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Tests of fit for the asymmetric Laplace

distribution

CoLIN CHEN*

Tests based on the empirical distribution function (EDF)
are given for the goodness-of-fit of the three-parameter
asymmetric Laplace distribution. Asymptotic distributions
of the test statistics are derived and their critical values
are computed. For finite samples, simulated critical values
of these tests are approximated by simple polynomial func-
tions of the sample size and the shape parameter. Good
matches between the asymptotic critical values and the ex-
trapolated critical values from finite samples validate the
procedure with finite samples. Power studies are reported to
compare among these tests. The Anderson-Darling statistic
A? gives the overall most powerful EDF tests followed by
the Cramér-Von Mises statistic W?2.
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1. INTRODUCTION

The asymmetric Laplace distribution becomes more and
more popular in handling financial data, which present
long tails and asymmetry. Hartley and Revankar (1974,
[8]) reported that the logarithm of underreported incomes,
property values, firm or city values, etc. follow asymmet-
ric three-parameter Laplace distributions. Kozubowski and
Podgdrski (1999, [13]) modeled interest rates using an asym-
metric Laplace distribution. Kozubowski and Podgdérski
(2001, [14]) presented an application of the asymmetric
Laplace distribution in modeling foreign currency exchange
rates. The Laplace motion, which has symmetric and asym-
metric Laplace increments, was used to model stock mar-
ket returns in Longstaff (1994, [15]) and Madan et al.
(1998, [16]).

Goodness-of-fit tests based on EDF for the two-parameter
symmetric Laplace distribution have been studied by Puig
and Stephens (2000, [17]) and Chen (2002, [3]). While the
first paper focuses more on the asymptotic distributions of
the test statistics, the second paper focuses on distributions
of the test statistics with finite samples. It was found that
the asymptotic distributions of the test statistics depend

*Research was initiated when the author was with SAS Institute Inc.
Cary, NC, USA.

on the efficient estimators used in the tests and can be ap-
proximated by a sum of weighted independent chi-square
distributions. For the finite sample case, the theoretical dis-
tributions of these test statistics do not have closed forms
and Monte Carlo simulations were used to simulate the crit-
ical values of these distributions. These critical values only
depend on the sample size. Polynomial functions of the sam-
ple size n were developed to summarize these critical values
for practical uses.

For the three-parameter asymmetric Laplace distribu-
tion, besides the location and scale parameters, there is a
shape parameter. We show that both the asymptotic dis-
tributions and the finite-sample distributions of the EDF
statistics depend on this shape parameter. The asymptotic
distribution can be approximated by a sum of weighted inde-
pendent chi-square distributions, where the weights depend
on the shape parameter. The corresponding distributions
with finite samples can be simulated using the Monte Carlo
method. Polynomial functions based on the sample size and
the shape parameter can be used to approximate the critical
values of these distributions with high accuracy.

A goodness-of-fit test of the asymmetric Laplace distri-
bution is a test of Hy: a given random sample of n values
of X comes from the distribution with a probability density
function (p.d.f.)

exp(—%h— ) z>46

0,0,k) =
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where 6 is the location parameter, o is the scale parame-

ter, and k acts as the shape parameter. The corresponding
cumulative distribution function (c.d.f.) is
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(2) F(z;0,0,K) = {

x < 0.
This distribution is referred to as AL(0, o, k) throughout the
paper. We assume the sample has been sorted in increasing
order, so 1 < xg < --- < x,. The alternate hypothesis H;
is: the sample does not come from AL(0, 0, k).

In this paper, we examine the tests based on EDF
statistics. According to the three parameters, Kotz et al.
(2001, [12]) defined seven cases for estimation. We focus on
the two most popular cases in applications of asymmetric
Laplace distributions—the case with all three parameters
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unknown and the case with both scale and shape unknown
while the location is known.

Case A. 0, 0, and k are unknown,
Case B. 0 and k are unknown, 6 is known.

EDF statistics depend on the method which is used to
estimate the unknown parameters. Only the maximum like-
lihood estimators (MLEs) are used in this study. They are
given in Section 2. In Section 3, the EDF statistics and their
critical values approximated by simple polynomial functions
based on simulated results from finite samples are given.
Asymptotic critical values are derived in Section 4 and used
to check the accuracy of the polynomial approximation in
Section 3. In Section 5, three applications of the developed
EDF tests are demonstrated. In Section 6, a power study
is presented. These EDF tests are compared based on their
power. Finally, some guidelines for using these techniques in
practice are given in Section 7.

2. MAXIMUM LIKELIHOOD ESTIMATION

The MLE of the three unknown parameters 6, u, and o2
maximizes the likelihood function of a random sample con-
sisting of observed ordered values @ = (z1,...,z,) from n
mutually independent random variables X = (X1,...,X,,),
each with probability density function (1). The scaled log-
likelihood function (divided by n) is

LInL(x;6,0,5) = —logo+ log(1£5=)

—2(ka(0) + L5(9)),

()t =z if z > 0 and 0 otherwise, and (z)” = —z if 2 <0
and 0 otherwise.

For the three-parameter asymmetric Laplace distribu-
tion, with a different parametrization, Hartley and Revankar
(1974, [8]) first derived the MLE and proposed an estima-
tion procedure. Later, Hinkley and Revankar (1977, [9]) im-
proved the estimation procedure and provided a complete
proof of consistency, efficiency, and asymptotic normality of
the MLE.

Define the function h as

(5)  h(6) =2log(a(6)% + B(6)%) + a(6)*B(0)*.

Under the parametrization in (1), Kotz et al. (2001, [12])
(Section 3.5.1.7) describes the estimation procedure as fol-
lows:

Step 1. Evaluate the n values h(z;), ¢ = 1,...,n and

choose a positive integer r < n such that

h(z,) < h(z;),i=1,...,n.
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Step 2. If r =1 or r = n then the MLE does not exist.
Step 3. If 1 < r < n, then the MLEs of €, ¢ and « are
é = Ty,
11
6 & = vV3a(d) 8@
a1l o1
ko= o) "BO),

=

(a()* + ()

~—

),

where a and § are functions as defined in (4).

When 6 is known (Case B), the MLEs of o and & are the
same as in (6) if x; < § < x,, and do not exist otherwise. The
cases of 6 < x; or > x, indicate that all sample points
fall on one side of A, which lead to inadmissible MLEs of
o =0, k = 0,00 corresponding to exponential distributions.
The cases r = 1 or 7 = n for the three-parameter MLE are
similar.

3. EDF STATISTICS AND TESTS

EDF statistics are based on the discrepancy between
distribution (2), with estimates used for 6, o, and &, and
the empirical distribution function of the sample of x val-
ues. They are usually divided into two classes: the supre-
mum and the quadratic. For the supremum class, this paper
concentrates on the well-known Kolmogorov-Smirnov statis-
tic D. For the quadratic class this paper concentrates on the
Anderson-Darling statistic A? and the Cramér-Von Mises
statistic W2. Let F' denote the distribution function in (2)
with estimated 0, o, and k. Let F,, denote the empirical
distribution function of the sample of x values. The above
mentioned statistics have the following formulae:

(7) D = sup|Fy(a) - Fla)]

3
I

n/jo {Fu(x) — F(2)} dF(z).
o [ B O
oo F(@){1 - F(2)}

Let z; = F'(2;) (2,4 =1,...,n are ordered since F' is mono-
tone and x; are ordered), then

Ar =

P
D= = max{z - UL
(10) D = mlax({D*,D; }
(11) w? = Z{zi—(2i2;1)}2+%;
(12) A% = —n—%Z[(Zi—l)ln(gi)

i

+ (2n+ 1 —2i) In{1 — z;}].



The algorithm in the previous section computes the
MLEs, 0, 6, and &, then z; = F(z;) = F(x;;0,6, &), and
these statistics can be computed.

For the finite sample, the distributions of EDF statis-
tics depend on the sample size n and the true value of
the shape parameter x, but not the location and scale
parameters because of the well-known location-scale in-
variance of these statistics (Stephens, 1986, [18]). Sim-
ulations can be done to obtain simulated critical val-
ues for these statistics. For a simple example, we simu-
lated critical values for k = {0.5,0.6,0.7,0.8,0.9,1.0} and
n = {50,100, 150,200, 250, 300,400, 500, 750, 1,000} with
100,000 replications. Critical values corresponding to the
following 11 test levels {0.5,0.25,0.20,0.15,0.10, 0.05, 0.025,
0.01,0.005,0.0025,0.001} were computed.

Plots of these critical values against sample size n and
shape parameter x show very clear patterns. Polynomial
functions of sample size n and shape parameter x can be
used to fit the logarithm of critical values. The terms and
coefficients of the fitted polynomial functions are given in
Table 1. The R2s for the three fits are 0.999347(\/nD),
0.999104(W?2), and 0.999661(A2%). To compute a critical
value, one can use the fomula:

CV o = exp(bo(a) + by (a)k + ba(a)/k + bs(a) /n),

where by (), b1 (), b2(x), and b3(«) are the tabulated values
at test level o in Table 1, n is the sample size, and  is the
shape parameter which usually needs to be estimated.

Using these polynomial functions one can also get the
limiting critical values by extrapolation (n — ©0). These
limiting critical values will be checked by the asymptotic re-
sults later, and they are highly consistent with the asymp-
totic results. An advantage of these functions is the conve-
nience with which they can be incorporated into software
to compute p-values for goodness-of-fit tests based on EDF
statistics.

(13)

4. ASYMPTOTIC THEORY OF EDF TESTS

In this section the asymptotic distributions of EDF statis-
tics are derived. The derivation follows a well known proce-
dure given by Durbin (1973, [4]). The regularity conditions
stated in his paper are fully satisfied by the three-parameter
asymmetric Laplace distribution. Under these conditions
Yn(2) = V/n{E,(2) — z}, where F,(z) is the EDF of z;,i =
1,...,n, tends to a Gaussian process y(z) as n — oo, and
the EDF statistics are functionals of this process. The mean
of y(z) is 0. To derive the distributions of these function-
als, the covariance function p(s,t) = E{y(s)y(t)} is needed.
Durbin (1973, [4]) proved that if the estimators of 8, o, and
K are efficient, then

p(s,t) = min{s,t} — st — [g(s)] Z[g(t)],

where g(s) = (g1(s),92(s),g3(s)) is the gradient of
F(x;m,n2,n3) with respect to n1, 72 and 73 evaluated at

(14)

Table 1. Coefficients (n > 50,0.5 < k < 1.0)

\/nD
Terms in the Polynomial Functions
! 1 K 1 1/n
.50 —0.821616 0.110733 0.150554 —2.341142
.75 —0.667445 0.086715 0.171068 —2.126541
.80 —0.616127 0.072783 0.171647 —2.135732
.85 —0.545402 0.048458 0.168832 —2.052918
.90 —0.457722 0.019696 0.165251 —1.954576
.95 —0.312306 —0.032479 0.153531 —1.866498
975 —0.186344 —0.076483 0.141578 —1.840812
.990 —0.009488 —0.149451 0.115461 —1.639882
995 0.079898 —0.178182 0.106752 —1.526147
.9975 0.164815 —0.206768 0.097597 —1.460131
.999 0.265690 —0.238102 0.086205 —1.468195
W2
Terms in the Polynomial Functions
! 1 K L 1/n
.50 —3.922660 0.331541 0.392890 —1.072349
.75 —3.702958 0.335491 0.495047 —1.138308
.80 —3.619466 0.315954 0.512420 —1.171374
.85 —3.510712 0.284082 0.529455 —1.077013
.90 —3.336930 0.218464 0.539065 —1.043878
.95 —3.038332 0.092836 0.537379 —0.809731
975 —2.750170 —0.035115 0.524177 —0.817428
990 —2.341382 —0.232190 0.478302 —0.498997
995 —2.090467 —0.346678 0.451768 —0.144769
9975 —1.775249 —0.507985 0.393600 0.574368
999 —1.515785 —0.615405 0.365488 0.203477
A2
Terms in the Polynomial Functions
e 1 K i 1/n
.50 —1.669934 0.200295 0.219514 —0.938923
.75 —1.537774 0.263341 0.310546 —0.839992
.80 —1.505299 0.276918 0.335902 —0.773883
.85 —1.460271 0.287451 0.364397 —0.862476
.90 —1.406131 0.302058 0.401533 —0.860105
.95 —1.288568 0.293535 0.446627 —0.933113
975 —1.138248 0.251836 0.469440 —0.929486
990 —0.922275 0.176210 0.478656 —0.630208
.995 —0.756579 0.111753 0.476150 —0.217956
9975 —0.587147 0.043333 0.464951 0.432553
999 —0.408987 —0.023838 0.461166 0.892380

r = FYs;0,0,k), 11 = 0, o = o, and 13 = k. That is,
denoting n = (n1,m2,13) = (0,0, K),

_ OF(z;m)

(15) o

gz(s) ‘m:F*l(S;Q,U,R),’I’]:(O,U,n)

for + = 1,2,3. The matrix ¥ is the inverse of the Fisher
information matrix I with entries

{In f(X5m)} O0{lnf(X;m)}
om; 377]‘

(16) I;=E
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Let ®,; and ¢, be the c.d.f. and p d.f. of the standard asym-
metric Laplace variable Z = =% respectively, i.e.,

l—ﬁexp(—\/i/iz) z>0
a1 @z ={ et
T exp(=2) z <0,
(1) ) V2K exp(—v2kz) z>0
pu(2) = 77—
" I exp(%z) z <0,
sos = F(x;0,0,k) = ®.(2), and z = &, '(s). As functions
of s,
OF (x;m)
gls) =
8771-
_ 0%(2) 02
N 0z O
— (@) Z iz
K 8777]7
0P, (2
gs(s) = gﬁ()
V2 ]2 (s)]
= (01 £ :
ou @0 (g + 22 O
_ -1 1/ 1 _&—1 V2
So, g(s) = wa(®(s))oT (=1, =P (s),0(r +
W))'. The Fisher information matrix I can be
computed directly:
% 7? 1+2)<,2 0
2
(19) I= _g 1+2n2 /{12 + (1+411<52)2 crlk; 1+:2
0 _ 1 1=k’ L
ok 14+K2 2
and
=
o2 Y25(1 + k2) V2o (] k2)
Y25(1+ K?) Al 21— k)1 +k?)
i%u—n) £0-r)+r?) gy

Substitute g(s) and X = I ! into the covariance function
p(s,t), to get

p(s;t)
_(% + BH(Sv

= min{s,t} — st

(20) )en (@1 (5) (@, (1)),

where
By (s,t) =
1+ %)

( <t<1
1+5)2
0

1Jr2<s<1and
OSSS 1_;’_52

1+2
andOStSl_MQ

otherwise.

It is immediately seen that p(s,t) does not depend on 6,
o, but on k.
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When 6 is known, similarly we have the gradient of
Fw50,1), gos(s) = nl®1(5)o (=0 (s), 0(7¥2 +

[2c (9)] (S)I ))'. The Fisher information matrix is
L _ 1 1=k’
2 1 2
(21) lo = [ 101—;-@2 1 o +: ]
T ok 1+k2 w2 + (14k2)2
and
1 4 1 1-x2
22 I—l _ 02(1 + "{’2)2 2 + (1+/€2)2 oK 1+:2
( ) o,k T 1 1—k2 1
ok 1+k2 o2

Substitute go . (s) and ¥ = I} into the covariance function
p(s;t), to get

p1(s,t) = min{s,t} — st
—(1 + Di(5,1) 0 (@1 (5)) 0 (P

where D, (s,t) can be computed from:

(23) 1)),

F(L+ 55) @ ()2 (1), 5,8 € (0, 1257,

The EDF statistics W?2 and A2 tend to limiting statistics
W2 and A2, as n — oo, respectively. W2 and A2 are
functionals of the limiting process y(z):

1
w2 / y*(2)dz
0

b yA()
/Ozl—z)dz'

The distributions of the above statistics are sums of
weighted independent y3-variables, > .- w;x?. The weights
w; (in descending order) are the eigenvalues of the system:

A2, =

1
(24) wfi(s) = [ Ao
where f; are the normalized eigenfunctions and ~v(s,t) =
p(s,t) for W2 and y(s,t) = p(s,t)/{st(1 —s)(1 —t)}= for
A2_. Equation (24) might be solved by numerical meth-
ods. Once the weights are known, the critical points of
the distributions can be computed by the method of Imhof
(1961, [10]). Table 2 and Table 3 show the asymptotic crit-
ical values of W2 computed with x = 0.1 to 1.0 by 0.1 for



Table 2. Asymptotic Critical Values of W? for Case A

Table 3. Asymptotic Critical Values of W? for Case B

K

K

o 0.1 0.2 0.3 0.4 0.5 o} 0.1 0.2 0.3 0.4 0.5
.50 0.073049  0.068696  0.063049 0.056893 0.051261 .50 0.073426  0.071422  0.068593  0.065496  0.062620
75 0.114652  0.107725 0.098581 0.088269 0.078297 .75 0.115224  0.112039 0.107449 0.102271  0.097267
.80 0.128413  0.120635 0.110334 0.098646 0.087233 .80 0.129050  0.125475 0.120307 0.114446 0.108746
.85 0.146521  0.137625 0.125801 0.112302 0.098992 .85 0.147245  0.143157 0.137229 0.130476  0.123867
.90 0.172754  0.162238  0.148207 0.132086 0.116026 .90 0.173604 0.168775 0.161751 0.153713  0.145804
.95 0.219391  0.205994 0.188041 0.167256 0.146310 .95 0.220464 0.214321 0.205356  0.195053  0.184863
975 0.267932  0.251538  0.229503  0.203864 0.177832 975  0.269239 0.261728  0.250749 0.238104  0.225563
990  0.334314 0.313821  0.286203  0.253928  0.220943 .990  0.335941 0.326562 0.312832 0.296989  0.281245
995 0.385769  0.362098  0.330153  0.292733  0.254361 .995  0.387643 0.376815 0.360953  0.342632  0.324405
9975 0.438014  0.411117  0.374778  0.332135  0.288292 .9975 0.440140 0.427840 0.409813 0.388975  0.368225
999  0.508002  0.476782  0.434558  0.384918  0.333747 .999  0.510465 0.496194 0.475265 0.451053 0.426919
K K
o 0.6 0.7 0.8 0.9 1.0 o} 0.6 0.7 0.8 0.9 1.0
.50 0.046872  0.043944 0.042238 0.041389 0.041154 .50 0.060275  0.058577  0.057495 0.056927  0.056761
75 0.069821  0.063585 0.059731 0.057790 0.057243 .75 0.092994  0.089746  0.087587  0.086423  0.086078
.80 0.077371  0.069929  0.065223 0.062832 0.062155 .80 0.103840 0.100081  0.097563  0.096197  0.095790
.85 0.087299  0.078229 0.072318 0.069270 0.068403 .85 0.118139  0.113717 0.110734 0.109106 0.108621
.90 0.101678  0.090204 0.082415 0.078294 0.077109 .90 0.138904 0.133542  0.129902 0.127907 0.127310
.95 0.127242  0.111451 0.100070  0.093725 0.091859 .95 0.175924  0.168937 0.164173 0.161551  0.160766
975 0.153857  0.133572  0.118285  0.109271 0.106538 .975  0.214531 0.205888  0.199982  0.196729 0.195754
990  0.190263  0.163853  0.143151  0.130073  0.125907 .990  0.267366  0.256472  0.249017  0.244907 0.243674
995 0.218487  0.187342  0.162449  0.146010 0.140550 .995  0.308319 0.295679 0.287023 0.282247 0.280815
9975 0.247146  0.211201  0.182071  0.162113  0.155191 .9975 0.349895 0.335480 0.325600 0.320147 0.318511
999 0.285542  0.243173  0.208392  0.183633  0.174543 .999  0.405580 0.388782 0.377261 0.370898  0.368989

Case A and Case B respectively. When computing the quan-
tiles of >°°° w;x? with the method of Imhof (1961, [10]),
the sum of the first 200 terms was used as an approxima-
tion, i.e. Zz 1 Wi X2, to make sure the computed asymptotic
critical Values have sufficient precision.

The following facts show that the asymptotic distribu-
tions of W?(x) and W2(1) are the same. The same is true
with A%(k) and A%(+). So Table 2 and Table 3 can also be
used for s € (1, 10).

Lemma 1. For any k > 0, s € (0,1), and ¢t € (0,1) the
covariance functions p(s,t) and p1(s,t) satisfy:

1
p(—;l—s,l—t)
K
1
p1<71571t>
K

Proof. For s € (0,1) and ¢ € (0,1), let po(s,t)
st. From (20) and (23),

(25) p(rss,t) =

(26) pr(k;s,t) =

= min(s,t) —

ol 5.0)= o5, 0) = (5 + Bulos0)n (05D (210

p1(k;s,t)=po(s,t) — (i + D, (s, t)) Or ((I);l(s))go,{ ((I);l(t)).

Bi(1
(s) =

—s,1—1),

Direct calculation shows that B (s,t) =
. (2111

DK(Svt) :Dl(l_sal_ ) and 90&(

(2%
».

s)). Since po(s,t) = po(1 — s,1 —t), we have (25) and (26)
by plugging in these equations. O

Lemma 2. For both Case A and B, v(k;s,t) and 'y(%; 8, 1)
have same eigenvalues as defined in (24). So, for any k > 0,
The asymptotic distributions of W?(k) and W?(L) are the
same. The same is true with A%(k) and A%(L).

Proof. For W2, y(k;s,t) = p(r; s,t), s0 (k3 s,t) = v(;:1~
s,1 —1) from Lemma 1. Let u =1—s and v = 1 — ¢, from
(24) we have

1
wifi(l—u) = / (s 5,1) fu(H)dt

L
/O'y(;;l—s,l—t>fi(t)dt

L
/Ow(;;uvv)fia—v)dv.

Again, by the definition (24), w; is also an eigenvalue of
v(£;u,v) with the eigenfunction f;(1 — u). So, v(k;s,t)
and 7(%; s,t) have same eigenvalues. Since the asymptotic
distribution of W?2(k) is the sum of weighted independent
X3-variables, > °° w;x?, thus the asymptotic distributions
of W2(k) and W?(1) are the same. For A%, v(k;s,t) =
v(1;1 — 5,1 — 1), so the same is true with A%*(k) and
A%(1). O
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Table 4. Asymptotic and Simulated (by Extrapolation)
Critical Values for W2

«@ Asymptotic Extrapolation Relative Diff. x100
K=.
.50 0.05126 0.05119 0.1365
.75 0.07829 0.07837 0.1021
.80 0.08723 0.08735 0.1375
.85 0.09899 0.09918 0.1919
.90 0.11602 0.11641 0.3361
.95 0.14631 0.14691 0.4100
975 0.17783 0.17903 0.6748
.990 0.22094 0.22282 0.8509
.995 0.25436 0.25655 0.8609
.9975 0.28829 0.28896 0.2324
.999 0.33374 0.33544 0.5093
K=.7
.50 0.04394 0.04370 0.5461
.75 0.06358 0.06316 0.6605
.80 0.06992 0.06943 0.7008
.85 0.07822 0.07757 0.8309
.90 0.09020 0.08937 0.9201
.95 0.11145 0.11009 1.2202
975 0.13357 0.13176 1.3550
.990 0.16385 0.16184 1.2267
.995 0.18734 0.18491 1.2971
9975 0.21120 0.20847 1.2926
.999 0.24317 0.24069 1.0198
k=1
.50 0.04115 0.04079 0.8748
.75 0.05724 0.05650 1.2928
.80 0.06215 0.06128 1.3998
.85 0.06840 0.06732 1.5789
.90 0.07710 0.07574 1.7639
.95 0.09185 0.08991 2.1121
.975 0.10653 0.10415 2.2341
.990 0.12590 0.12298 2.3193
.995 0.14055 0.13731 2.3052
9975 0.15519 0.15121 2.5645
.999 0.17454 0.17110 1.9708

Table 4 shows the asymptotic critical values and criti-
cal values computed by extrapolating the simulated critical
values in Section 3 to n = oo. It is shown that the relative
differences are smaller than 3% for all critical values. Here
we use three values for x. This is true for all x € [0.1,10.0],
which covers most cases in practice.

One might wonder what happens for large and small «.
In fact, the asymptotic covariance function p(s,t) becomes
stable for larger or small k. The following limits can be easily
derived from (20) and (23) for both Case A and Case B:

p(K; 8,t)x—0o = min{s, t} — st
—(1=9)(1—1t)log(1 — s)log(l—1t),

p(K; 8,t) k00 = min{s,t} — st
—stlog(s)log(t),

(27)

(28)
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p1(K;8,t) k0 = min{s, t} — st
29) (1= $)(1 — 1) log(1 — 5)log(1 — 1),
(30) p1(K; 8, t) k0o = min{s, t} — st

—stlog(s)log(t),

which are finite functions of s and ¢. This convergence means
that as Kk = 0 or kK — oo, the EDF statistics have stable
critical values.

5. APPLICATIONS

In this section, we apply the tests developed in the pre-
vious sections on some popularly studied financial factors
on portfolio returns. Fama and French (1993 [5], 1995 [6],
1996 [7]) proposed factors based on zero-investment portfo-
lios to explain asset portfolio pricing. The SMB factor rep-
resents the return from a zero-investment portfolio which is
long on small stocks and short on large stocks. The HML
factor represents the return from a zero-investment portfo-
lio which is long on high book-to-market stocks and short
on low book-to-market stocks. The UMD factor represents
the return from a zero-investment portfolio which is long on
high prior return stocks and short on low prior return stocks.
The MKTEK factor represents a broad market portfolio re-
turn in excess of the risk-free (RF) return. Fama and French
(1993 [5], 1995 [6], 1996 [7]) showed that these facotrs catch
returns for most portfolios.

It has been noticed that these factors exhibit large vari-
ability over time. It is interesting to see what distribution
these factors follow if ignoring the time dependence. We take
the monthly data from January 2000 to December 2007. The
selection of the data is somewhat ad hoc by only consider-
ing a middle sample size close to 100. Figures 1, 2, 3, 4, 5
show histograms of the 4 factors and the risk-free return
(RF) in the same period. Fitted three-parameter asymmet-
ric Laplace distribution using the MLE method in Section 2
is super-imposed on each histogram. Test statistics and cor-
responding p-values are shown in Table 5. Except the risk-
free return, all tests of an asymmetric Laplace distribu-
tion for the 4 factors accept the null hypothesis with high
p-values.

These results partially confirm a popular observation that
market return related variables have high frequency around
some median values, sharp decreasing frequency around
these median values, and higher frequency for extreme val-
ues than the normal distribution. Among the 4 factors ac-
cepting the asymmetric Laplace null hypotheses, MKTEX
and UMD show asymmetry (skewed on the left), while the
other two look more symmetric. These observations are con-
sistent with the conclusion by Bakshi, Madan, and Panay-
otov (2010, [2]) that market crashes are more severe in in-
tensity than rallies, and have higher arrival rates. The risk-
free return rejects the null hypotheses with high significance.
The histogram in Figure 4 shows a pattern of double peaks,
which would violate the steep unique peak with the Laplace
distribution.
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6. POWER STUDY

The power of the three EDF tests has been examined by
Monte Carlo studies. Random samples of size n were taken
from a broad range of distributions; these include such dis-
tributions as the 7" and gamma, which are used in the lit-
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Figure 3. Three-parameter Asymmetric Laplace Fit of hml.
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Figure 4. Three-parameter Asymmetric Laplace Fit of rf.

erature as practical alternatives to the Laplace distribution
as a model. For the T alternative, T' distributions with de-
grees of freedom of 2 and 4, T(2) and T'(4) are used. For
the gamma alternative, the gamma distribution with shape
5 and scale 1 (G(5,1)) is used.
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Figure 5. Three-parameter Asymmetric Laplace Fit of umd.

The lognormal distribution and two families of trans-
formed distributions, S, and Sp, are used. These families
belong to the Johnson system, which are distributions based
on a transformed normal variate,

(31) Z =¢+0T(X),

where Z ~ N(0,1), £ and ¢ are location and scale, and T is
a transformation of the variate X. See Chapter 12 of John-
son, Kotz, and Balakrishnan (1994, [11]) for details. Five
distributions were selected from these two families S, (&, 0)
and Sp(&, 6) with different combinations of £ and § as alter-
natives in our power study. All these alternatives and some
other commonly used alternatives are described in Table 6.

These distributions were then tested against the three-
parameter Laplace distribution using the three EDF statis-
tics. Table 7 shows the rounded percentage of 10,000 samples
declared significant when the test level is a = 0.1.

For alternatives with bounded support, Be(2, 3), U(0, 1),
and the two distributions in the .S, family, the power of EDF
tests depends on the shape of the alternatives. The two S
distributions are a little more similar in shape to the Laplace
distribution. Table 7 shows that EDF tests have lower
power with these two alternatives. For alternatives with un-
bounded support, the power of EDF tests depends heav-
ily on the tail behavior of the alternatives. EDF tests have
higher power for alternatives with lighter tails, such as the
normal and lognormal distributions. The three S, distribu-
tions and the two T distributions have heavier tails. Among
them, T'(4) has the heaviest tail and also sharpest peak in
the center, thus the lowest power. One interesting case is
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Table 5. Goodness-of-Fit Tests for Asymmetric Laplace

Distribution
Test Statistic p-Value
mktex

Kolmogorov-Smirnov D 0.6965 Pr >D 0.197
Cramér-von Mises W-Sq 0.0644 Pr > W-Sq 0.203
Anderson-Darling A-Sq 0.3903 Pr > A-Sq 0.245

smb
Kolmogorov-Smirnov D 0.3446 Pr > D >0.5
Cramér-von Mises W-Sq 0.0195 Pr > W-Sq >0.5
Anderson-Darling A-Sq 0.2342 Pr > A-Sq >0.5

hml
Kolmogorov-Smirnov D 0.5725 Pr>D 0.475
Cramér-von Mises W-Sq 0.0275 Pr > W-Sq >0.5
Anderson-Darling A-Sq 0.2419 Pr> A-Sq >0.5

rf

Kolmogorov-Smirnov D 1.8262 Pr>D <0.001
Cramér-von Mises W-Sq 0.5915 Pr > W-Sq <0.001
Anderson-Darling A-Sq 3.7324 Pr> A-Sq <0.001

umd
Kolmogorov-Smirnov D 0.6258 Pr>D 0.325
Cramér-von Mises W-Sq 0.0583 Pr > W-Sq 0.225
Anderson-Darling A-Sq 0.3470 Pr > A-Sq 0.344

Table 6. Alternative Distributions
N(0,1) the standard normal
LN(0,1) lognormal with location 0 and scale 1
T(2) t with 2 degrees
T(4) t with 4 degrees
G(5,1) gamma with shape 5 and scale 1
Be(2,3) beta with shape 2 and shape 3
U(0,1) standard uniform
S (0,2) Sy, with € =0 and § = 2
Su(1,2) Sy with § =1 and § =2
Su(1,1) Sywithé=1and §d=1
Sy(0,2) Sy with € =0 and § = 2
Sy(1,2) Sy with € =1 and § = 2

the gamma alternative G(5,1). It has a similar tail as the
Laplace distribution; however, its peak is much less sharper
than the Laplace distribution, thus it yields a higher power.

One interesting observation with the three S, distribu-
tions is that Table 7 shows that the Anderson-Darling statis-
tic A2 has lower power, especially with S, (1,1) and smaller
samples, while it dominates the other two for all other al-
ternatives.



Table 7. Power Comparison

Sample Size

n 35 50 75 100 125 150 200
N(0,1)
D 24 33 48 61 71 79 89
W2 26 39 59 75 85 91 97
A% 25 39 61 76 86 92 98
LN(0,.1)
D 20 32 44 57 67 76 87
w? 23 38 56 71 81 89 96
A? 24 40 58 74 84 91 97
T(2)
D 31 3 44 49 54 59 66
W2 32 40 47 54 60 66 74
A% 34 43 52 60 66 72 80
T(4)
D 14 16 19 22 25 29 35
w? 13 17 21 25 29 34 42
A? 13 16 21 25 30 34 42
G(5,1)
D 20 25 34 44 54 64 7
w? 22 29 41 55 66 7 89
A 25 34 49 63 74 84 93
Be(2,3)
D 35 48 68 82 91 95 99
wW? 43 62 84 95 98 99 99
A? 48 70 91 98 99 99 99
U(0,1)
D 67 78 95 99 99 100 100
w2 8 94 99 99 100 100 100
A% 91 96 100 100 100 100 100
S.(0,2)
D 17 21 28 37 44 50 62
w2 17 22 32 43 53 61 74
A2 16 20 30 41 51 59 73
S.(1,2)
D 20 25 34 42 49 56 67
w? 19 27 37 48 56 64 76
A% 17 23 33 44 52 61 73
S.(1,1)
D 42 47 53 58 63 68 75
W?2 42 47 53 60 65 70 7
A% 37 39 44 52 57 63 71
Sb(0,2)
D 29 41 58 73 82 89 96
w? 32 50 73 87 93 97 99
A? 33 53 76 90 95 98 99
Sp(1,2)

D 28 37 53 67 79 85 94
w? 31 45 67 82 91 96 99
A% 32 49 82 87 94 97 99

7. CONCLUSION AND GUIDELINES

Goodness-of-fit tests for the three-parameter Laplace dis-
tribution have been developed based on the EDF statistics
v/nD, W2, and A%. Asymptotic critical values for these test
statistics are derived. For finite samples, these statistics are

computed with estimated parameters based on MLE. The
MLE is reliable and efficient. It can be used to simulate
the critical values for these statistics in finite sample cases.
These simulated critical values match asymptotic critical
values computed for the two quadratic EDF statistics 1?2
and A? with sufficient accuracy. An application of these tests
has been demonstrated and their power has been studied.

To efficiently summarize and use these simulated critical
values for finite samples, simple polynomial approximations
have been developed. This approximation is better than or
as good as the traditional linear interpolation, although an
estimated shape parameter must be used in those polyno-
mials. One conservative suggestion is to use an estimated
confidence interval for the shape parameter instead of a sin-
gle value. By using the two end points of this interval, one
can get intervals of the critical values with these polynomi-
als. p-values can be computed according to whether EDF
statistics fall into these intervals.

Since the MLE of the three-parameter Laplace distribu-
tion is not regular, here are some guidelines on how to use
these proposed EDF tests in practice:

1. The sample size should not be less than 35. Although the
MLE procedure may still find a solution for data with
less than 35 observations, the power of the EDF tests
may be too low.

2. The estimated shape parameter should be within the
range [0.1,10.0]. This range should cover all the cases
in practice.

3. To be conservative, use an estimated interval of the shape
parameter to compute p-values.
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