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Bayesian semi-parametric joint modeling

of biomarker data with a latent changepoint:
assessing the temporal performance

of Enzyme-Linked Immunosorbent Assay (ELISA)

testing for paratuberculosis

MicHELLE NORRIS, WESLEY O. JOHNSON*, AND [AN A. GARDNER

In this paper, we develop a class of semi-parametric sta-
tistical models that can be used for the important problem
of analyzing longitudinal biomarker data with the purpose
of quantifying their diagnostic capabilities, as a function of
time from infection. We focus on the complicated problem
where there is no gold standard assessment of the actual
timing of infection/disease onset (our change point), which
provides additional motivation for considering a second, bi-
nary test, in order to make it easier to estimate the change
points for individuals that become diseased. An important
additional feature of our model is its nonparametric part,
which allows for distinct biomarker responses to the insult
of infection/disease. In our case, the model allows for the
possibility of an unknown number of clusters of individuals,
each with distinct slopes corresponding to distinct biological
reactions. Clusters with steeper slopes would correspond to
individuals that could be diagnosed sooner than those with
more gradual slopes.
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1. INTRODUCTION

Expenditure on diagnostic testing in human and ani-
mal health in the United States is massive. Hanson et al.
(2000) reported that, at about that time, approximately
$30 billion was spent annually in the U.S. on diagnostic
tests in human medicine, and they provided similar evi-
dence that costs for testing of livestock and pet popula-
tions were substantial. Infectious diseases of animals that
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are zoonotic such as avian influenza, brucellosis, and tu-
berculosis are of particular concern to animal health au-
thorities, and testing for these makes up a large part of US
Department of Agriculture-Animal Plant Health Inspection
Services-Veterinary Services disease control budget.

Other diseases such as Johne’s disease (caused by the
bacterium Mycobacterium avium subsp. paratuberculosis
(Map)), are important because of a possible link with
Crohn’s disease in humans and because infection in dairy
cows results in decreased milk production, weight loss, and
premature culling. Because cows can transmit the infection
to other cattle during the asymptomatic phase, early detec-
tion and subsequent removal of infected cows from the herd
is important for controlling the spread of Johne’s Disease.
Losses in U.S. dairy cattle from Johne’s disease have been
projected to be $200 million to $250 million annually (Ott
et al., 1999). However, antemortem diagnosis of Johne’s dis-
ease is difficult especially in the subclinical phase of disease,
which may last for years, because organism (fecal culture)
and antibody detection tests (serology) have low to mod-
erate sensitivity (30 to 60%) in this stage (Collins et al.,
2005).

The Map data are from a binary organism detection test
in feces and a continuous serum antibody (serology) test,
both of which are administered repeatedly over time to each
cow sampled from a herd. While our model and method are
specifically designed and discussed in the context of Map,
the development serves as a prototype for quantifying the
performance of diagnostic procedures for other diseases, hu-
man and animal. We thus develop a general flexible statis-
tical model for longitudinal joint diagnostic test outcome
data. Statistical analysis of longitudinal test data appears
to have had limited attention in the literature.

In the simplest case, biomarker values measured on a con-
tinuous scale require dichotomization at a selected cutoff
value for classification of disease/infection status. The pro-
portion of the time that the cutoff is exceeded when indi-
viduals are actually infected/diseased is the sensitivity of
the test corresponding to that cutoff, and the proportion
with values below the cutoff among individuals that are not
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diseased is the corresponding specificity. It is well known
that sensitivity of an ELISA test will be low for individuals
that were recently infected since there would be insufficient
time for the serologic response to achieve the cutoff. Thus
the sensitivity of a test applied to a cross section of a gen-
eral population must be a mixture of sensitivities, mixed
according to an unknown and unknowable distribution of
times since infection among infected animals at that point
in time.

Since we have longitudinal data, however, it is possible to
estimate the sensitivity of a diagnostic test as a function of
time. We are unaware of work, other than our own (Norris
and Johnson, 2009), that addresses this problem. Norris and
Johnson (2009) developed a purely parametric model for an-
alyzing the Map data. Key features of Norris and Johnson
(2009) are: (i) the joint modeling of longitudinal binary and
continuous diagnostic outcome data, (ii) the incorporation
of latent disease status and timing of infection for infected
individuals, which necessitates (iii) the incorporation or Re-
versible Jump Markov chain Monte Carlo (RJMCMC) tech-
niques, (iv) modeling the biomarker responses after infection
using a random slope effect centered on a fixed effect, (iv)
the estimation of sensitivity as a function of time from in-
fection, and (v) estimating receiver operating characteristic
(ROC) curves based on the biomarker considered, in absence
of a gold standard.

In the current paper, we extend the novelty of that work
in the following ways: (a) we extend the parametric model
to allow for clusters of individuals with distinct serologic
responses to infection, e.g. different clusters have different
slopes, which is accomplished by modeling slopes using a
Dirichlet Process Mixture (DPM) (Escobar and West, 1995);
(b) we obtain estimated ROC curves for increasing time af-
ter infection, and for different clusters, thus finding that
some groups are more difficult to detect than others due to
having more gradual slopes; (c) we consider joint diagnosis
based on the combined binary and continuous response and
compare with diagnosis based on the continuous biomarkers
alone, which is accomplished by statistically comparing ar-
eas under the respective ROC curves (AUC); and (d) we ob-
tain an estimate of the cumulative risk of infection through
time. An exciting scientific finding for the Map data con-
sidered is that there are evidently two basic types of cows;
one with a fairly steep serologic response to infection, and
a smaller group, with a much smaller slope after infection.
It would be interesting to now investigate the possible rea-
sons that impede diagnosis for this second type. We finally
remark that the extension to a semi-parametric model, and
the methods for comparison of joint versus single outcome
models are non trivial; our code is available from the first
author upon request.

The remainder of the paper is structured as follows: we
describe the data and discuss background references in Sec-
tion 2, and our semi-parametric model is discussed in Sec-
tion 3. Prior specification and Markov Chain Monte Carlo
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(MCMC) methods for implementing the Bayesian paradigm
are discussed in Section 4, and an Appendix. Simulation re-
sults are given in Section 5 and the Johne’s disease data
analysis is given in Section 6. Concluding remarks are given
in Section 7.

2. BACKGROUND

The data consist of results of fecal culture and ELISA
results (hereafter termed fecal tests and serology tests for
brevity) for Map in 365 dairy cows. Attempts to screen the
cows were made approximately every six months, but this
regimen was not strictly followed. The time between screen-
ings ranged between three months and two years. Reasons
varied from not being able to locate the cow to contamina-
tion of the sample. One or both tests may be missing for
a cow on an attempted screening date. The total number
of longitudinal screenings varies considerably among cows,
from a minimum of one to a maximum of 23. Since our in-
terest is in longitudinal testing, we omitted cows with only a
single test outcome from our analysis. The median number
of screenings for the cows included in this analysis is six.
The results of 2185 serum ELISA tests and 2288 fecal tests
were included in our data set. Cows entered and left the
study at different times corresponding to either joining the
herd or being removed from it for various reasons, including
disease events and low milk production.

Because Map infection is endemic in over 90% of U.S.
dairy herds (Lombard et al., 2013), we assume that there
are cows that have become infected at some time during the
study, while others have remained uninfected. Since neither
serology nor fecal culture are perfect, there is no certainty
about when or whether an individual animal becomes in-
fected with Map. So in addition to jointly modeling test
outcomes, we will also model the latent infection status of
each animal and, conditional on infection, the time of in-
fection during the study. After infection, it is assumed that
serology scores will eventually, after a lag, increase linearly
to higher levels.

These data have been previously analyzed by Norris et
al. (2009), using a purely parametric model. But there are
biological reasons to suspect that the parametric assump-
tion is not adequate for these data. In particular, the model
proposed for the serology scores is piecewise linear with ran-
dom, cow-specific slopes, which model the increase in serol-
ogy scores after infection. In the parametric model, slopes
are assumed to be draws from a log normal distribution. For
biological reasons discussed in Section 3, it is expected that
this distribution is actually multimodal or skewed. The im-
plication is that there are subgroups of animals that have
different serologic responses to infection, one with a gradual
increase and another with a more pronounced increase in
serologic values. We looked for empirical confirmation that
the distribution of log-slopes might be non-normal. Using
the results of the parametric model, we restricted out at-
tention to the 92 cows classified as infected and having a
serology reaction. For each cow in this subset, we obtained
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Figure 1. Empirical Estimate of Log-slope Distribution.

a least squares estimate of the slope of the post-lag serol-
ogy trajectory. A histogram of these log-slopes is shown in
Figure 1 along with a fitted normal. Compared to the fitted
normal, the histogram shows a much higher than expected
relative frequency for a bin near zero and also for the lowest
bin (near —5 on the x-axis). The bin near —5 could represent
a distinct cluster of cows having a weak serology response.
In this application, insight into the distribution of random
effects is, in and of itself, of scientific interest since we would
like to know if the distribution is multimodal, is skewed, or
has other non-normal features. If the distribution is multi-
modal, information about the location and portion of cows
represented by each mode would be of interest to scientists.

There is some literature involving joint testing for in-
fection that is related to ours. For example, Cook et al.
(2000) developed methods for handling dependent binary
tests observed longitudinally over a regular time grid and
where disease state can alternate between diseased and not
through time. Jones et al. (2011) developed a joint diagnos-
tic test model for bovine digital dermatitis in dairy cows.
Their model also allows that the agent for disease, once ac-
quired, can disappear and then reappear. While their data
are similar to ours in the sense that they observe binary (foot
lesions, yes/no) and continuous biomarker values (serology
score) through time, their parametric modeling of the rela-
tionships among disease, infection, and biomarkers is based
on specific biology, and their goals are completely different.
Wang et al. (2011) developed a parametric model for Johne’s
disease data that is similar to ours but taken over a shorter
time frame (three years). Like us, they include a latent infec-
tion time in their model but also allow for covariate effects.
However, they use a simpler model for longitudinal serology

results that only assumes a jump in serology score at the
time of infection.

In the context of a clinical trial, Pauler and Laird (2000)
modeled longitudinal biomarker data with the goal of detect-
ing patients in noncompliance of prescribed treatment reg-
imens. They modeled the latent switching status and time
of switching, which resulted in a varying dimensional model
and the subsequent need to use RIMCMC. In related work,
Skates, Pauler and Jacobs (2001) analyzed case-control data
with the goal of distinguishing cases of ovarian cancer which
produce the antigen CA125 from those that do not. A sub-
stantial amount of data for controls was useful in determin-
ing the existence and location of changepoints for cases. The
biomarker trajectory for cases that emit CA125 was modeled
as a piecewise constant which changes to a linear function
having positive slope following the changepoint. While im-
proved diagnosis was the main goal of the research in these
two papers, our goals are to characterize the accuracy of di-
agnostic tests through time, and to determine the utility of
joint testing compared with serology testing only.

Finally, Li et al. (2010) developed a semi-parametric
mixed model for longitudinal data where the nonparamet-
ric part consisted of modeling random effects with a flexible
family of distributions, and also modeling a flexible func-
tional time component. Our purposes again are quite dis-
tinct. We collect bivariate longitudinal diagnostic marker
data with the goal of assessing and improving upon di-
agnostic accuracy with the expectation of substantial im-
provement in misclassification rates compared with sam-
pling cross-sectional data as is the norm.

There are negative consequences of a poor distributional
assumption for random effects. Verbeke and Lesaffre (1997)
show that random effects are badly estimated if the dis-
tribution is assumed to be a single unmixed normal, while
the true distribution is a mixture. Kleinman and Ibrahim
(1998) have shown that the posterior distribution of model
parameters can be affected by the choice of random effects
distribution. They argue that the use of a nonparametric
prior can potentially avoid inaccuracies resulting from an
overly precise distributional assumption.

Many researchers have developed models and methods
for incorporating more flexible random effects distributions
into linear mixed models (LMM). In the Bayesian frame-
work, West, Miiller and Escobar (1994) developed flexible
models for repeated measures, while Bush and MacEachern
(1996) developed them for the randomized complete block
design. Kleinman and Ibrahim (1998) specify a flexible ran-
dom effects distribution using the Dirichlet Process prior of
Ferguson (1973) in the general LMM framework. Frequentist
contributions have been made by Madger and Zeger (1996),
Tao, Palta, Yandell and Newton (1999), Verbeke and Lesaf-
fre (1996), and Zhang and Davidian (2001).

3. MODEL FOR THE DATA

We propose a joint longitudinal model for fecal and serum
(ELISA) results. For uninfected cows, we assume fecal and
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serology results are independent since they have different
biological bases and the fecal test is perfectly specific for
practical purposes. For infected cows, the assumption of out-
come independence has been accepted as reasonable by sev-
eral authors, but we provide additional empirical evidence
in Appendix I.

The proposed model accounts for the fact that bacteria
can be shed in feces soon after infection whereas the produc-
tion of detectable serum antibodies typically occurs later af-
ter infection. Consequently, we propose a joint model with
a changepoint corresponding to time of infection, t*. The
probability of a positive fecal test changes at the time of in-
fection, but the rise in serology score, which corresponds to
an increase in antibody production, occurs some time later.
Some of the research involving experimental infection of an-
imals with the Map bacteria suggests this lag may be about
one year after infection. However, since there is uncertainty
about the lag for many screening tests, we formulate a gen-
eral model in which the lag is an unknown parameter. Once
the lag has elapsed, we model the increase in antibodies as
linear. Since we are modeling no gold standard data, i.e.
the infection status and time of infection are both unknown
for the cows, we assume three latent states and construct
an appropriate model for each. The latent states are: 1) no
infection during the entire screening period; 2) infection,
but insufficient time to mount an antibody reaction during
screening period (since “lag” has not elapsed when screening
ends); and 3) infection with antibody reaction within screen-
ing period (since “lag” elapses before the end of screening
period). Note that latent states 2 and 3 depend on the “lag”
parameter, which will be estimated along with all other pa-
rameters.

We use the latent variable, k; € {1,2,3}, to denote the
latent disease state of cow i. We shall also use the following
notation: ¢;; = time of the jth screening for the ith subject,
i=1,2,..,nand j = 1,2,...,my; (Si;, F;;) = the serology
and fecal culture outcomes of the ith subject at time ¢;;;
Ser = sensitivity of fecal culture; Spr = specificity of fecal
culture; lag = time interval between infection and serology
reaction; © = vector of all model parameters; and U =
vector of all model latents. Also, we denote a normal dis-
tribution with mean, p, and variance, o2, by N(u,7 = #)
where 7 is the precision. This parameterization facilitates
MCMC calculations.

For the no infection state 1, we assume that each cow has
its own baseline, so we model cow-specific baseline serology
levels to be normally distributed random effects. We assume
the fecal test results follow a Bernoulli distribution with
probability of “success,” defined as a positive test result,
equal to 1 — Spg. Thus, the model for cows in latent state 1,
denoted k; = 1, is:

Sij |9, U, ki =1~ Boi +€5, L
Fij | @, U, kz =1~ Bern(l - Spp)
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Figure 2. Serology trajectory with data for cow with k; = 3.

67;]‘ ’J\_J N(O,Te),

where fo; ~ N(Bo,7s,),
€ij V’L,j

For latent state 2, infection without serology reaction,
the probability of positive fecal test changes to Sepr at the
time of infection, ¢}. Further, we assume no change in the
serology behavior since the “lag” time necessary to produce
detectable antibodies has not elapsed. We also assume inde-
pendence of serology and fecal tests conditional upon know-

ing the subject is in latent state 2. The model is:

and ,301' 1

Sij | ©,U ki =2~ PBoi +e5; L
Fl'j | @,U, kz =2~ Bern(mj)

where g5 = I(tij Z t;‘)SBF + I(tij < t;k)(]. — Spp), 507; ’%/
N(Bo.7s,), € ~ N(0,7.), and  foi L € Vi,j. The
indicator function I(z € A) is 1 whenever z is an element
of the set A and 0 otherwise.

The model for cows in latent state 3 is the same as la-
tent state 2 for the fecal culture portion, but additionally
assumes a linear increase in serology score at one lag past
the infection time of the cow. A random, cow-specific slope
for the post-lag serology trajectory is assumed in order to
allow for differing rates of antibody production among in-
fected cows. We define the function z* to equal z if z > 0
and 0 otherwise. The model is:

Sij | @, U, k‘,’ =3~ ﬁo;‘ + ,Bli(tij — tf — lag)+ + €ij, 1
Fij | @, U, kZ =3~ Bern(wij)

where f3y; and ¢;; are distributed as in the previous cases. We
also assume that Si;, Bo;, and €;; are pairwise independent
for all ¢ and j. Note that the term containing (3i; is zero
until ¢;; = t;+ lag. Hence, the mean serology trajectory is
a flat line until ¢;+lag, then it increases linearly with slope
(B1; as shown in Figure 2.

Because of the conditional independence of fecal and
serology tests, given the latent state and infection time, none
of the full conditionals are dependent on any type of data
missingness. As a result, missing data do not present any
new issues for making inferences. Specifically, once the la-
tent state/infection times are known, the form of the models
for the serology and fecal tests are determined, and there is



no longer dependency between these tests. The serology part
of the model can handle any irregularity in the time interval
between tests, including missing observations, since a linear
relationship with time since infection is assumed. The com-
ponent of the likelihood function arising from the serology
portion of the model simply consists of a product of normal
density functions with means dependent on the time since
infection. Given the latent state/infection time, the fecal
model is decoupled from the serology model and becomes a
completely specified Bernoulli distribution. Hence, the por-
tion of the likelihood representing the fecal data consists of
a product of Bernoulli probability mass functions with pa-
rameters depending on state and time since infection. The
time since infection is assumed to be a more basic variable
which affects both the serology and fecal tests and accounts
for the correlation between them. Making the models de-
pendent on time since infection removes the need to include
correlation structure relating the serology and fecal test.

We now consider the distribution of ;. It is reasonable
to assume that many cows will have antibody production
rates, i.e. slopes of the serology trajectory, that are normally
distributed about some average rate. However, about 15%
of cows with clinical disease and up to 70% of cows with
subclinical disease will mount a weak antibody response
that is below the recommended threshold for designation
of a serology result as positive. These estimates are based
on cross-sectional data, representing a range of times since
infection (Collins et al., 2005). Hence, the distribution of
slopes may be bimodal, or even multimodal, calling into
question the traditional assumption that random effects are
normally distributed. As a result, we model the distribu-
tion of slopes “nonparametrically,” using a Dirichlet Process
mixture of normals, to allow greater flexibility. See Ferguson
(1973), for background on the Dirichlet Process and Esco-
bar and West (1995) or Hanson et al. (2005), for background
on the Dirichlet Process mixture (DPM). The DPM allows
the number of terms in the mixture to be random and data-
driven. Since biology also dictates that the antibodies must
be non-decreasing after infection, we additionally constrain
the slopes to be positive by modeling the log-slope as a DPM
of normals as follows:

(1) loghii =" | pi,7i ~ N(pi,7;) fori:k;=3
Gla,Go ~ DP(a,G)

Heuristically, we write

v | GA / N (i, )G (dps, drs)
G | OZ,GO ~ DP(O[,G())

Let (n1,n2,n3) denote the numbers of cows that are in
each of the three latent states. Then since G arising from
the DP is almost surely discrete, there will be repeats among

the ng realized values of 0; = (u;,7;) drawn from the ran-
dom bivariate measure G. Letting {¢; : j = 1,2, ..., k} with
k < ng3 represent the distinct 6;, the group of subjects as-
sociated with each distinct ¢; will then form “clusters” of
observations from the same component normal distribution.
Hence, G is the mixing distribution that determines both the
parameters for each component normal and the probability
associated with it. While sampling the infinite-dimensional
G as part of our MCMC scheme for sampling the joint pos-
terior distribution might appear to be a daunting task, we
actually marginalize over G, thus avoiding the issue.

4. PRIORS, NUMERICAL APPROXIMATION
TO THE POSTERIOR, AND INFERENCE

We use the Bayesian framework to estimate model pa-
rameters and predict latent variables such as infection time
and disease status. We use conditionally conjugate priors
whenever possible. For convenience, we refer to parame-
ters/random effects as either cow-specific, if they describe
aspects of a particular cow, i.e. cow 4’s infection time, ¢,
or global if they pertain to all cows, i.e. By, which is the
population mean baseline serology score for the population
of cows. We let ¢;, © = 1,2, 3 represent the probability of a
cow being in latent infection states 1,2 and 3, respectively.
The priors for global parameters are:

(q1,92,93) ~ Dirichlet((1, (2, C3)
sep ~ Beta(asep,bser)
spr ~ Beta(aspy,bspr)

lag ~ U(min;, max;)
Bo ~ N(U,Bov b)
T6o ™ F(aﬁo’ bﬁo)
Te ~ I(ar,,br)
G| Go,aa ~ DP(a,Gy)

where min; and max; are reasonable lower and upper bounds
on the lag.

To simplify computation, while maintaining flexibility,
we use the normal/inverse-gamma conjugate to the normal
sampling model for Gy (Escobar and West, 1995). Hence,
under Go(+), we have 7; ~ I'(%, %) and p; | 7 ~ N(m, Z).
This choice for G results in closed form solutions for con-
stants and standard, recognizable forms for the distributions
needed to carry out the MCMC algorithm described in Ap-
pendix IV. Other nonconjugate choices for Gy are possi-
ble, but carry additional computational burden. MacEach-
ern and Miiller (1998) developed methods for posterior sim-
ulation in the nonconjugate case. We will discuss issues as-
sociated with choosing the hyperparameters s, S,m, and d
as well as the DP parameter a in Sections 5 (Simulation)
and 6 (Data Analysis).

Cow-specific infection times under state 2 are modeled as

(2) t;'k | ki = 2; lag ~ U[tzmZ - 1ag7 timi]
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Under latent infection state 3, the prior for infection times
is

(3) tr | ki = 3,1ag ~ Uldoby, tim, — lag]

Our interest is in the joint posterior probability density
function (pdf) of the parameters and latents given the data.
The posterior distribution is shown in Appendix III. Since it
is unrecognizable, we use MCMC methods to simulate draws
from it. Inferences for all parameters and functionals of in-
terest are obtained from this sample. In order to avoid sam-
pling the infinite-dimensional parameter G, we marginalize
over the DP using the Polya Urn scheme (Escobar and West,
1995). Thus, we need only sample the finite-dimensional vec-
tor, 0;,,0;,, ..., 0;,, , of parameters of the normal distribution
associated with each latent state 3 subject.

Our sampling scheme is based on a Gibbs sampler that
incorporates Metropolis, slice, and reversible jump steps
(Green, 1995). Details of the MCMC sampling scheme, in-
cluding the full conditionals necessary for the Gibbs sam-
pler, the methods for sampling these full conditionals, and
the Reversible Jump Markov Chain Monte Carlo (RJM-
CMC) steps used to sample the posterior, are detailed in Ap-
pendix IV. The MCMC scheme was implemented by writing
code in the R language (R Core Development Team, 2011).
The R functions for MCMC simulation from the posterior
for either the parametric or semi-parametric versions of this
model are available from the first author. Simulation was
executed on a Pentium(R) Dual-Core E5700 CPU running
at 3.00 GHz with 4 GB of RAM. It took approximately
eight hours to run simulations for 40,000 MC iterations for
the Johne’s disease data. This dataset contained 365 sub-
jects, and approximately 2000 parameters and latents were
simulated at each iteration of the chain.

Reversible jump MCMC is a tool for sampling varying-
dimensional spaces. We require it because we work in the
no gold standard case where the latent infection state is un-
known. Consequently, the latent infection states will be sam-
pled in our Markov chain and will potentially change from
iteration to iteration. Since the latent infection state defines
the sub-model for each cow, and since these sub-models have
varying-dimensional vectors of terms (for model 1, 2, and 3,
these vectors are (Bo;), (Boi, tF), and (Boi, B1is tF, phi, i), TE-
spectively), the number of terms sampled at each iteration
may change. Hence, we require a mechanism for sampling
varying-dimensional spaces like RIMCMC. Note that RJM-
CMC allows us to perform model selection at the individual
cow level and estimate model parameters and latents simul-
taneously. Hence, our inferences and predictions will reflect
the uncertainty associated with model selection.

Gibbs samplers for DPM models can be slow to converge
because the chain can enter states where many of the “data,”
or slopes in our case, are assigned to the same cluster and get
“stuck” there. The reason for this stickiness has to do with
the discreteness of the DP and the fact that the weight on
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any current parameter value is proportional to the number
of “data” points currently associated with it. To obtain im-
proved mixing and quicker convergence, we incorporate the
MacEachern and Miiller (1998) algorithm that is designed
to alleviate the problem of “sticky clusters,” by augment-
ing the Gibbs sampler with additional steps to update the
cluster parameters, ¢;. Other techniques for alleviating this
problem can be found in Neal (2000) and in Jain and Neal
(2004).

We are now set to make inferences. Standard inferences
will be about the values of the various parameters and la-
tents, including the sensitivity and specificity of the fecal
culture test, the lag time from infection until serologic re-
sponse and the proportions of animals in the three states.
We will estimate the distribution of slopes for animals in
state 3, and we will also estimate the cumulative propor-
tions of infected animals through time. In addition, we will
focus on assessing the performance of the serologic outcome
as a marker for infection. In practice, populations will be
screened with such biomarkers alone, without the help of a
second test outcome, like fecal culture. Here, fecal culture
testing serves a dual purpose (i) to help in the assessment
of serology as a marker for infection, and (ii) to allow us to
assess the performance of the joint testing versus using only
serology.

The assessment of a continuous marker for infection be-
gins with a discussion of sensitivity and specificity. In stan-
dard settings, a sample of outcomes is taken on animals at
a particular time when it is unknown when or if animals
in the cross-sectional sample were infected. A cutoff value,
say ¢, is set, and if a serologic outcome exceeds this value,
the corresponding animal is termed positive, and, otherwise,
negative. The sensitivity of the test corresponding to cutoff
¢, Se(c), is the probability that the serology outcome for an
infected animal would exceed ¢, and the specificity, Sp(c),
is the probability that an uninfected animal would have a
serology outcome that did not exceed c. A plot, over all
possible cutoffs ¢, of the values of the false positive propor-
tion (1 — Sp(c)) versus the true positive proportion, Se(c),
is called the receiver operating characteristic curve (ROC).
Curves that have area under the curve (AUC) near one in-
dicate that it is possible to find a cutoff that will achieve
very high sensitivity and specificity, while if AUC is near
0.5, the biomarker is no better than a coin toss at deciding
if an animal is infected or not. Letting D denote the event
that the animal is infected, and D denote the event that it
is not, the traditional method of calculating the AUC is to
use the result that AUC' = Pr(Sp > Sp), where Sp and
Sp are assumed to have been independently taken from the
sampling distributions of serology scores from the D and D
populations, respectively (Pepe, 2003).

Here, sensitivity will be a function of time since infection.
Define the time related sensitivity as Se;(c) = P(S(t) > ¢ |
D,©,U), where S(t) is a serology score that will be observed
t units of time after t* and where ¢ > lag. So t = 0 corre-
sponds to time t* for the particular animal. Animals that



have only been recently infected, with ¢ < lag, have little
chance of detection; Se;(c) should be nondecreasing in ¢. An-
imals associated with a smaller (random) slope, (31, should
have smaller sensitivities than those with larger slopes, for a
fixed t > lag. The specificity will of course not depend on t.
We are thus able to obtain ROC curves that depend on t.

Our main goal was to assess the performance of sero-
logic testing as a function of time since infection. However,
it is also of interest to quantify the effect of testing based
on serology alone and serology with fecal testing. We con-
sider diagnosis based on both fecal culture, F', and serol-
ogy, S. Fecal culture takes on values F' =1 or F = 0. We
compare with diagnosis based on S alone. Recall that D is
the event of being in either state 2 or state 3, and define
m = P(D) = g2 + g3. For our study, the distribution of sero-
logic scores for infected animals depends on the time, ¢, since
infection. Ignoring ¢ for the moment, and assuming, given
latents and parameters, diagnosis based on test outcomes,
(F,S), would be accomplished by calculating the odds, after
applying Bayes’ Theorem

O(D | Fa S7®aU760*;61*)
P(D ‘ F’ S,@7U, BO*aﬂl*)
1-P(D|FS,0,U, Lo, P1x)
mSe” (1 Se)' " f(S|©,U, D, Box, B1s)
(1=m)(1— Sp)FSp!=Ff(S]6,U,D, fo.)
Sef'(1 — Se)t=F

= WO(‘D | S7®aU7BO*761*)-

where (Bo«, 81.) are random intercept and slope effects cor-
responding to the particular S (not in the data). The corre-
sponding probability based on (F, S) is

(4)
P(D | Fa Sa (—)a U760*561*) =
elog[O(D|F,S,@,U,ﬂO*,ﬁl*)]/[l + elog[O(D|F,S,®,U,BO*,ﬂl*)]]

with a similar expression if only S is observed. We then
obtain Bayes estimates of these probabilities by taking their
posterior expectations. We define these to be g(F,S) and
g(S) respectively. With unknown parameters and latents,
we allocate animals with outcome (F,S) as D if g(F,S) > ¢
or if g(S) > ¢, respectively.

The density for S conditional on D above depends on the
time since infection, t. In our examples, we select various val-
ues of ¢, and numerically approximate the posterior mean of
(4) by using the Gibbs sampler (Appendix IV) to first ob-
tain {(©7,U7) : j = 1,2,..., B}, and then (53],,67) | (87,U7)
followed by 37, | 61. Thus

B
g(F,S)=> P(D|F,8,0,U7,8,,p.)/B

j=1

()

Bayesian estimates of the corresponding AUCSs can
be calculated as the predictive probabilities, AUCpg =

P(g(Fp,Sp) > g(Fp,Sp) | data) and AUC's = P(g(Sp) >
9(Sp) | data), where (Fp,Sp) is sampled from the pre-
dictive distribution of (F,S) | D,data, and (Fp,Sp)
is sampled from the predictive distribution of (F,S) |
D, data, independently. At each iterate of the Gibbs sam-
pler, we sample (F%,57) | D,(©7,U7,5),.,51,), and
(F%, S{—)) | D, (67, U-j,ﬁg*), where the intercept is sampled,
then 67 | 9{,...,9%3,data is sampled using a Polya Urn
scheme (see Escobar and West, 1995, Section 2) that is
similar to but distinct from the Polya Urn scheme for
{6; : i = 1,...,n3} given in Appendix IV, followed by sam-
pling 81« from the log normal distribution for slopes with
given 6. In this way, we have a Monte Carlo sample of B
pairs from each of the predictive distributions of interest,
and we thus numerically approximate the AUC based on

(F,S) as

B
AUCrs =) Hg(F},Sp) > g(Fh, S5)}/ B

Jj=1

where we use the approximation in (5) to approximate the
terms inside the indicator function. We obtain a similar ap-
proximation to AUC S-

We are only able to obtain the point estimates AUC FS
and A/U\Cs defined above. In more standard situations, the
AUC can be expressed as a function of the parameters, so
that the AUC itself is a parameter, and then is it usually
straightforward to obtain probability intervals for it by ob-
taining its induced posterior distribution. Here, it is not as
simple, but we can define

AUCFrs(0,U) =
Pr{g(FDvsD | G?U) > g(FDvsD ‘ @aﬁ) | 870}

where (Fp, Sp) and (Fp, Sp) are taken from the predictive
distributions described above, only conditional on (©,U) =
(©,U, Box, B1+)- So this is the AUC that corresponds to using
a procedure for deciding on disease status, only where the
procedure for deciding depends on unknown (O, U ). We can
nonetheless numerically approximate the posterior distribu-
tion of AUCFs(0©,U) and similarly for AUCg(©,U). This
is accomplished by taking further iterations from the above
predictive distributions at each iteration within the Gibbs
sampler. These iterates are then used to numerically approx-
imate AUCpg(©7,U7) and AUC4(07,U7), for j =1, ..., B.
We can then numerically approximate Pr{AUCpg(0,U) >
AUCs(©,U) | data}. We thus obtain an additional measure
of how much improvement there is by using both F and S
rather than S alone.

5. SIMULATION

In this section, we describe the results of two simulations.
For the first simulated dataset, we provide a description of
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the simulated data (SD), discuss prior specification, indicate
how mildly informative hyperparameters for the Dirichlet
Process can be constructed, and report the model’s perfor-
mance. We close this section with a brief summary of the
second dataset and the model’s performance on it. Param-
eter estimates were quite good for both simulated datasets.
Both datasets were designed to mimic Johne’s disease data
so that we could test our model on simulated data.

For the first dataset, fecal and serology data were sim-
ulated for 350 subjects — 102 in latent disease state 1, 75
in state 2, and 173 in state 3. Data were unbalanced but
complete, and testing occurred every six months. The num-
ber of observations per subject had minimum = 5, median
= 10.5 and maximum = 21. Log-slopes of state 3 subjects
were drawn from a 50-50 mix of a N(0.4,0 = 0.1) and a
N(0.8,0 = 0.2). The other parameters were set to values
similar to those estimated for the Johne’s disease data.

5.1 Prior specification

Diffuse proper priors were used for parameters other
than those involved in the DP. Precisions were modeled as
I'(0.001,0.001), a N(0,0.0001) was used for Sy and param-
eters having a closed interval for support were given uni-
form priors. Note that in the parameterization used here,
the Gamma(a, b) distribution has mean a/b. The vector of
probabilities (¢1, g2, ¢g3), is modeled with a Dirichlet(1,1,1).
For the DP, we need to specify the precision parameter, «,
and a centering measure, Gy. “Large” values of a represent
strong belief that the centering measure is the correct one.
However, they also give rise to a large number of clusters.
Likewise, “small” values of « result in a few clusters. Here,
“large” and “small” are relative to the number of subjects in
latent class 3. Antoniak (1974) derives the following result
relating the expected number of clusters, C, to the sample
size, n, and a.

— - o

=« +i—1

Given that the simulated data contain 173 subjects in latent
state 3, it seems reasonable to identify 2-3 clusters. Using
Antoniak’s formula, we find that a = 0.3 corresponds to
2.6 expected clusters so we set a to 0.3. With actual data,
it is unlikley that the number of subjects in state 3 would
be known. However, a rough approximation to the number
of subjects in state 3 could be obtained by first running a
parametric version of this model (Norris et al., 2009). Under
the parametric model, we assume log 81; = v; ~ N(py, 7).

The selection of the hyperparameters of the centering dis-
tribution, Gy, warrants discussion. Recall that Gg is the
normal-inverse gamma conjugate prior where 7; ~ I'(3, %)
and p;|7; ~ N(m, ). So, we need to choose s, S, m, and d.
On the scale of the simulated data, a diffuse prior could be
attained by setting m = 0, d = 10, and choosing § = s = 2.
Unfortunately, the Gibbs sampler mixed poorly with this
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prior. In particular, the estimated distribution of slopes ap-
peared to get stuck in states where one cluster contained
the vast majority of the data (99% or more). However, we
obtained excellent results with a mildly informative choice
for Gy, formulated as described in Appendix II. Our choice
of G is based on an initial parametric analysis of the data,
where we used information from the posterior for (1, 7y) to
create these mildly informative choices for Gy in the semi-
parametric analysis. Consequently, our current analysis is
empirical Bayesian, which is quite common in this area. Es-
cobar and West (1995) and Kleinman and Ibrahim (1998)
also use informative priors in similar models involving DPs.

We note that it is possible to put priors on «, S, s, d, and
m (Escobar and West, 1995 and Delorio et al., 2009), making
their values more data-driven. However, Escobar and West
(1995) indicate that the information content in the data for
estimating d may be small, so even if d is modeled with a
prior distribution, typically it should be mildly informative.
We would then need to include additional steps in the Gibbs
sampler to sample the full conditionals of «, S, s, d, and m.
However, if we choose these priors wisely, the associated
full conditionals assume nice forms and are not difficult to
sample.

5.2 Inference for simulated data (SD) 1

Two chains with dispersed initial values quickly con-
verged to the same stationary distribution. Discarding the
first 5000 iterations of each chain, we obtain the parame-
ter estimates shown in Table 1 by combining the remaining
35,000 iterations from both chains. We note that the point
estimates, taken as the posterior median here since a few of
the posteriors are skewed, are quite close to the true values.
Additionally, all 95% probability intervals (taken as the 2.5
and 97.5 percentiles of each posterior distribution) contain
the true parameter value.

Next, we consider estimation of the nonparametric slope
distribution. Samples from the posterior slope distribution
are shown in Figure 3. Samples from the posterior slope
distribution under the alternate scenario with @ = 0.1 are
shown in the right panel of Figure 3, and we will elaborate
on this comparison shortly. First, we discuss inference under
a = 0.3. Most posterior samples of the slope distribution
capture the bimodality of the true distribution and account
for the difference in standard deviations of the component
normals.

Although the shape of the distribution of slopes appears
to be estimated reasonably well, we find that the number
of components in the DP mixture of normals tends to be
overestimated. The true distribution of slopes is a mixture
of two normals, but the highest posterior probability is as-
signed to a mixture of three normals as shown in Table 2.
However, when we examine the posterior probabilities for
the number of modes in the distribution of slopes shown
in Table 3, two modes has the highest posterior probability.
We note two possible reasons that the number of component
normals can differ from the number of modes in a distribu-



Table 1. Parameter Estimates for SD 1
95% Probability

Interval
Parameter Truth Post. Median Lower Upper
Bo 0.080 0.079  0.060 0.099
08, 0.022 0.031  0.020 0.048
Oe 0.224 0.224  0.217 0.233
ser 0.65 0.62 0.59 0.66
SpF 0.97 0.966  0.955 0.976
lag 1.00 1.13 0.91 1.35
q 0.29 0.28 0.22 0.34
q2 0.21 0.23 0.18 0.30
qs3 0.49 0.49 0.43 0.54
o =03 o =0.1
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Figure 3. Posterior Samples of Log-slope Distribution for
SD 1, for « = 0.3 and o = 0.1. Thick line = true distribution
of log-slope.

tion: (i) some components have an associated probability,
or “weight,” that is very small and don’t show up as a dis-
tinct “bump” or (ii) some components may overlap so much
that they become unimodal. For the simulation data and
the Johne’s disease data in the next section, the number of
modes is smaller than the number of component normals
due to the first reason.

To assess how sensitive inferences are to the choice of «,
we reran the model with all priors the same except that
a was set to 0.1, which corresponds to an expected num-
ber of clusters of 1.56. We found that the estimated num-
ber of component normals is sensitive to the choice of the
precision parameter, «, in the DP prior. With o = 0.1, a
mixture of normals with two components has the highest
posterior probability (compared to three components with
a = 0.3) as shown in Table 2. Posterior probabilities for
the number of modes is shown in Table 3, and the highest
posterior probability is still assigned to two modes. While
inference about the number of component normals is sensi-
tive to «, the overall shape of the distribution of log-slopes
is similar under both choices of «, as shown in Figure 3. The
distribution with @ = 0.1 appears to fit the true distribu-
tion more closely on iterations where the slope distribution

Table 2. Comparison of Posterior Probabilities of Number of
Clusters for SD 1

Number of Clusters

1 2 3 4 5 6 or more
a=03 0.01 0.17 0.34 0.28 0.14 0.06
a=0.1 0.15 044 0.30 0.09 0.02 0.00

Table 3. Comparison of Posterior Probabilities of Number of
Modes for SD 1

Number of Modes

1 2 3 4
a=03 0114 0.832 0.054 0.001
a=0.1 0326 0.658 0.016 0.000

contains two modes. However, it assigns more probability
to unimodal distributions. It seems that both choices of al-
pha provide reasonable inference about the distribution of
slope distributions. Consequently, as long as interest lies in
the shape of the distribution of the log-slopes, there is some
flexibility in the choice of a.

In order to better understand how the performance of
the serology marker changes over time, we can construct es-
timated ROC curves, with one curve for each value of time
past infection, over a grid of time values. Since the poste-
rior probability for two modes is the highest, we graph two
sets of ROC curves to compare how the serology marker
will perform on a hypothetical group with an ad hoc ap-
proximation to the smaller mode, termed the “low serology
reaction” group, and another hypothetical group with ad
hoc approximation to the larger mode, termed the “high
serology reaction” group. We approximate the mean and
standard deviation of each group using only the pdfs with
two modes in Figure 3. The lower mode appears to have
a mean of approximately 0.4 and a standard deviation of
about 0.075 (using the fact that the range of a normal dis-
tribution is about four standard deviations and the range
of the lower bump is about 0.3, so standard deviation is
about 0.3/4=0.075). The higher mode appears to center on
0.9 and have a standard deviation of about 0.15. For a fixed
time past infection and group, we generate an ROC curve
by varying the cutoff value and plotting the ordered pairs
(1-Sp(c), Se(c)). We obtain a MC approximation to Se(c)
at time ¢ as follows:

e At iteration k of the Markov chain and for w =
1,2,3,...,1, we simulate [ serology scores correspond-

ing to time t past infection E)k}; s(zzr)npling [ sets of

cow-specific parameters, B(()Z), 1w €w  and calculating

k E k
b + Bla (t = lag®)) + el
e Next, we determine what proportion of serology scores
for time t are above the cutoff, i.e. we calculate

Se®(¢) =

o~ | =

!
Z 1B + B8 (8 — 1ag®) + € > ¢)
w=1
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Figure 4. Estimated ROC curves for SD 1 at selected values
of time past infection according to hypothetical low and high
serology groups.

e Averaging Se(®)(c) over all iterations of the MC gives
the approximation to Se(c) at time ¢. In practice, we
thin the MC to obtain these estimates because of the
substantial compute time involved.

The slopes ﬁﬂ? are drawn from the lower mode, i.e. a nor-
mal with mean 0.4 and standard deviation 0.075 to obtain
MCMC approximations to Se(c) for this group. A similar
computation is employed for Sp(c). We repeat this proce-
dure for the high serology group. The estimated ROC curves
are shown in Figure 4. The two groups are clearly distin-
guished in terms of the biomarker’s ability to discriminate
infected from non-infected animals.

We can also study the manner in which the sensitivity
of the serology test will increase over time by fixing a cut-
off value for the serology test (scores above the cutoff value
are interpreted as a positive test result) and graphing the
serology sensitivity against time past infection. Graphs of
estimated sensitivity as a function of time for the hypothet-
ical low and high serology groups are shown in Figure 5.

Since one of our primary goals is diagnosis, we now exam-
ine the classification accuracy of the semi-parametric model.
Each subject was classified based on their predictive proba-
bility vector for the three states; the state with the highest
probability was the classification state. Classification was
quite accurate, with only 34 out of 350 subjects, or 10%,
misclassified as summarized in Table 4. Alternately, if we
are only interested in which subjects are infected or not in-
fected, we can collapse latent states 2 and 3 into a single
“infected” state and obtain overall estimates of sensitivity
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Figure 5. Estimated sensitivity as a function of time past

infection for hypothetical low and high serology reaction
groups for SD 1.

Table 4. Estimated classification accuracy for SD 1

Classification

1 2 3
1] 92 9 1

True State 2 | 13 61 1
311 9 163

and specificity for the joint model of 0.94 and 0.90, respec-
tively. Since these allocations were performed using all the
data, these numbers are likely somewhat optimistic.

5.3 Simulated dataset 2

The second simulated data (SD 2) consisted of fecal and
serology test results for 300 subjects — 19% in latent state 1,
12% in state 2 and 69% in state 3. Data were unbalanced
but complete, and testing occurred every six months. The
number of observations per subject had minimum = 5, me-
dian = 11 and maximum = 17. Log-slopes of state 3 subjects
were drawn from a mixture of two normals consisting of a
N(0.4,0 = 0.1) with probability 0.8 and a N(0.7,0 = 0.2)
with probability 0.2. The resulting distribution is unimodal
and right-skewed. The true values of other parameters along
with the estimated values and 95% probability intervals are
shown in Table 5. Note that all 95% probability intervals
contain the true parameter value.

Inference regarding the distribution of log-slopes was
quite accurate. Figure 6 shows six systematically sampled
iterates from log-slope distributions from the full MCMC



Table 5. Parameter Estimates for SD 2
95% Probability

Interval
Parameter Truth Post. Median Lower Upper
Bo 0.80 0.79 0.77 0.82
08, 0.032 0.032  0.019 0.047
Oe 0.224 0.225  0.219 0.234
ser 0.75 0.72 0.69 0.76
SpF 0.92 0.93 0.91 0.94
lag 0.70 0.79 0.61 1.03
q 0.19 0.15 0.10 0.20
q2 0.12 0.18 0.12 0.24
q3 0.69 0.67 0.61 0.73

Table 6. Posterior Probability of Number of Clusters for SD 2

Number of Clusters 1 2 3 4
0.00 0.22 0.35 0.25

5 or more
0.17

Posterior Prob

sample, along with the true log-slope distribution. The it-
erates from the posterior tend to be unimodal and right-
skewed like the true log-slope distribution.

Table 6 gives the posterior distribution for the number
of clusters in the log-slope distribution while Table 7 gives
the posterior distribution for number of modes. Note that
the model correctly assigns highest posterior probability to
one mode. Although the number of clusters having highest
posterior probability is 3, when the true log-slope distribu-
tion has 2 clusters, we still obtain a good approximation
to the true shape of the log-slope distribution. As shown in
Figure 6, where a circle is plotted for the mean of each com-
ponent distribution with area proportional to probability
of the corresponding component, even when the number of
clusters is 3, the resulting shape of the log-slope distribution
is typically still unimodal and close to the true distribution
of log-slopes. If there are three or four clusters, there is of-
ten a cluster with negligible probability or two clusters with
means that are very close to each other.

6. ANALYSIS OF JOHNE'S DISEASE DATA

We now analyze the Johne’s disease data. We first con-
sider the specification of a relatively vague prior and follow
up with inference under the semi-parametric model.

6.1 Prior specification

Except for the DP, all priors are vague. I'(0.001,0.001)
priors are used for all precision parameters and N (0, 0.0001)
priors are used for parameters whose support is the real line.
Parameters whose support is a bounded interval are given
uniform priors. As in the preceding simulation, we need to
choose «, the precision parameter of the DP, as well as the
hyperparameters of G, the centering distribution of the DP,
i.e. 5,5, m, and d.

\
N
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Figure 6. Posterior Samples of Log-slope Distribution for
SD 2. Solid line = true distribution of log-slope, dashed line
= sample from posterior distribution. A circle is located at
the mean of each component normal with size proportional to
component weight.

Since we don’t have good independent information on
which to base our prior for the distribution of log-slopes,
we take the empirical Bayes approach discussed in Ap-
pendix II, as was done in the SD 1 in Section 5. We first con-
sider 7; ~ I'(3, g) Under the parametric model, log 51; =
v ~ N(py,7y). The posterior medians of p, and 7, are
0.2184 and 1.0493, respectively. We set the mode of the prior
7 ~ (35, %) equal to the posterior median under the para-
metric model, 1.0493. To obtain a upper bound on 7;, i.e. a
high value of the precision, we assume, a “narrow” compo-

nent distribution in the DP mixture of normals has 16 times
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Table 7. Posterior Probability of Number of Modes for SD 2

Number of Modes 1 2 3
0.59 0.38 0.03

Posterior Prob

Table 8. Parameter Estimates for Johne's Disease Data
95% Probability

Interval
Parameter Post. Mean Lower  Upper
Bo —-1.741 -1.761 —1.721
oo 0.067 0.052 0.087
Oe 0.134 0.126 0.153
sep 0.57 0.52 0.63
SPF 0.976 0.955 0.990
Q1 0.48 0.41 0.55
q2 0.25 0.19 0.32
q3 0.26 0.22 0.32
lag 1.60 1.32 1.85

the modal precision. Thus, the 97.5th percentile is set to
16 * 7, = 16 * 1.0493 = 16.79. Using a grid search in R, we
find s = 2.5278 and S = 0.5030 yield a gamma distribution
with the desired mode and 97.5th percentile. We center the
distribution of y;|r; ~ N(m, ) on the posterior median
of py, so m = 0.2184. We also set d = 10 for the reasons
discussed in Appendix II.

Based on the estimated distribution of log-slopes from
the parametric analysis shown in Figure 1, it appears that
the log-slope distribution might be a mixture of three com-
ponent normals having means at = —5,0 and 1. Conse-
quently, we select the precision parameter of the DP, «, to
allow for 2-3 clusters. Assuming that about 92 cows will
be in latent state 3 (based on the parametric analysis) and
using Antoniak’s formula we find that o = 0.3 gives 2.4

expected clusters.

6.2 Inference

Two chains with dispersed initial values quickly con-
verged to the same stationary distribution. Discarding the
first 10,000 iterations of each chain, we obtain the parame-
ter estimates shown in Table 8 by combining the remaining
30,000 iterations from both chains. Classifying the 365 sub-
jects into latent disease states yields 197 in state 1, 76 in
state 2, and 92 in state 3.

Several iterates corresponding to systematic samples from
the posterior slope distribution, and the posterior mean cor-
responding to these iterates are shown in Figure 7. We note
that some of the iterates from the distribution of log-slopes
are bimodal with global maximum near zero and a smaller
mode near —2. Since e~2 ~ 0.14, it is possible that the lower
mode represents cows who become infected and either fail
to have a global antibody response or have a very low-level
antibody response.

We now consider inference about the number of compo-
nent normal distributions in our distribution of log-slopes.
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Figure 7. Posterior iterates of Log-slope Distribution, with
posterior mean in bold; Johne's Data.

Table 9. Posterior Probability of Number of Clusters for
Johne's Data

Number of Clusters 1 2 3 4
0.12 0.27 0.30 0.19

5 or more

0.11

Posterior Prob

Table 9 displays the posterior probabilities corresponding
to various numbers of clusters, or normal components, in
the distribution of log-slopes. A normal mixture with three
components has the maximum posterior probability. How-
ever, Table 10 indicates that the most probable number of
modes is one, with two modes having second highest prob-
ability. Note that the fact that this analysis indicates that
one mode is most likely does not mean that modeling slopes
nonparametrically is unnecessary. Not only do nonparamet-
ric models allow for multiple modes, they also allow the dis-
tribution of slopes to be skewed, to have thicker or thinner
tails than a normal, or to depart from a normal distribution
in a myriad of ways. The fact that 3 clusters is most prob-
able suggests that the log-slopes of the serology trajectories
are insufficiently modeled with a single normal distribution
and have features which are better modeled using a mixture
of 3 normals. Indeed, the empirical data in Figure 1 do sug-
gest skewness, among other departures from normality. It is
possible to mix three component normals together in such
a way as to create a unimodal distribution (for example, if
their modes are close together).

For the Johne’s disease data, the ROC curves at selected
times past infection for estimated high and low serology re-
action groups are displayed in Figure 8. By analyzing the
posterior iterates of the log-slope distribution shown in Fig-



Table 10. Posterior Probability of Number of Modes for
Johne's data

Number of Modes 1 2 3 4

Posterior Prob 0.62 0.30 0.07 0.00
o
- 7 veQ creeee [ JEERREE [<EREA o-- -9 -8
° o _--0- " -
0" _--° .
o -0 .
o
o o _-
> 4 o _o
o o -
o ,©
[e] 4
o ,°
o .
g 19 Io
Z So
:og
g &
12}
&
o
— 1.5 years - low sero
- = 1.8 years - low sero
--++ 2.1 years — low sero
~ —o— 1.5 years - high sero
S -0- 1.8 years - high sero
-0+ 2.1 years - high sero
o
S
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
1-specificity

Figure 8. Estimated ROC curves for Johne's disease data for
hypothetical groups at selected values of time past infection.

ure 7, we obtained rough estimates of the mean and stan-
dard deviation of the high and low clusters. Many of the it-
erates suggest the low cluster is centered around —1.6 with
a standard deviation of about 0.4 and the higher cluster is
centered at about 0.6 with standard deviation of 0.9. We
recognize that these estimates are ad hoc. However, obtain-
ing estimates of the mean and standard deviation of these
hypothetical high and low clusters is not a well-defined prob-
lem since the number of clusters will vary from iteration
to iteration of the Markov chain, and components of the
mixture arrive and disappear across iterations, so defining
groups/clusters of cows is a non-trivial task. The bottom
line issue is the lack of identifiability of the model for esti-
mating components of the mixture. Although our solution
to this difficulty is ad hoc, this method aids in giving an idea
of the difference in how the serology test performs between
the two hypothetical groups. The same method was used
to obtain the graph of serology as a function of time past
infection for the high and low clusters shown in Figure 9.
We note there is a huge difference in the performance of
the serology marker between these two hypothetical groups.
Even at three years past infection, the serology test still has
an estimated sensitivity less than 0.20 for the low serology
reaction group, whereas the sensitivity for the high serol-
ogy group is 1. An awareness of these types of limitations of

1.0

— low sero 7
- high sero /

0.8

0.6

Serology sensitivity
0.4

0.0
|

1.5 2.0 25 3.0 3.5 4.0

Time after infection (in years)

Figure 9. Estimated sensitivity as a function of time for
hypothetical high and low serology groups; cutoff = —1.29.

Table 11. Comparison of estimated AUCs for serology with
fecal and serology alone

Years past  Sero. with fecal — Sero. alone Posterior Prob
infection AUCFrs AUCs AUCrs > AUCg
1.7 0.868 0.718 1.000
1.9 0.948 0.904 0.994
2.1 0.976 0.944 0.974
2.3 0.981 0.962 0.942
2.7 0.986 0.977 0.870

serology tests can aid scientists in devising better screening
regimens.

In order to compare the performance of serology with fe-
cal culture against serology alone, we estimate the AUCs
over a grid of time points as shown in Table 11. We note
that serology with fecal outperforms serology alone at all
the times past infection considered. However, the difference
in performance is largest at 1.7 years after infection, just
after the lag has elapsed. The difference in performance be-
comes negligible by 2.7 years after infection. This analysis
is without taking hypothetical groups into account. More
work needs to be done to develop a systematic method of
defining these groups.

Finally, we consider how this model could be used to
understand the temporal dynamics of disease progression
within a herd. For each animal predicted by the model to
be in an infected state (state 2 or 3), we can obtain the
animal’s predicted infection time. We can then graph the
cumulative number of animals infected as a function of time
as shown in Figure 10 for the Johne’s disease data. Unfor-
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Figure 10. Estimated cumulative number of animals infected
over time.

tunately, herd membership was not known with certainty
for all animals in the Johne’s disease study so the graph
was produced assuming all animals were in the same herd.
Hence, the graph serves an an illustration of the model’s
potential, and one should be cautious about drawing any
biological conclusions from it.

7. CONCLUSIONS

Detection of chronic bacterial diseases, such as Johne’s
disease in cattle, is especially challenging in the subclinical
phase because available diagnostic tests are of low to moder-
ate sensitivity. Simultaneous use of multiple, conditionally-
independent tests can increase the overall sensitivity and
accuracy (as measured by the area under the ROC) of the
joint test result. When longitudinal test results are avail-
able and there is no perfect reference standard, repeated
test results may be difficult to interpret and ensure high
predictive probabilities of disease or absence of disease. We
developed a flexible semi-parametric approach for longitudi-
nal test results for Johne’s disease based on one binary test
(fecal culture) and one continuous-scaled test (serum ELISA
scores) using a Bayesian latent class model. The model al-
lows for subpopulations of animals that were not identifiable
assuming a parametric (log normal) model for ELISA scores.
Our novel model has potential utility because differences in
rates of serum antibody response to infection (high or low)
in subpopulations of animals might be useful predictors of
progression to clinical disease, or the effect of diseases on
milk production or on reproductive success which often oc-
cur during the subclinical phase. In addition, the model can
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provide insight into the temporal dynamics of infection with
the causative bacterium in cattle herds thereby facilitating
management decisions based on test results.

A major finding of our analysis is that there are distinct
groups of animals where one group has a fairly quick sero-
logic reaction while the other has a very slow one. If there
are herds with large numbers of slow reactors, the overall
sensitivity across all animals in such a herd could be quite
low as it would involve some sort of average of estimates
like those presented in Figure 9, for example. A second, not
surprising, conclusion is that diagnosis based on both fecal
culture and serology can result in much improved diagnosis
over serology testing alone, at additional cost.

The statistical methodology developed for this practical
veterinary problem, or simple variations of it, will apply
to a host of other diagnostic testing situations. There are
many animal infections that would involve binary and con-
tinuous diagnostic testing and thus our methodology would
in theory apply to all of them. There are of course details
that will vary, for example, tests might be dependent condi-
tional on disease status, in which case the dependence could
be modeled and our method adapted accordingly. In hu-
man medicine, there is usually follow-up when a person is
suspected of having some form of infection or disease. For
example, it is common to use a PSA test and a digital exam-
ination for prostate cancer. Follow-up can involve invasive
and expensive biopsy. In HIV testing, a relatively inexpen-
sive ELISA test is followed up with a more expensive West-
ern Blot test (virtually a gold standard), when it is positive,
and not when it is negative. We are currently working on
adapting our methodology to handle the partial gold stan-
dard case, which can involve selection bias that must be
taken into account. Our method is easily adapted to situa-
tions where a gold standard test is always applied. Finally,
we are also working on more complex models for the sero-
logic/biomarker response, which allow for the possibility of
a sigmoid function, for example, where individuals have a
continuous increase in response followed by a leveling off.
More complex functions could also be studied.
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APPENDIX I. EVIDENCE FOR
CONDITIONAL INDEPENDENCE
ASSUMPTION

In order to determine if the assumption that serology and
fecal results are independent conditional on knowing disease
state and all other parameters and latents seems reasonable



for the Johne’s disease data, we first fit the model to obtain
estimates of all parameters and predictions of all latents.
Then, for each observed serology score, we calculated the
residual e;; = S;; — [Boi + Bui(ti; — &F — lag)™]. Note the
residual simplifies to e;; = S;; — Bo; for all serology scores
of uninfected animals and for serology scores of infected an-
imals taken at any time before infection time plus lag. We
calculated the Pearson correlation coefficient for the pairs
(ei5, Fi;) for four disjoint groups of screening results as fol-
lows: 1) all screenings for animals who were never infected
during the study, 2) screenings for infected animals that were
taken before the estimated infection time, 3) screenings for
infected animals that were taken from time of infection to
time of infection plus lag, and 4) screenings taken for in-
fected animals that were taken after the lag had elapsed.
The screening results were assigned to the four groups based
on estimated infection times and latent states from the fit-
ted model. We calculated correlations within the four groups
to ensure that aggregation did not wash out any potential
correlations between serology and fecal results. The correla-
tion coefficients for the four groups, respectively, are: 0.009
(P = 0.758, n = 1287), —0.11 (P = 0.05, n = 346), 0.14
(P = 0.02, n = 260) and —0.003 (P = 0.968, n = 204).
The conditional independence assumption is questionable
for the infected animals prior to infection and during the
lag between infection and serology reaction (r = —0.11 and
0.14). However, we note that if dependence between serol-
ogy and fecal tests exists during these phases, it is not of
practical importance.

APPENDIX Il. DETAILS FOR SELECTION
OF MILDLY INFORMATIVE G,

Formulation of the DP as a mildly informative prior could
be based on data from past studies or information elicited
from an expert. Since neither of these sources of informa-
tion are available for simulated data, we take an empirical
Bayes approach and inform the choice of G based on a para-
metric run of the model. We take the posterior medians of
i~ and 7, as their point estimates. For the simulated data,
fiy = 0.65 and 7, = 12.3. Since 7; ~ ['($, £), we choose s
and S so that the mode of this distribution equals the pre-
cision for the parametric (one normal component) model.

Thus, %_1 = 12.3. We also choose s and S so that the
2

97.5 percentile corresponds to a “large” value of 7;. Since
a “large” precision corresponds to a small standard devi-
ation, we choose a “large” value of 7; to be the precision
corresponding to a component distribution (in the DP mix-
ture of normals) having one-fourth the standard deviation
obtained under the parametric model. One-fourth the stan-
dard deviation corresponds to 16 times the precision, thus
Py.g7s = 16%12.3 = 196.8. Using a grid search in R, we find
that the gamma with mode 12.3 and 97.5 percentile 196.8
has parameters s = 2.52 and S = 0.04.

We center the prior p;|; ~ N(m, ™) on m = fi, = 0.65
from the parametric model. Next, we choose d, a parame-

ter which affects the number of modes in the distribution
of the log-slopes. “Large” values of d result in priors which
place higher probability on distributions with a large num-
ber of modes (Escobar and West, 1995). Recall that the
prior parameter, «, influences the number of clusters, which
is different from the number of modes since clusters that
are close together may appear as a single mode. At a mini-
mum, we wanted to ensure that d was chosen so that, when
T; = T, the prior for u; has more dispersion than the distri-
bution of the log-slopes, v;, under the parametric model, i.e.

L L= %’ < 7. Thus, d must be at least 1 since

Vet
lower precision means more dispersion. We ran simulations
with d = 2.25, 10, 50 and 200. All values of d produced good
approximations to the true distribution of log-slopes except
d = 2.25, which tended to produce unimodal distributions.
We chose d = 10 since too large a value of d can inhibit the
mixing of the chain by yielding draws for new cluster means
that are ridicuously small or large. Consequently, when 7;
equals its mode, the standard deviation of the distribution
of u; is roughly 3.3 times standard deviation of the distri-
bution of the log-slopes under the parametric model.

APPENDIX Ill. LIKELIHOOD AND
MARGINALIZED JOINT POSTERIOR
DISTRIBUTION

We derive the likelihood and joint posterior, and sub-

sequently marginalize the joint posterior over the DP. To
economize on notation, we set data = {(Si;, Fij),ti; ¥i,7}.
Note that, if a log transform is used for the serol-
ogy data, S;; actually represents the log of the serol-
ogy score. The latents, denoted by U, include {Bo;
i = 1,2,..,n}U{B1; : isuchthat k; = 3} | U{ki : @ =
1,2,...,n}, while the parameters, denoted by © =
{q1, 92,43, Bo, T8y, Te, S€F, SPF, lag, {t; i = 1,2,..n},
{(pi,m) Visuch that k; = 3}, G}. We have

(6) L(O|U,data)
= f(data|U,®) - f(U|O)

x { H [fh ﬁTe%eXp{_%(Sij_ﬁOi)Q}

iiki=1

x Spr (1 - Spr)"™ |

X TEOGXP{—%(BOZ‘ - 50)2}}

Jj=1

- ms 1 Te
a2 J1;[1 T exp{ — 5 (Sij — 501')2}}

i:k; =2

[o 1—Fi; y

< [ |Spr J(I_SPF)F”]
Jitig <t}

T [seB 0 - ser =]
Jitig>tr

X TB%OGXP{_%<501' - 50)2}}
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x 7 exp{ =22 (B — o)’}

1

2
T

B

X

exp{~ 5 (log(Brs) — 1)’} }
where

Sij = Sij — Boi — Bui(ti; — t; —lag)™

Lines 3-5 represent the augmented data likelihood for sub-
jects having no infection (k; = 1), the next four lines corre-
spond to subjects having infection without serology reaction
(k; = 2), and the final five lines correspond to subjects hav-
ing infection with serology reaction (k; = 3).

Letting 7(-) represent the joint prior on its arguments,
and P represent the Dirichlet Process prior on the random
measure G, and with a slight misuse of notation, we obtain
the following posterior distribution for the semi-parametric
model.

p(©,U|data)
L(C—)‘Ua data) : T((qla q2,43, BOa TBos Tes SEF, SPF, lag)

X H mo(ty) - | H msi(t7) - G(db;)] - P(AG)

ik, =2 i:k;=3

where ma(tF) = I(tim, — lag < tf < tim,)/lag, the prior
for ¢; under model 2 and ms;(tf) = I(dob; < ¢ <
tim, — lag)/(tim; — lag — dob;), the prior for ¢; under
model 3.

In order to avoid sampling the infinite-dimensional pa-
rameter G, we marginalize over the DP using the Polya Urn
scheme (Ferguson, 1973). We let i1,13, ..., 4, be the indices
for subjects in state 3.

(7)/;0(@, Uldata)P(dG)

L((—)‘Uv data) : 7T(qla q2, (13760’773077%, SEfp, 3pF71a’g)

x [T m@)- T ma(t)

ik, =2 ik; =3
y ﬁ aGo(do;,) + 30" 8, 1(d6;,)
st a+r—1

We note that the marginalized joint posterior in Equation 7
no longer includes the random measure G. However, we now
need to sample 6;,, 0 ., On, the parameters of the normal
distribution associated with each latent state 3 subject.

IPERE
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APPENDIX IV. MCMC SIMULATION OF
POSTERIOR

We use Markov Chain Monte Carlo methods to approxi-
mate the corresponding posterior distribution. More specif-
ically, we use a Gibbs sampler that incorporates reversible
jump steps. Most of the full conditionals have recognizable
forms and can be sampled directly; we use Metropolis and
slice sampling for the rest.

Using the notations x(*?) to represent the vector of cow-
specific parameters associated with cow ¢ under model k;
and [w]else] to represent the distribution of the parameter or
vector of parameters, w, given all other parameters and the
data, one sweep of the Gibbs sampler includes the following
steps:

1. For each i, the joint full conditional, [(k;, x(¥¢))|else], is
sampled. This step updates the model indicator and all
corresponding parameters for cow ¢. We use RIMCMC
for this step since changes to the model indicator result
in changes to the parameter space. The reversible jump
algorithm requires a proposal for k; plus proposals for
the parameters corresponding to model k;, i.e. the y(*);
the entire lot is then accepted or rejected. Consequently,
the sub-model parameters, y(¥9), for subject i are also
updated if a between-model move is accepted in this
step.

2. Given the current k;’s, the full conditionals of the cow-
specific parameters, y(*?) are sampled as follows: for
k; = 1, sample full conditional of Sy;; for k; = 2, sample
full conditionals of By; and t¢; and for k; = 3, sample
full conditionals of Bo;, 514, tf, i and 7;. Note that if
the model has accepted a change to (k;, x(¥?)) in step
1, this step will represent a “second” updating of the
cow-specific parameters, y(*9). As discussed later, this
“double-sampling” does not impair convergence of the
chain. It does, however, improve mixing, since with-
out it, the cow-specific parameters will only be updated
when a between model move is accepted in step 1.

3. Given model indicators and cow-specific parameters,
the global parameters are updated.

4. DPM models can be slow to converge. To speed conver-
gence, we implement the “sticky clusters” algorithm of
MacEachern and Miiller (1998) which amounts to aug-
menting the parameter space with the distinct cluster
parameters {¢; : j = 1,2, ..., k} and sampling their full
conditionals. More detail will follow in Appendix IV.2.

All full conditionals, except the ones for (k;, x(¥)), condi-
tion on k; and, hence, are fixed-dimensional. Before describ-
ing how RIMCMC is used to sample the full conditional
of (k;,x¥)), we give the fixed-dimensional full condition-
als.

Letting n; represent the number of subjects in model 4
fori=1,2,3 and ¢ = (¢1,42,q3), the full conditionals for



the global parameters are:

(8)

?|else ~ Dirichlet(ny + (1,n2 + {2, n3 + (3)
nT
Bo o+
ntg, + b nTg, +

Zi ﬂOi
n

Bolelse ~ N(

bMBO’ nTBO + b)

where g =

TBo |elbe ~ F( 2 +agy, 5 2(601 - /80)2 + bBO)

Te|else~1“12mi+aml[ Z ZSij—ﬁoi2

ik;€{1,2} J
+ Z Z 1] BOz 511( i t *lag) )}
i:k;i=3 J
+b7—e)
spr|else ~ Beta( Z Z(l
k=1 j

Z Z 1_ iJ +aspF7

itk; €{2,3} Jiti; <ty
ISDILIEND SIND RIELN
ik €{2,3} jiti; <t}

k=1 j
sep|else ~ Beta( Z Z Fij + aser,

ik; €{2,3} jitij >t

2. . (=Fy)tber)
itk; €{2,3} jiti; >t
lag|else H [ﬁ eXp{—ES’Q. } R
] . 2 Y lag"?
’L:ki::} _]:1
[ H ! } - I(min] < lag < max;)
S tim, — lag — dob;

_ﬁOi_

where min; = max{{t;m,, —

Bri(ti; —t; —lag)™
t7,Vi 3 k; = 2}, min }
t7,Vi 3 k; = 3}, max; }

where Sij = Sij

where max] = min{{t;m,, —

The full conditional for lag is not recognizable. In fact, it
is not even continuous. In addition, the permissible values of
lag are constrained by the current latent state assignments,
ki, and the corresponding ¢}’s. In particular, the requirement
tim, — lag < t7 <t;m, for all current state 2 cows yields the
constraint max;.,, —2{tim, —t;} < lag. Similarly, the require-
ment that dob; <t < t;,,,, —lag for cows with k; = 3 yields
the other constraint, lag < min;.x,—3{t;m, — t7}. Note that
these constraints ensure the sampled value of lag does not
change any of the current k;’s. A slice sampler is used to
sample the full conditional of lag.

In one sweep or iteration of the Gibbs sampler, we sam-
ple the global parameters using the full conditionals just de-
scribed. We also sample the cow-specific coefficients/latents

for each cow given the current state of that cow, k;. As pre-
viously mentioned, the full conditionals that are sampled for
the ith cow in the current iteration depend on k;. We thus
have, if k; = 1 in the current iteration, which corresponds to
an animal that is not infected over the course of the study,

Boilelse, k; = 1 ~ N(BOiaTemi +780)5

Te;te:i;ao i Ten;:é-?-mo Bo and 5; = mLz Ej Sij-
If k; = 2, the current classification is infection without serol-
ogy reaction so we sample the full conditionals of By; and ¢.
The full conditional for By; is the same as in the k; = 1 case
because in either case there is no serology reaction, just a
“flat” baseline serology trajectory. For ¢}, we have the fol-
lowing piecewise constant function

where B()i =

p(t]|k; = 2,else) x
[T [spr " (1= Spr)™]

Jiti; <ty
H Gt 1—Fyj
ep’ (1 —Sep) —i
j:ti]’Zt:
X (tim, —lag < t§ < tim,)

Finally, if k; = 3, the infection with serology reaction case,
we sample So;, B1i,t;, pt; and 7;. The full conditional for Bo;
is the same as for the k; = 1 case except we replace S;
with Sz = i Z]{Slj — ﬂli(tij — 1t — 1ag)+} Because ﬂli
and ¢} are highly correlated, we sample them jointly using
the following full conditional

p(B1i, t; |k = 3,else)

exp{—% i(sw — Boi — Bi(ti; —t; —lag)™)?}
j=1
< TT [ser " (1= Spr)™]
Jitig <t}
X H [Se?j(l — SEF)PF”‘]
Jitiz >ty

- Mi)z}
—lag)

1 T
il g ;
 exp(~ 3 (og(Fu)
I(dObi < tf < tim,

This joint full conditional does not have a recognizable form
so we use a random walk Metropolis sampler as described
in Norris, Johnson and Gardner (2009). The full conditional
of (u;, ;) is derived in the next section.

IV.1 Sampling full conditional of (u;, ;)

In this section, we derive the full conditional of 6; =
(14, 7;) using the argument of Escobar and West (1995) but
with added detail. We misuse notation slightly by allowing
0; for i = 1,2,...,n3 to represent the collection of 8’s associ-
ated with model 3 subjects, realizing that subjects in model
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3 on any given iteration of the Markov Chain are unlikely to
have indices in consecutive order. Letting ) = {0, : j # i}
and ©) = the parameter vector © with 6; removed, the full
conditional of 6; is derived as follows.

£(0; | ki = 3, data, U, D)
= f(ai | 512’»9(“)
o v/Texp{—5 (logfi — i)’}

v OZGQ (d@z) —|— Zz;i,wzl 59w (d@z)
a+ng—1

Completing the square and some algebra give the following
result.

FOi | Bri, 0)) o

Cr, 2 exp{—%[S—i—

1
d+1 (logf; — m)z]}

1 T; 1 N
S exp{—§(1 + E)(/ii — i)}

T T o2
+4/ %exp{—g(logﬁu —pi)?} Z do,, (d0;)
w#i,w=1

_dlogf; +m

SN
a (3)° -
2" and fi; = d+1

Vard T'(3)

The first term is a constant times the kernel of a
U552, 5[S + 715 (logBu — m)?)) times a N (i, (1 + 5)7:)
kernel. The second term is a discrete distribution with
mass proportional to g, = \/%exp{f%w(logﬂli — pw)?}
on 0y, = (lw, Tw), for w #i,w = 1,2, ...,n3. So the full con-
ditional is a mixture of a continuous and a discrete bivariate
distribution.

In order to determine the probability of drawing from the
continuous component, we need to integrate the first term
in the above equation with respect to (u;, 7;) to determine
its normalizing constant, gg;. This calculation is standard
but tedious so we only show the result below:

where C' =

s—

/ C’TiTl exp{f% [S +

qoi dj— 1 (logB1i — m)z]}

% Ti 1 ~ N2
X T; eXP{—E(l‘i‘ E)(/U'i = f1:)"} dpidT;

=R ECE) iy (og B m)?
= \/; F(%) (sM)™=z[1+ Y ]

where M = %.

Thus, (u;,7;) is a new draw from the continuous part
of the full conditional with probability proportional to qo,
and equal to one of the remaining current values, (fw, 7w ),
with probability proportional to ¢, forw =1,2,...,i— 1,7+
1, ...,n3. This mixture distribution can be written more com-
pactly as

F(0:]else) = q0iGi(d0;) + ZZ,;Lw:l qw0,, (d0;)
qoi + ng;éi,wzl Gw
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where G;(d6;) is the bivariate normal-gamma pdf with com-
ponents 7 ~ (55, 3[S + 77 (loghu — m)?]) and p; ~
N (fi;, (1+2)7;). These results are also given in Escobar and
West (1995) for the case where the data, y;, are independent
and identically distributed draws from a DPM. Replacing y;

by log B1; in their results yields the results shown above.

IV.2 Sticky clusters algorithm

DPM models can be slow to converge because the chain
can enter states where many of the “data,” or slopes in our
case, are assigned to the same cluster and get “stuck” there.
The reason for this stickiness has to do with the discrete-
ness of the DP and the fact that the weight on any current
parameter value is proportional to the number of “data”
points currently associated with it. Specifically, recall that
{¢; :j=1,2,...,k} for k < ng represents the distinct values
among the components of #(*). Letting l; = the number of
components of 89 that equal ¢;, we can rewrite the full
conditional of (u;,7;) as

£(0; | B1i,0)

s—1

Cr; 2 eXp{_%[S + L(logﬁu —m)?]}

d+1
1
xrtexp{=F L+ §)(w — i)} + 351 Lig;05,(d6:)

The probability weight associated with an existing value,
o5 = (3,77, is Ij x \/; -exp{— (logB; — p3)*} = Lq;.
So values of ¢; associated with large clusters and, hence,
large [; are likely to be picked for updated values of 6;.
In order for the cluster parameter, ¢;, to update to a new
value, all members of that cluster must update to the new
value individually via their full conditionals. If the new value
has few observations associated with it, the full conditionals
will not put much probability mass on it. Hence, the chain
gets “stuck” when a large number of observations become
associated with the same ¢;. Even if other values of ¢; have
higher posterior probability, the chain must move through
a low-probability intermediate state of shifting observations
away from large clusters at less-probable values of ¢;.

The MacEachern and Miiller algorithm, which we refer
to as the “sticky clusters” algorithm because it is designed
to alleviate the problem of “sticky clusters,” augments the
Gibbs sampler with the ¢;’s. Since the 6;’s are still in the
chain, none of the previous full conditionals change. In other
words, conditioning any of the previous full conditionals on
both {#; : i = 1,2,...,n3} and {¢; : j = 1,2,...,k} is the
same as conditioning on the 6;’s since the 6;’s actually con-
tain all the information of the ¢;’s plus the association of
each observation with a cluster. We only need to add a step
that samples the full conditionals of the ¢;. In effect, this
step will update a cluster’s parameters using the data for
all observations currently associated with that cluster. So
the 6;’s will be sampled according to the full conditionals
developed in Appendix IV.1. With high probability, there



will be duplicate values among the sampled 6;’s, giving rise
to clusters of slopes associated with each distinct value, ¢;.
We then update the ¢;’s according to their full conditionals,
which we derive next. Finally, all 8;’s associated with cluster
J are updated with the new ¢;.

We use the following notation in deriving the full condi-
tional of ¢;: I'; = {i : 0; = ¢;}, [; is the number of elements
inI'; and log 8y; = % Eierj log B1;. Then

(@5 | #17), else)
[T #llogpii | 65)] - dGo(6)

iel;

™
x [H \ /T;eXp{*EJ(lOgﬁli - H;)Q}]
ieFj
*%—1 S * * T; * 2
XT; exp{—gTj} X4/ T; EXP{_Q_d(Nj —-m)°}
*lj2+371 T;—k _ 2
= 7 exp{—?[z:(logﬁu —log By;)" + 8
iEF]‘
+— 2 (log By, - m)*|}
lid+1 ‘

*

Tj 1 * ~ %
X \/Tj* eXp{_?j(lj + E)(Mj - ﬂj)2}

The second- and third-to-last line of this equation as a func-
tion of 7 is the kernel of a gamma distribution. The last
line as a function of x7 has the form of a normal distribu-

tion. Hence, we sample the full conditional of ¢; = (u},7})

by first sampling 77 | else ~ F(lj;s,%{ziepj (log B1i —

log 31;)? + S + l,éﬁ(log B1; —m)?}). Then, conditional on
J

the 7;° just sampled, sample 5 | 75, else ~ N (i, (I; + 5)7’]-*)

_ dllog By +m

= a1

IV.3 Reversible jump MCMC

We use a reversible jump (RJ) step to sample the full con-
ditional [k;, x*?)|else]. Recall that x(*!) is the cow-specific
parameter vector for cow i under model k; and that y(*)
changes dimension depending on the value of k;. Specifi-
cally, for k; equal to 1, 2 and 3, we now have that (¥ is

Bois (Boirt;) and (Bos, Bis, 7, pi, 74), respectively.

where [i}

Moving between models 1 and 2

In order to construct a move from disease status 1 to 2, we
must define a bijection between the two associated param-
eter spaces, fo; and (8o, tf). In order to match the dimen-
sions of these parameter vectors, we augment the model 1
parameter “vector”, By;, with an auxiliary variable, u, which
is randomly generated from the prior for ¢; under model 2
(see equation 2). Recall this prior is denoted by ma(-). Let-

ting ﬂ(g? denote the current latent associated with cow i, we
can now define a bijection

~ t
where ﬂOi = ﬂéz),

Tyo (B, w) = (Bois £5), f=u

which is just the identity map.

We now calculate the acceptance probability. If we let
[Y|X] denote the distribution of Y conditional on X, then
the serology portion of the likelihood for cow ¢ under model
z, z € {1,2}, can be represented [S;|Bo:, e, ki = z]. Like-
wise, cow i’s fecal culture contribution to the likelihood is
[Fi|spr, ki = 1] under model 1 and [F|t}, ser, spr, ki = 2]
under model 2. In the following calculations, we assume that
parameters not directly involved in the bijection are set at

their current values although we drop the usual superscript
notation, i.e. 7. actually represents Te(t). Also, we let 7(+)
generically represent the prior on a parameter or the distri-
bution of a random slope or intercept. The proposal to (i)
move from model 1 to model 2 and (ii) accept the proposed
parameters (551-,{*) has acceptance probability min(aq2,1)

i
where

21
T 7T2(’U,)

p(Boi, t|ki = 2, else)
p(BY [k = 1, clse)
[S5|Bois Tes ki = 2] - [Fy|E%, sep, spp, ki = 2]

195188, 7oy ki = 1] - [Filspr, ki = 1]

-1

o erBodma) g
qim( 8?) 1o - mo(u)
spgj:t”<t} (17Fij)(1 — SpF)Zj:tiJ<t";f Fij
Sp%y (1 ,J)(l . SpF)Zj Fyj
. 3 Fia % —F
X (SeFJ:tijZii J (1 - SeF)Zj:tithZ (1 FZJ))
Lo T
q1 T12

We obtain lines 2 and 3 by writing out each posterior in
the first factor in line 1 as the likelihood times the prior.
Since By; = 5(()? and té‘ = u, several factors in the numera-
tor and denominator cancel. Finally, the determinant of the
Jacobian is 1 since

oT(B,u)  0(Boi ) (B, u)

= I
o, u) 08D, w) 08D, w)

where I5 is the 2 by 2 identity matrix.

For the reverse move, from model 2 to 1, we transform
T21(5é§),t:(t)) = ( S?,t:(t)) = (Boi, @) and the acceptance
probability is min(a;y,1) where ajs is calculated with tr
*(t)

replaced by ¢,"".
Moving between models 1 and 3
A move from model 1 to model 3 requires that we con-
struct a bijection from So; to (Boi, Bui, tF, pi, 7:). We generate
four auxiliary variables ui, us,us and uy and define the bi-
jection from the model 1 to the model 3 parameter space as

follows:
T13(ﬂ(()?7u17u2,us,u4) = (Boi, Buis £ 11, 73)
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and

oW tr = ug, T

where Boi = By?, u, [ =
B1i = e"4. We generate u; using a pdf which is propor-
tional to the fecal culture portion of the likelihood un-

der model 3. Thus, the proposal pdf for w; is: ¥(u1)
ity <uy (1= i)
PR (1 — spr

seF)ZJ'Mﬁm (1=Fij) - I(dob; < uy < tim, — lag). Addition-
ally, (ug,us), the proposal for (fi;,7;), is generated from a
distribution which resembles the marginalized Dirichlet Pro-
cess mixture model, conditional on the n3 current values of
{(1i,,7:,) : v =1,2,...,n3} and has the following distribu-
tion

9)

= us,

)Zj:t,ij<u1 Fij se

Z_j:tiJZul Fij (1
F

¢*(dUQ7dU3 | (MiT’TiT)’T = 172a "'an3) =
o G* (dug, duz) + 002 6y, 7, y(dug, dus)
a* + ng

Under G*(-), we have 7 ~ I'(a*, f*) and, independently,
p~ N(p*,77;). Note that the marginalized Dirichlet pro-
cess mixture model, denoted w(~), assumes the same form
as equation 9 except that « = o* and G* = Gy where, un-
der Go(-), we have 7; ~ I'(%,%) and ; | 77 ~ N(m,2).
Using Gy to generate proposals often results in poor pro-
posals since the proposed precision may be quite small if a
vague proposal such as I'(0.01,0.01) is used. Since the pro-
posed value of 1 depends on a very small precision, very
large p’s may be generated resulting in numerical over-
flow.

Finally, u4, the auxiliary variable related to the slope pro-
posal by €% = By, is distributed N(f;,7;) where (f1;,7;) =
(ug,us).

Letting ¢ represent the pdf of the standard normal dis-
tribution, the proposed move from disease state 1 to state 3
is accepted with probability min(1,a13) where

13
P(Bois Bri tF, i, Tilki = 3, else)
p(ﬁé?|ki =1, else)

31
X
T3 - P(ur) - p*(ug,uz | (pa,, 7,),7 =1,2,...,n3)
1
-|J]

Vo i (us — uz))
il Boi, Buis T, Te ki = 3] - [E|E, ser, spp., ki = 3]
[i1867 s e, ki = 1] - [Flspr, ki = 1]

Xq37r(/30i> (i, 7 | (i, 7i,),r =1,2,...,m3)-

ar( (t))
oy \/77¢ V7i(log Bui — i) - ws ()
% 731
w3 - P(ur) - p*(ug, us | (e, 7,),7 = 1,2,...,n3)
x 1 e

Vuszo(y/us(ug — uz))

436 M. Norris, W. O. Johnson, and I. A. Gardner

1SilBois Briy B s Tes ki = 3] - [Fi|EE, ser, spr, ki = 3]
[SilB8) Te ki = 1] - [Filspr, ki = 1]

q3 - m3(u1) - T3 (ug, ug | (g, 7,),r = 1,...,n3)

X
qr - P(ur) - mg - P*(ug, us | (i, 7,),m =1,2,...,n3)
We obtain the last line by substitution using the follow-
ing equahtles ﬂol = (()?, t* = uy, [ = Uz, T; =

us, and By; = e% and canceling like factors.

Moving between models 2 and 3

A move from model 2 to model 3 now requires a bijec-
tion between the model 2 and model 3 parameter spaces.
The model 2 parameters are (8y;,t;), and the model 3 pa-
rameters are (8o, B1i,t), ii, 7i). Since the support of ¢ is
different under these two models, we do not map the pre-
vious model 2 value of ¢} to the proposed model 3 value of
t7. Instead, we map the t; from model 2 to a new auxiliary
variable, v, in the state 3 augmented parameter space.

Borrowing from the auxiliary variables constructed for
moves from state 1 to state 3, we formally define the bijec-
tion for a move from model 2 to 3 as follows:

Tos( (()?775:(” ur, sz, uz, us) = (Bos, Buis by, v, iy 71)
where (y; = ﬁé?, Bri=e", tF=wu, v= t*(t)
and (ﬂz,i) = (UQ,’U,?,)

The generation of all auxiliary variables except v is as
defined in the last section for moves between models 1 and
3. v is generated from the prior, ma(+) for ¢} under model 2
as shown in Equation 2.

We accept the move to model 3 along with the proposed
model 3 parameters with probability min(1,as3). We now
calculate aia3.

Q23
P(Bois Bris ty s fiss Talks = 3, else)
(5, [k = 2, else)
" 32 - ma (V)
o3 - Y(uy) - Y*(ug,us | (i, 7i,),r =1,2,...,n3)
x - 1]
Vusd(y/us(us — uz))
1S Bois Pris tf o Te, ki = 3] - [FilEE, ser, spr, ki = 3]
[Si1857 7e. ks = 2] - [t
XQSW(BOi) (i, 7i | (piys 1), = 1,2,.,m3)
ar(55)ma ()

78€FaSpF7ki:2]

\/7#25 V7i(log Bui — i) - w3(E})
« 32 '7T2(’U)
23 - ’l/}(ul) : 1/1*(U27U3 | (,ui,,.a 7_7;7'),7" = 17 2) ceey n3)
x : 1]

Vuzo(y/uz(ug — uz))



[Si|ﬁé?,e“4,u1,7'e, k; = 3] - [F;|u1, sep, spr, k; = 3]
[Si|ﬁ(()?,7'e7ki =2]- [F,-|t;k(t),sep7spp,ki = 2]
sz -3 (uy) ) 32
D) a3 - P (u1)
Y(ug,us | (i, 7,),r =1,2,...,n3)
Y*(ug, us | (i, 7i,)m = 1,2, ..,m3)

It is now a simple matter to define the proposal for a move
from model 3 to model 2 as T2_31; additionally, this proposal
is accepted with probability min(1,css) where age = a2_31.
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