the precisions, σ−2

1 , σ−2
2 , and

σ−2
u .
In the following, we ask, “Does a joint model change our

conclusions?” The scaling parameter α mediates the latent
variable’s contribution to the two submodels. For example, a
negative α implies that patients with higher symptoms have
shorter survival. After fitting model (2) to clinical trial data,
the resultant posterior credible interval for α lies entirely
below zero, which supports a clinically sensible association
between the outcomes. However, non-zero α does not mean
treatment effect estimates benefit.

Does survival information alter symptom conclusions and
vice versa? We compare treatment effect posteriors from
the joint model (2) to those from a longitudinal-only model
that omits survival and a survival-only model that omits
symptoms. The left panel of Figure 1 displays posterior me-
dian symptom trajectories in the treatment (black) and con-
trol (gray) groups, from the joint (solid) and longitudinal-
only (dashed) models. The right panel displays the poste-
rior median survival curve in each treatment group, from
the joint (solid) and survival-only (dashed) models. Verti-
cal lines are point-wise, equal-tail 95% posterior credible in-
tervals. Adding survival data via this joint model does not
change the symptom medians or intervals (left panel). How-
ever, adding symptom data shifts the survival medians and
narrows the intervals, especially at days 50 and 100 (right
panel). Apparently, symptom reports carry the bulk of in-
formation in this data set and model.

However, this balance need not hold for all data sets, like-
lihoods, or priors. As noted in Section 1, joint models can
reduce bias and increase efficiency, especially when focusing
on one outcome. We consider outcomes of joint clinical in-
terest, and we expect that their relative contributions will
depend on the number of observations, censoring, and error
variances.

3. JOINT MODEL FOR ONE VALUE OF
EACH TYPE

Although we now leave behind real data, we retain the
language of symptoms and survival outcomes, treatment and
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Figure 1. Fitted trajectories for symptom severity (left) and survival (right) in a Gaussian joint model fit to the clinical trial
data. The treatment group fits are in black, control group in grey. Joint model results are plotted with solid lines; separate

(longitudinal- or survival-only) model results are plotted as dashed lines.

control groups. We begin by assuming: 1) each person re-
ports symptoms once; 2) symptoms z1i, log survival z2i, and
the latent ui are all Gaussian; 3) treatment is the only pre-
dictor; and 4) no data are missing. We also assume, without
loss of generality, that treatment and control groups each
haveN/2 patients. Collect the observations into a single 2N -
vector of symptoms then survival, Z = (z′1, z

′
2)

′, each sorted
so treatment values precede control. The covariate matrix X
contains only intercepts and treatment indicators (coded as
1 for treatment and −1 for control). Coefficients for symp-
toms, β1 = (β11, β12)

′, and survival, β2 = (β21, β22)
′, con-

catenate into β = (β′
1,β

′
2)

′. The model can then be written

(3) Z = Xβ +Wu+ ε ,

where

X =

⎛
⎜⎜⎜⎜⎝

(
1N

2
1N

2

1N
2

−1N
2

)
0N 0N

0N 0N

(
1N

2
1N

2

1N
2

−1N
2

)
⎞
⎟⎟⎟⎟⎠ ,

W =

(
IN
αIN

)
,

u ∼ Normal(0, σ2
uIN ) ,

and

ε ∼ Normal

((
0
0

)
,

(
σ2
1IN 0
0 σ2

2IN

))
.

We use 1K and 0K to denote K-vectors of ones and zeros,
respectively. This expression resembles a factor analysis with
factors u, loading matrix W, and factor loadings fixed at 1
in the symptom submodel and α in the survival submodel.

Standard calculations yield the marginal distribution
(4)

Z ∼ Normal

(
Xβ,

(
(σ2

1 + σ2
u)IN ασ2

uIN
ασ2

uIN (σ2
2 + α2σ2

u)IN

))
.

This model is over-parameterized; the variance-covariance
matrix has 3 degrees of freedom but 4 parameters, σ2

1 , σ
2
2 ,

σ2
u, and α. We first solve this by treating all the variance pa-

rameters as known, though fixing one would suffice. Below,
we consider data sufficient to ensure all variance parameters
are identified.

The linking parameter α governs the correlation between
a person’s two outcomes,

(5) Corr(z1i, z2i) =
ασ2

u√
(σ2

1 + σ2
u)(σ

2
2 + α2σ2

u)
.

Although shared random effect models treat outcomes more
symmetrically than other approaches, the symmetry breaks
because only one submodel contains α. That is, although
in every other respect, the formulation of the models for
the two outcomes may be identical (if desired), an arbitrary
choice must be made with regard to the scaling of ui. The
model in which ui appears without the α coefficient deter-
mines the scale of ui, while α is included to re-scale the
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Figure 2. Posterior variance of β1· as it depends on the prior variances when they are constrained to be the same (top row) or
when σ2

β2
= 2 is fixed (bottom row). The joint model is plotted as a solid line, symptom-only model as a dashed line, and

limits are shown as grey horizontal lines.

latent parameters for their contribution to the other out-
come model. Known α obviates the problem, but the choice
of a submodel in which to include α matters when its value
is unknown, see Section 3.2.

3.1 Impact on regression coefficients

Consider the symptom treatment effect, β12. With all
variance parameters fixed, the data and prior on β de-
termine its posterior. We place independent normal pri-
ors on the coefficients, π(β1) = Normal((μ11, μ12)

′, σ2
β1
I2)

and π(β2) = Normal((μ21, μ22)
′, σ2

β2
I2). The intercept

and treatment effect variances prove equal in this
model, V ar(β11|z1, z2) = V ar(β12|z1, z2), so we write
V ar(β1·|z1, z2). Section A.1 of the appendix gives details
of the joint model posterior variance,

(6) V ar(β1·|z1, z2) = cβ

(
P2 −NP−1

u

(
α

σ2
2

)2
)

,

where

cβ =

[
P1P2 −NP−1

u

((
α

σ2
2

)2

P1 +

(
1

σ2
1

)2

P2

)]−1

,

P1 =

(
N

σ2
1

+
1

σ2
β1

)
, P2 =

(
N

σ2
2

+
1

σ2
β2

)
,

and

Pu =

(
1

σ2
1

+
α2

σ2
2

+
1

σ2
u

)
.

Section A.2 of the appendix derives the symptom-only
model posterior variance,

(7) V ar(β1·|z1) =
[
P1 −N

(
1

σ2
1

)2 (
1

σ2
1

+
1

σ2
u

)−1
]−1

.

These complex expressions do not immediately illuminate
the differences, so we study their limits as the priors become
improper. As the prior variances, σ2

β2
and σ2

β1
, approach in-

finity, the joint and symptom-only model posterior variances

approach the same limit,
σ2
1+σ2

u

N . This only holds when both
prior variances increase together. If we fix σ2

β2
and let σ2

β1

approach ∞, the joint model posterior variance reaches a
smaller limit than that of the symptom-only model. Results
for the survival treatment effect are symmetrical.

Figure 2 illustrates the above results. In the top row, the
prior variances are equal, σ2

β1
= σ2

β2
= σ2

β . As they increase,
the posterior variances in the joint (solid) and symptom-only
model (dashed) approach the same limit. In the bottom row,
we fix the survival prior variance, σ2

β2
= 2, and increase the

symptom prior variance, σ2
β1
. The joint model posterior vari-

ance approaches a lower limit, indicating a benefit of joint
modeling. Larger α signals a stronger relationship between
the outcomes and more benefit of joint modeling.

Bayesian models combine information about parameters
from data and priors. It is clear how the prior variances
influence parameter posteriors, since they are directly spec-
ified in relation to a parameter. The simplest way to pro-
vide more information from one side of the model is thus
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Figure 3. Posterior variance of β1· when both data variances are equal (top), the survival data variance is fixed and σ2
1 varies

(middle), or the longitudinal data variance is fixed and σ2
2 varies (bottom). The joint model is plotted as a solid line,

symptom-only model as a dashed line.

to manipulate the priors. However, the data are related to
the parameters in more complex ways. We can perform sim-
ilar experiments by manipulating the data variances while
keeping the priors fixed. Taking limits in the data variances,
we find that the posterior parameter variances from both
joint and separate models depend only on their respective
prior variances. That is, as σ2

1 → ∞, V ar(β1·|z1, z2) and
V ar(β1·|z1) → σ2

β1
, regardless of σ2

2 . In Figure 3, we plot
the posterior variance of the longitudinal parameters in the
joint and separate models as a function of the data vari-
ances on both sides of the model. These plots represent the
“information imbalance” of the data, which is different from
that of the priors. The top row shows the results for both
data variances equal, the middle row for fixed survival data
variance σ2

2 , and the bottom row for fixed longitudinal data
variance σ2

1 . In all cases, the joint model posterior variance is
lower, though the benefit diminishes whenever the longitu-
dinal data variance increases (top and middle rows). When
only the survival data variance increases (bottom row), the
posterior variance remains about constant. Together with
the results in Figure 2, these demonstrate the complexity
of quantifying the information content on the two sides of
the model. While the prior variance is a fairly straightfor-
ward input of information on a parameter, the data inform
parameter posteriors in a more complex way.

The expected benefits of joint modeling include both vari-
ance and bias reduction, so we also study posterior means.
Consider again the symptom treatment effect; Section A.3
of the appendix contains details of the joint model posterior
mean,

E(β12|z1, z2) =
(
ztrt1+ − zctrl1+

) V ar(β1·)−Cov(β1·, u·)

σ2
1

(8)

+ μ12
V ar(β1·)

σ2
β1

+
(
ztrt2+ − zctrl2+

) Cov(β1·, β2·)−αCov(β1·, u·)

σ2
2

+ μ22
Cov(β1·, β2·)

σ2
β2

,

where

Cov(β1·, β2·) = cβ

(
NP−1

u

1

σ2
1

α

σ2
2

)
,

Cov(β1·, u·) = cβu

(
1

σ2
1

P−1
1

)
,

and

cβu =

[(
1

Nσ2
β1

+ σ2
1

+
α2

Nσ2
β2

+ σ2
2

+
1

σ2
u

)]−1

.

Here, ztrt1+ and zctrl1+ are sums of symptom values from the
treatment and control groups, and ztrt2+ and zctrl2+ are the
same for survival observations. Notice that the mean’s four
terms are a weighted sum of the data mean and prior mean
from the symptom submodel, followed by the same from the
survival submodel.

The posterior mean (8) depends on the data, so to explore
how it also depends on parameters, we must simulate data.
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Figure 4. Posterior mean of β12 as it depends on the prior variances when they are constrained to be the same (top row) or
when σ2

β2
= 2 is fixed (bottom row). The joint model is plotted as a solid line, symptom-only model as a dashed line. Limits

and the true value (dotted line) are shown as grey horizontal lines.

Our simulation assumes true values β1 = β2 = (1, 1)′, σ2
1 =

σ2
2 = 1/2, σ2

u = 1, and N = 20. We varied α and the prior
variances to compare joint and symptom-only models.

Figure 4 shows β12’s mean for a single simulated data set.
In the top row, prior variances are equal, and the joint and
symptom-only means approach the same limit. Specifically,
E(β12|z1, z2) and E(β12|z1) both approach (ztrt1+ − zctrl1+ )/N .
In the bottom row, σ2

β2
= 2 is fixed, and the symptom-

only mean also approaches this limit (dashed), but the
joint model approaches a different limit (solid). As before,
the larger α is, the further apart the joint and symptom-
only models are. In this particular simulated data set, the
symptom-only mean is closer to the true value, but this will
not be true in general. Note that the joint model limit equals
the MLE from the marginal (4), the usual least squares so-
lution
(9)

(X′X)−1X′Z =
1

N

(
z1+, z

trt
1+ − zctrl1+ , z2+, z

trt
2+ − zctrl2+

)′
This reproduces the well-known result that a flat-prior
Bayesian posterior mode and a maximum likelihood esti-
mate are equivalent.

3.2 Impact on linking parameter α

We next relax the assumption of known α. One obser-
vation of each type per person suffices to identify α when
it is the only unknown variance parameter. Section A.4 of
the appendix gives details of α’s posterior. We illustrate the
potential for learning about α by simulating data and high-
lighting a small sample issue.

The data-generating values were the same as in Sec-
tion 3.1 with α = 2. We varied the number of subjects N ∈
{10, 20} and the longitudinal error variance σ2

1 ∈ {1/2, 2},
simulating 20 data sets at each combination. To isolate in-
formation about α in the data, we specified an improper
flat prior, π(α) ∝ 1, and vague but proper coefficient priors
σ2
β1

= σ2
β2

= 100. With an improper prior, the propriety
of the α posterior is not guaranteed. However, we can show
that α’s posterior is proper by demonstrating that the inte-
gral of the likelihood with respect to α is finite. The details
are in Section A.4 of the Appendix.

Figure 5 displays the posterior of α. The average across
replications, plotted in black, makes the basic shape clear;
individual posteriors, plotted in grey, show the variation
across simulations. The data provide more information
about α when there are more subjects, N , (left vs right col-
umn) and less error variance, σ2

1/n, (top vs bottom rows).
With N = 10 patients (left column), α’s posterior can be
far from the truth, diffuse, and bi-modal. With N = 20 pa-
tients (right column), α’s posterior is more symmetric and
unimodal around the true value, α = 2.

To understand this occasional bimodality, we select two
draws from the least informative scenario (N = 10, σ2

1 = 2).
Figure 6 displays scatter plots of the simulated latent and
longitudinal values (top row) and their posteriors (bottom
row). Why are the posteriors so different? Recall the factor
analysis interpretation of model (3): the loadings on ui are
assumed to equal 1 in the longitudinal submodel. That is,
if we plot z1i versus ui in each treatment group, the slope
of a least squares line fit to these values should be approx-
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Figure 5. The posterior of α from 20 simulated data sets with true α = 2. The average is drawn in black and the rest in grey.
Approximate variance is averaged across the inverse Hessian at the mode of each simulated posterior.

imately 1. However, in the “bad” replicate (left panel), the
actual relationship between z1i and ui is much weaker, a
slope of just = −0.03 in the least squares fit line between
these two variables shown on the figure. Compare this to
the slope of the least squares fit to the two variables in the
“good” replicate (right panel), which has a slope of 0.66,
much closer to the assumed (modeled) value of 1.

Small sample size and large error variance conspire to pro-
duce “unlucky” data draws. As an extreme example, imag-
ine that (by staggering coincidence) we happened to draw all
identical values of z1i. These longitudinal data would have
no information about the latent variables (or any other pa-
rameters except the intercept β11). The least squares line
would have 0 slope. The survival data would have to do
all the work of identifying the ui. However, since each ui

is multiplied by the unknown α in the survival model, it
is not well identified by only the survival data. Notice that
the likelihood is identical for αui and −α(−ui). Thus the
posteriors of both the ui and α will have symmetric modes
around 0 corresponding to these two possibilities. A larger
sample or smaller variance fixes this problem, as we see in
the simulations.

4. JOINT MODEL FOR MULTIPLE
OBSERVATIONS

Next, we increase the number of symptom observa-
tions, n, and create a centered n-vector of observation
times, repeated N times, t = 1N ⊗ (t1, . . . , tn)

′. We col-
lect the individual vectors z1i = (z11i, . . . , z1ni)

′ into z1 =
(z′11, . . . , z

′
1N )′ and expand model (3) to

(10) Z = Xβ +Wu+ ε ,

where

X =

⎛
⎜⎜⎜⎜⎝

(
1Nn

2
t 1Nn

2
t

1Nn
2

t −1Nn
2

−t

)
0Nn 0Nn

0N 0N 0N 0N

(
1N

2
1N

2

1N
2

−1N
2

)
⎞
⎟⎟⎟⎟⎠ ,

ε ∼ Normal

((
0
0

)
,

(
σ2
1INn 0
0 σ2

2IN

))
,

and

u ∼ Normal
(
0, σ2

uIN
)
.

The upper left submatrix of X contains the symptom pre-
dictors intercept, time, treatment, and time × treatment,
with corresponding coefficient β1 = (β11, β12, β13, β14)

′. The
lower right submatrix contains the survival predictors in-
tercept and treatment, with corresponding coefficient β2 =
(β21, β22)

′.
Assuming again that random intercepts link the two sub-

models, the marginal covariance matrix of the (n+1)N data
vector Z is
(11)

V ar(Z) =

(
IN ⊗

(
σ2
1In + σ2

uJn

)
ασ2

uIN
ασ2

uIN (σ2
2 + α2σ2

u)IN

)
,

where Jn is an n × n matrix of ones. In the joint model,
the four variance parameters are identified for n ≥ 2, be-
cause with at least three observations per person, the co-
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Figure 6. Two data draws from the N = 10, σ2
1 = 2 scenario (top row) and their α posteriors (bottom row). On the left is an

example of the worst bimodality and on the right, a unimodal and approximately correct posterior. Data from the treatment
group are shown in black, control group in grey. Solid lines show ordinary least squares fits to latent and symptom data for

each treatment group; their slopes are printed in the lower right.

variance matrix has at least six degrees of freedom. In the
symptom-only model with n = 2, the covariance matrix is
V ar(z1) = IN ⊗ (σ2

1In + σ2
uJn); its two parameters can

also be identified because there are three degrees of free-
dom. In the survival-only model, the covariance matrix is
V ar(z2) = (σ2

2 + α2σ2
u)IN ; its three parameters cannot be

identified with one survival observation per person (1 de-
gree of freedom). For a fairer comparison, we assume α is
known, so both the symptom- and survival-only models have
two variance parameters.

4.1 Impact on regression coefficients

We fit the joint model in (10) using MCMC and com-
pare the parameter posteriors to those from symptom- and
survival-only models. The simulations all have N = 20 pa-
tients with n = 3 observation times and the same variance
parameters as Section 3.1. We set β2 = (1, 1)′ in all mod-
els so that for X2i = (1, trti)

′, the expected means are 0 in
the control group and 2 in the treatment group. The data-
generating values of β1 vary across models, but all corre-
spond to design vectors X1ij = (1, tj , trti, trti ∗ tj)

′ where
t = {−1, 0, 1}. In Model 1, the groups are different at base-
line with no time trend, i.e., β1 = (1, 0, 1, 0)′. In Model 2, the
groups start out equal and have different time trends, i.e.,
β11 = (1, .5, 0, .5). Both of these include a random intercept
in the longitudinal model, which also appears in the survival
submodel multiplied by coefficient α. Next, Model 3 uses
the same coefficients as Model 2, but random slopes appear
in the longitudinal submodel and in the survival submodel

with coefficient α. We implement two versions of Model 4.
Both have the same coefficients as Models 2 and 3 and both
random slopes and intercepts in the longitudinal submodel.
Model 4i uses the random intercepts in the survival sub-
model with linking parameter α, while Model 4s uses the
random slopes, again with linking parameter α. The top
row of Figure 7 illustrates these variations. Solid lines plot
the fixed effect trajectories for treatment (black) and con-
trol (grey), and dashed lines show the influence of random
effects. In all of these simulations, the priors on each element
of β1 and β2 are normal with mean 0 and variance 100. The
priors on the precision parameters are Gamma(1, 1).

Figure 7 displays posterior MSE differences across 100
simulations, symptom-only versus joint in the second row
and survival-only versus joint in the third row. Positive val-
ues indicate a benefit of joint modeling (smaller MSE). The
regression parameters show no benefit in any scenario, while
the variance parameters and random effects (not all shown)
do benefit across all models. Symptom parameters unaf-
fected by random effects show minimal simulation variability
(i.e., Int and Trt effects in Model 3, Time and Time × Trt
effects in Models 1 and 2), while all of the survival parame-
ters have large variability across models.

5. SIMULATING INFORMATIVE
CENSORING

Finally, we introduce informative censoring, that is, a
missing data mechanism that induces dependence between
the outcome types. We allow missingness to depend on the
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Figure 7. Simulated data and difference in posterior mean squared error (MSE) in joint and separate models fit to simulated
data. The top row displays simulated symptom data from each model (fixed effects as solid lines, fixed plus random effects as

dashed lines). The middle row displays the posterior MSE difference between joint and symptom-only models, while the
bottom row shows the difference between joint and survival-only models. Each vertical segment extends from the lower .025 to

the upper .975 quantile of the collection of differences across 100 simulations of each model.

other outcome or latent variables, but not on the missing
value itself (i.e., missing at random). Our censoring scenar-
ios emphasize opportunities for benefit from joint modeling.
Model 3 from Section 4 generates the data, then various
rules censor it. We begin with a reference case of complete
symptom and survival data (Scenario 1). That is, each per-
son has the same number of longitudinal observations re-
gardless of survival time. In Scenario 2, we censor symp-
toms according to survival, so patients with shorter survival
contribute fewer symptom observations. In Scenario 3, we
censor survival according to the latent variable, so smaller
ui imply greater probability of survival censoring. Finally,
in Scenario 4, we do the same for symptoms, so smaller ui

imply more symptom values are missing.
In these simulations, we assume N = 20 individuals are

observed up to n = 3 times (longitudinal). The regression
coefficients are β1 = (1, .5, 0, .5)′ and β2 = (1, 1) as in Model
3 above, corresponding to no difference between the groups
at baseline and time trends of .5 in the treatment arm and
−.5 in the control arm. To each element of β1 and β2, we
assigned normal priors having mean 0 and variance 100. We
fixed α = 2 and put Gamma(1, 1) priors on the precision
parameters.

Figure 8 displays the difference in MSE between joint
and separate models, with plotting symbols that indicate

the censoring scenario. The symptom regression coefficients
do not benefit from joint modeling (top row), while the sur-
vival intercept (middle left panel) improvement increases
with censoring in Scenario 3. The survival error variance
σ2
2 benefits across scenarios, the symptom error variance σ2

1

improvement increases with censoring under Scenario 4, and
the latent parameter variance σ2

u benefits modestly across
scenarios.

6. DISCUSSION

We began with the questions, “When should we use joint
models?” and “How much do we gain by their use?” In an-
swer, we found that information imbalance is the key to
unlocking the benefit of joint modeling. Symptom reports
dominated survival in the real clinical trial data described in
Section 2, with large changes to survival estimates by adding
symptom information via joint modeling. In Section 3, the
data were balanced, with one observation each of symp-
toms and survival. In models with improper priors on both
submodels, joint modeling did not pay dividends. However,
an informative prior on one submodel’s coefficients allowed
joint modeling to improve the other submodel’s coefficient
posteriors. Multiple symptom observations in Section 4 did
not have the same “unbalancing” effect. We modeled only
n = 3 symptom observations per person, compared to a me-
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Figure 8. Difference in posterior mean squared error (MSE) from joint and separate models fit to simulated data. Each
vertical segment extends from the lower .025 to the upper .975 quantile of the collection of differences across 100 simulations

of each censoring scenario. The plotting symbols (at the median) indicate the censoring scenario, 1 = no censoring, 2 =
symptom censored by survival, 3 = survival censored depending on Ui, 4 = symptom censored depending on Ui. The top row

displays the difference between joint and symptom-only for regression coefficients, the middle row shows the difference
between joint and survival-only models for regression coefficients, and the bottom row shows the differences for error and

latent effect variance parameters.

dian of 14 symptom observations in the trial data, and much
simpler time and treatment structures.

The question of how much we gain from joint modeling
also depends on the parameters of interest. Even when joint
modeling fails to pay dividends for the treatment effects,
we still obtain more precise posteriors for the latent vari-
ables and variance parameters. Section A.5 of the appendix
contains details of the posterior of ui; it has smaller vari-
ance in the joint model, even with improper priors. Joint
modeling provides more information about the random ef-
fects and thus improves allocation of variance among σu, σ1,
and σ2. The linking parameter α is roughly the strength of
connection between the two data types and determines the
magnitude of the difference between joint and separate mod-
els. When it is treated as unknown, we found that sufficient
sample size (or small error variance) is necessary to iden-
tify the signs of the latent variables and linking parameter.
Therefore, the choice of submodel to contain α matters.

Joint modeling can improve treatment effect posteriors
under certain forms of censoring. In Scenarios 3 and 4 of
Section 5, when missingness depended on the latent variable,
this was most apparent. This supports the idea that joint

modeling allows one data type to compensate for lack of
information in the other via the latent variables.

Some readers may object that these stylized models do
not resemble the complex joint models fit in practice. We
nonetheless believe it is valuable to strip a model down to a
minimal working example and explore its behavior both the-
oretically and empirically. Obvious next steps include exten-
sions to more realistic models, which will yield only to sim-
ulation. For example, a generalized linear mixed model for
the longitudinal data can be linked with a proportional haz-
ard model for survival. Assuming a parametric baseline haz-
ard, the joint model likelihood will still have a simple closed
form. However, the integrals required for marginal posteri-
ors are difficult due to non-linear links and non-Gaussian
distributions. Approximation is a possible fix; for example,
Gaussian approaches retain the nice features of normal dis-
tributions [e.g., 25]. Piecewise exponential models offer a
computationally tractable way to generalize our parametric
survival models.

Another appealing line of future inquiry is the relation-
ship between latent and fixed effects. Hodges and Reich [9]
found that latent parameters can compete with fixed treat-
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ment effects in spatial models. It would be useful to investi-
gate this connection in joint models, where latent variables
may compete with either set of fixed effects and change the
relationship between them.

APPENDIX A. COMPUTATIONAL DETAILS

A.1 Balanced joint model posterior
covariance

We begin by recalling the core Bayesian hierarchical mod-
eling result of Lindley and Smith [16], henceforth abbrevi-
ated L&S. For n-vector of responses z, p1-vector of param-
eters θ, known n × p1 design matrix A1, and known n × n
covariance matrixC1, let the likelihood be z ∼ N(A1θ,C1).
Then for second-level p2-vector of parameters μ, known de-
sign and covariance matricesA2 andC2, respectively, let the
prior be θ ∼ N(A2μ,C2). L & S showed that the marginal
distribution is z ∼ N(A1A2μ,C1 +A1C2A

′
1) and the pos-

terior is θ|z ∼ N(Dd,D) where D−1 = A′
1C

−1
1 A1 + C−1

2

and d = A′
1C

−1
1 z + C−1

2 A2μ. If we assume all covariance
parameters (and α) are known, we can directly apply these
results in our setting.

In what follows, we make the following assumptions with-
out loss of generality: there are equal numbers of subjects
in the treatment and control groups (i.e., N/2 in each); and
trti = 1 indicates observations from the treatment group
while trti = −1 indicates the control group. Then we col-
lect the data into a single 2N -vector, where longitudinal
data come first, sorted into treatment group then control
group outcomes, followed by survival data, similarly sorted:
z = (z11, . . . , z1N , z21, . . . , z2N )′. The complete (4 + N)-
vector of parameters θ = (β11, β12, β21, β22,u)

′ contains
both fixed and latent effects. The 2N × (4 + N) regression
design matrix is
(12)

A1 =

⎛
⎜⎜⎜⎜⎝

(
1N

2
1N

2

1N
2

−1N
2

)
0N 0N IN

0N 0N

(
1N

2
1N

2

1N
2

−1N
2

)
αIN

⎞
⎟⎟⎟⎟⎠ ,

where 1K and 0K are K-vectors of ones and zeros, respec-
tively. The covariance matrix C1 is block diagonal since
conditional on ui, all the responses are independent, thus
C1 = Diag(σ2

11
′
N , σ2

21
′
N ). We place independent normal pri-

ors on β1 and β2 with mean vectors μ1 and μ2 and variance
matrices σ2

β1
I2 and σ2

β2
I2, respectively. That is, we use the

same prior variance, σ2
β1
, for both the intercept and treat-

ment effect in the longitudinal model, and a separate prior
variance, σ2

β2
, for both parameters of the survival model.

We use an independent normal distribution on u, centered
at 0N with variance matrix σ2

uIN . Then the joint prior on
θ is N((μ′

1,μ
′
2,0

′
N )′,Diag(σ2

β1
1′
2, σ

2
β2
1′
2, σ

2
u1

′
N )).

Using the L& S result, the joint posterior precision matrix
for (β1,β2,u)

′ is
(13)⎛
⎜⎜⎜⎜⎜⎝

(
N
σ2
1
+ 1

σ2
β1

)
I2 0

0

(
N
σ2
2
+ 1

σ2
β2

)
I2

P′
12u

P12u

(
1
σ2
1
+ α2

σ2
2
+ 1

σ2
u

)
IN

⎞
⎟⎟⎟⎟⎟⎠

where
(14)

P12u =

(
1
σ2
1

(
1N

2
1N

2

1N
2

−1N
2

)
α
σ2
2

(
1N

2
1N

2

1N
2

−1N
2

) )

we write this joint posterior precision matrix as

(15) D−1 =

⎛
⎝ P1I2 0

0 P2I2
P′

12u

P12u PuIN

⎞
⎠

that is, P1 = ( N
σ2
1
+ 1

σ2
β1

), P2 = ( N
σ2
2
+ 1

σ2
β2

), and Pu = ( 1
σ2
1
+

α2

σ2
2
+ 1

σ2
u
). Inverting this, we obtain the posterior variance-

covariance matrix, the submatrices of which are described
below.

The 4× 4 posterior variance-covariance matrix of the re-
gression coefficients β is

(16)

(
V ar(β1·)I2 Cov(β1·, β2·)I2

Cov(β1·, β2·)I2 V ar(β2·)I2

)
,

where the scalar variances and covariances are given by

V ar(β1·|z1, z2) = cβ

(
P2 −NP−1

u

(
α

σ2
2

)2
)

,(17)

V ar(β2·|z1, z2) = cβ

(
P1 −NP−1

u

(
1

σ2
1

)2
)

,(18)

Cov(β1·, β2·|z1, z2) = cβ

(
NP−1

u

1

σ2
1

α

σ2
2

)
,(19)

with

cβ =

[
P1P2 −NP−1

u

((
α

σ2
2

)2

P1 +

(
1

σ2
1

)2

P2

)]−1

.

The N × 4 covariance matrix between u and β is given
by

(20)

(
−(21)1N

2
−(21)1N

2
−(22)1N

2
−(22)1N

2

−(21)1N
2

(21)1N
2

−(22)1N
2

(22)1N
2

)

where the referenced scalar covariances are given by

(21) Cov(β1·, u·) = cβu

(
1

σ2
1

P−1
1

)
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and

(22) Cov(β2·, u·) = cβu

(
α

σ2
2

P−1
2

)

with

cβu =

[(
1

Nσ2
β1

+ σ2
1

+
α2

Nσ2
β2

+ σ2
2

+
1

σ2
u

)]−1

Notice that when α > 0, the treatment group ui have neg-
ative covariance with both β11 and β12, while the control
group ui have negative covariance with β11 and positive co-
variance with β12. Again, this is a consequence of the treat-
ment assignment parameterization and balance assumptions
in this model.

A.2 Separate model posterior covariances

Turning to the posterior variance of the fixed effects ob-
tained from a longitudinal-only model, we use elements A1,
C1, θ, and C2 that are simply the reduced forms obtained
by deleting the survival data and parameters. The joint pos-
terior precision matrix of (β′

1,u
′)′ is given by

(23)

⎛
⎜⎜⎜⎜⎝

P1I2
n
σ2
1

(
1N

2
1N

2

1N
2

−1N
2

)′

1
σ2
1

(
1N

2
1N

2

1N
2

−1N
2

) (
1
σ2
1
+ 1

σ2
u

)
IN

⎞
⎟⎟⎟⎟⎠ .

Inverting this yields the posterior variance of the longitudi-
nal fixed effects,

(24) V ar(β1·|z1) =
[
P1 −N

(
1

σ2
1

)2 (
1

σ2
1

+
1

σ2
u

)−1
]−1

.

We can obtain the same result by setting α = 0 in (17)
above, since Pu becomes ( 1

σ2
1
+ 1

σ2
u
) and P2 cancels out of the

remaining terms after a bit of algebra. To obtain the analo-
gous result for the posterior variance of β2, we re-compute
the L&S posterior using a model that involves only the sur-
vival submodel,

(25) V ar(β2·|z2) =
[
P2 −N

(
α

σ2
2

)2 (
α2

σ2
2

+
1

σ2
u

)−1
]−1

.

A.3 Balanced joint model posterior mean

Turning to the mean of the complete parameter vector θ,
by L&S this is given by Dd, where

(26) d =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
σ2
1
z1+ + μ11

σ2
β1

1
σ2
1

(
ztrt1+ − zctrl1+

)
+ μ12

σ2
β1

1
σ2
2
z2+ + μ21

σ2
β2

1
σ2
2

(
ztrt2+ − zctrl2+

)
+ μ22

σ2
β2

1
σ2
1
z1 +

α
σ2
2
z2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

In this expression, z1+ is the sum of all the longitudinal
observations; ztrt1+ and zctrl1+ are sums of longitudinal obser-
vations from the treatment and control groups, respectively;
and z2+, z

trt
2+, and zctrl2+ are defined analogously for the sur-

vival observations. Multiplying (26) by the inverse of (15)
yields the vector of posterior mean. We display the latent
effect means in Section A.5; the regression coefficient means
are as follows:

E(β11|z1, z2) = z1+
V ar(β1·)− Cov(β1·, u·)

σ2
1

(27)

+ μ11
V ar(β1·)

σ2
β1

+ z2+
Cov(β1·, β2·)− αCov(β1·, u·)

σ2
2

+ μ21
Cov(β1·, β2·)

σ2
β2

,

E(β12|z1, z2) =
(
ztrt1+ − zctrl1+

) V ar(β1·)−Cov(β1·, u·)

σ2
1

(28)

+ μ12
V ar(β1·)

σ2
β1

+
(
ztrt2+ − zctrl2+

) Cov(β1·, β2·)−αCov(β1·, u·)

σ2
2

+ μ22
Cov(β1·, β2·)

σ2
β2

,

E(β21|z1, z2) = z2+
V ar(β2·)− αCov(β2·, u·)

σ2
2

(29)

+ μ21
V ar(β2·)

σ2
β2

+ z1+
Cov(β1·, β2·)− Cov(β2·, u·)

σ2
1

+ μ11
Cov(β1·, β2·)

σ2
β1

,

and

E(β22|z1, z2) =
(
ztrt2+ − zctrl2+

) V ar(β2·)− αCov(β2·, u·)

σ2
2

(30)

+ μ22
V ar(β2·)

σ2
β2

+
(
ztrt1+ − zctrl1+

) Cov(β1·, β2·)− Cov(β2·, u·)

σ2
1

+ μ12
Cov(β1·, β2·)

σ2
β1

.
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A.4 Balanced joint model posterior for the
linking parameter α

To put a prior on α and derive its posterior, we begin by
writing A1(α) to emphasize the dependence of the design
matrix on α. Then the joint posterior is

p(θ, α|z) = f(z|A1(α),θ)f(θ|μ)π(α)∫ ∫
f(z|A1(α),θ)f(θ|μ)π(α)dθdα

(31)

∝ exp

{
−1

2

[
(θ −Dd)′D−1(θ −Dd)− d′Dd

+ z′C−1
1 z+ (A2μ)

′C−1
2 (A2μ)

]}
π(α) .

Recall that α appears in elements of D and d. Obtaining
an expression proportional to the marginal posterior of α
requires integration of this expression with respect to θ. The
first part of the exponential is simply a normal kernel in θ,
leading to

∫
exp{−1

2 (θ − Dd)′D−1(θ − Dd)}dθ ∝ |D|1/2.
Then recall that D−1 in (15) and d in (26) depend on α, but
that the other two terms in the exponential do not contain α.
Thus the expression for the posterior of α is straightforward

(32) p(α|z) =
|D|1/2 exp

{
1
2d

′Dd
}
π(α)

m(z)

where

m(z) ∝
∫

|D|1/2 exp
{
−1

2

[
z′C−1

1 z

+ (A2μ)
′C−1

2 (A2μ)− d′Dd
]}

π(α)dα .

There is no tidy analytical expression for this, as both d′Dd
and |D|1/2 are complicated functions of α. However, the in-
tegration required to obtain the marginal distribution m(z)
is only one-dimensional, so for any data set z, we can readily
evaluate the posterior numerically.

To show that the posterior of α is finite even when π(α)
is improper, we can show that the integral of the likelihood
with respect to α is finite. We first write f(z|α,θ) to em-
phasize the elements that depend on α:

f(z|α,θ) ∝ exp

{
−1

2

(
(θ −Dd)′D−1(θ −Dd)− d′Dd

)}(33)

= exp

{
−1

2

(
θ′D−1θ − 2d′θ

)}

∝ exp

{
−1

2

(
θ′A′

1C
−1
1 A1θ − 2d′θ

)}
.

Recall that C1 and θ are free of α, and both d and A1 are
linear in α, making this a quadratic form which is integrable.

A.5 Balanced joint model posterior for
latent variables

We next turn our attention to the posterior for an indi-
vidual’s random effect ui; here we return to assuming the
variance parameters σ2

1 , σ
2
2 , and σ2

u and α are all known and
there is no censoring. The conditional posterior distribution
of the latent parameter, p(ui|z1i, z2i,θ), is proportional to

∝ φ(z1i|ui,θ)φ(z2i|ui,θ)φ(ui|θ)

∝ exp

{
−1

2

[
(z1i − β11 − β12trti − ui)

2

σ2
1

+
(z2i − β21 − β22trti − αui)

2

σ2
2

+
u2
i

σ2
u

]}

∝ exp

{
ui

(
(z1i − β11 − β12trti)

σ2
1

+
α(z2i − β21 − β22trti)

σ2
2

)

− u2
i

2

(
1

σ2
1

+
α2

σ2
2

+
1

σ2
u

)}
.

To find the posterior mode of ui, we differentiate the log of
this, set the derivative to 0, and solve to obtain the condi-
tional posterior mode of ui,

(34)

(
z1i − β11 − β12trti

σ2
1

+
α(z2i − β21 − β22trti)

σ2
2

)
σ2
ui

,

where σ2
ui

= ( 1
σ2
1
+ α2

σ2
2
+ 1

σ2
u
)−1. Notice that the poste-

rior mode is increasing with the sum of scaled residu-
als of the linear predictors from the longitudinal and sur-
vival submodels. The second derivative of the log posterior,
∂2

∂u2
i
log f(ui|θ, z1i, z2i) = −σ−2

ui
, is negative everywhere, and

thus the Fisher information is an inverse of summed preci-
sions, also intuitively sensible.

Dropping the conditioning on the fixed effects, we con-
sider the full posterior of θ = (β′

1,β
′
2,u

′)′ in the joint model
when σ2

1 , σ
2
2 , σ

2
u, and α are assumed known. We obtain the

posterior covariance matrix of u by inverting (15) and taking
the lower left N ×N submatrix of the result,

(35) I2 ⊗
[
P−1
u IN

2
+ Cov(u·, u·)JN

2

]
,

where

(36) Cov(u·, u·) =

2P−1
u

((
1
σ1

)2

P−1
1 +

(
α
σ2

)2

P−1
2

)

Pu −N

((
1
σ1

)2

P−1
1 +

(
α
σ2

)2

P−1
2

) ,

and JK is a K × K matrix of ones. Notice that the ui

for subjects in the same treatment group have correlation
Cov(u·, u·)/(P

−1
u + Cov(u·, u·)), while those for subjects in

different treatment groups are uncorrelated. Again, this is
a consequence of the assumed balance and the treatment
group coding.
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To find the analogous result for the model that uses only
the longitudinal data, we simply set α = 0 in (35) to obtain

(37) I2 ⊗
[(

1

σ2
1

+
1

σ2
u

)−1

IN
2
+ Cov(u·, u·|z1)JN

2

]
,

where

Cov(u·, u·|z1) =
2
(

1
σ2
1
+ 1

σ2
u

)−1
((

1
σ1

)2

P−1
1

)
(

1
σ2
1
+ 1

σ2
u

)
−N

((
1
σ1

)2

P−1
1

) .

When we compare the results of taking limits in both of
these expressions as σ2

β1
and σ2

β2
approach infinity,

(38)

V ar(ui|z1, z2) →
1

σ2
u

−
(

σ2
2 + α2σ2

1

σ2
2σ

2
u + α2σ2

uσ
2
1 + σ2

2σ
2
1

)(
1 +

2

N

)

and

(39) V ar(ui|z1) →
1

σ2
u

−
(

1

σ2
u + σ2

1

)(
1 +

2

N

)
.

The difference in limiting posterior variances (joint minus
longitudinal-only) is negative

V ar(ui|z1, z2)− V ar(ui|z1)

→
(
1 +

2

N

)[
−α2(σ2

1)
2

(σ2
u + σ2

1) (σ
2
2σ

2
u + α2σ2

uσ
2
1 + σ2

2σ
2
1)

]
,

indicating a smaller posterior variance for ui in the joint
model, even with improper priors.

We can also compute the posterior mean of the random
effects in the joint model with known variances. The poste-
rior mean of the jth random effect in the treatment group
E(uj |z1, z2) is

1
σ2
1

(
V ar(u·)z1j + Cov(u·, u·)z

trt
1+(40)

− Cov(β·,u·)
P1

[
z1+
σ2
1

+
μ11

σ2
β1

+

(
ztrt1+ − zctrl1+

)
σ2
1

+
μ12

σ2
β1

])

+ α
σ2
2

(
V ar(u·)z2j + Cov(u·, u·)z

trt
2+

− Cov(β·,u·)
P2

[
z2+
σ2
2

+
μ12

σ2
β2

+

(
ztrt2+ − zctrl2+

)
σ2
2

+
μ22

σ2
β2

])
.

where V ar(u·) = (P−1
u +Cov(u·, u·)). Notice that this has an

intuitive interpretation similar to the regression coefficients
in (27). On both the longitudinal and survival sides, we see
a weighted sum of contributions from the individual’s data
and the data from individuals in the same treatment group,
subtracting off a piece that resembles a scaled, näıve fit (in
square brackets). As before, α ensures that the contribution
from the survival data goes in the right direction. A similar

expression is obtained for individuals in the control group,
substituting zctrl1+ and zctrl2+ for ztrt1+ and ztrt2+.
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