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Point and exact interval estimation
for the generalized Pareto distribution
with small samples
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In extreme value theory, the generalized Pareto distri-
bution (GPD) is used to model another distribution on the
tail. Since only a proportion of the data is used, the effective
data size for fitting GPD is often small. As statistical prop-
erties, especially tail behaviour, of GPD largely depend on
its shape parameter, performances of most existing meth-
ods are inconsistent when the value of the shape parame-
ter varies. In this paper, we introduce a new method to fit
GPD that improves the performance over existing methods
for very small samples, in terms of bias and mean square
error as well as confidence intervals. The numerical study in
this paper also shows that better performance on parameter
estimation does not necessarily lead to better performance
on quantile estimation.
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1. INTRODUCTION

The generalized Pareto distribution (GPD) has recently
received a great deal of attention in the literature because
of its application in the extreme value theory (EVT) (see
[4], [28], [29] and [15], amongst others). The development
of EVT is motivated by the need to measure extreme tail
probabilities and tail quantiles, which, in fields such as the
research of disasters, nature phenomena, insurance and fi-
nance, are often the major concern of risk-related problems.
The essential idea of EVT is, as stated in [8], estimating ex-
treme quantiles and probabilities by fitting models to a set
of data using only the data on the tail. Consequently, since
only a proportion of original data is used, small sample size
is often confronted in tail modeling. Hence, we emphasize
the aspect of small samples on fitting GPD in this paper.

Practically, GPD is often used to model exceedances over
certain thresholds in the EVT. This method of modelling
exceedances over high thresholds is often referred to as the
peak over threshold (POT) method. Assume that FY (y) is
the distribution function of random variable Y and that, the
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definition of exceedances is the values of Y above a thresh-
old u, namely X = Y − u. In the EVT, instead of assessing
FY (y) directly, we are more interested in estimating the dis-
tribution of the exceedances

Fu(x) = Pr{Y − u ≤ x|Y ≥ u}, 0 ≤ x ≤ yF − u,

where x is the excess and yF ≤ ∞ denotes the right end
points of FY . It follows that

(1) Fu(x) =
F (u+ x)− F (u)

1− F (u)
=

FY (y)− F (u)

1− F (u)
.

[2] along with [17] showed that, when u is large, for a
large class of underlying distribution functions, the condi-
tional excess distribution function Fu is well approximated
by GPD:

(2) Fu(x) ≈ FGPD(x;σ, ξ), as u → ∞,

where FGPD(x;σ, ξ) is the cumulative distribution function

(3) FGPD(x;σ, ξ) =

{
1− (1 + ξ

σx)
−1/ξ if ξ �= 0

1− e−x/σ if ξ = 0

for x ∈ [0, yF − u) if ξ ≥ 0 and x ∈ [0,−σ
ξ ] if ξ < 0, where

ξ is the shape parameter and σ is the scale parameter. If
ξ > 0 the GPD is heavy-tailed on the right side. If ξ =
0 the distribution reduces to the exponential distribution
and the right tail decays exponentially. If −1 ≤ ξ < 0, the
distribution has finite right end-points, and if ξ ≤ −0.5,
the finite right end-points yF > 0. These are sometimes
referred as ‘short-tailed’. Furthermore, when ξ = −1, the
GPD actually becomes a uniform U(0, σ) distribution. The
kth central moment of the GPD exists only if ξ < 1/k.
For example, when ξ ≥ 1/2, var(X) = +∞ as the second
central moment no longer exists. For more details about the
properties of GPD and its parameters see [14].

From (3), when ξ �= 0, the p-th quantile of GPD is given
by

(4) QGPD(p;σ, ξ) = F−1
GPD(p;σ, ξ) =

σ

ξ

(
(1− p)−ξ − 1

)
.

To simplify the notations, we will always assume that ξ �= 0
and write Q(p) = QGPD(p;σ, ξ) henceforth.
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In practice, the final goal of employing the EVT is still
estimating extreme probabilities or quantiles of the original
distribution of Y . Hence, by substituting Fu in (1) with the
GPD and approximating F (u) by (N − n)/N , where N is
the total number of observations and n is the number of
observations over the threshold u, the original distribution
FY (y) is expressed in terms of GPD parameters as

(5) FY (y) = 1− n

N

(
1 +

ξ

σ
(y − u)

)−1/ξ

.

The p∗-th quantile of Y , F−1
Y (p∗) is then given by inverting

(5):

(6) F−1
Y (p∗) = u+

σ

ξ

((
N

n
(1− p∗)

)−ξ

− 1

)
.

Comparing (4) and (6) we will obtain that

(7) F−1
Y (p∗) = u+Q

(
N

n
p∗
)
.

From (6) when p∗ is very extreme, instead of estimating the
p∗-th quantile of FY , which could be very difficult, one could
estimate less-extreme (Nn p∗)-th quantiles of FGPD, assuming
N 	 n.

1.1 A brief review of existing methods

For fitting the GPD, the typical method is the maximum
likelihood estimation (MLE) ([6], [20], [21], [14], [12], etc.
among others). However, Hosking and Wallis suggested that
unless sample size is equal to or larger than to 500, the
method of moment (MOM) and the probability weighted
moment (PWM) are more reliable for ξ ∈ (−0.5, 0.5). Then
[28] proposed the likelihood moment estimation (LME) for
fitting the GPD. And [29] also suggested an alternative
method (referred as Z&S henceforth) similar to the Bayesian
method for that aim. The Z&S method is fast to imple-
ment and their simulation tests show that the method is
stable when ξ is in the domain of [−0.5, 1] for sample size
n ∈ [50, 500], and generally outperforms over MLE, MOM,
PWM and LME in most cases.

Compared with point estimation, confidence interval (CI)
estimation for the GPD has drawn less attention in the ex-
isting literature, due to the difficulty of constructing such
interval estimates explicitly. The common strategy is finding
approximated confidence intervals with coverage probabili-
ties equal to the target confidence level, theoretically. One
well-known approach is approximation based on the asymp-
totic normal distribution of estimates. The (1 − β)% CI of
parameter θ is constructed in the form of

θ̂ − z1−β/2

√
v̂(θ̂) < θ < θ̂ + z1−β/2

√
v̂(θ̂),

where θ̂ is the estimator, zτ is the τ -th quantile of the stan-
dard normal distribution, and v̂(θ̂) is the asymptotic vari-

ance of θ̂. Furthermore, the asymptotic variance can be ob-
tained via either v̂(θ̂) = 1/I(θ̂) or v̂(θ̂) = 1/J(θ̂), where I(θ̂)

and J(θ̂) are the expected and the observed Fisher informa-
tion, respectively. The asymptotic variance derived from the
expected Fisher information can be found in [21] (for MLE),
[14] (for MOM and PWM), and [28] (for LME), respectively.
Example of CI estimation based on observed information
can be found in [7] amongst others. CI for quantile esti-
mators can also be obtained by using asymptotic variance
via the Delta method ([18]). However, CI estimates based
on asymptotic theory may require stronger conditions in as-
sumption and suffer from small samples. For small samples,
profile log-likelihood approach may be preferred (e.g., [24],
[7]). The profile log-likelihood approach is based on the fact

that the relative likelihood L(θ)/L(θ̂) follows the χ2 dis-
tribution with 1 degree of freedom. [11] gave examples of
profile log-likelihood CI estimates for some financial criteria
based on the GPD estimation. [23] compared sampling based
approaches (i.e. jackknife and bootstrap) with profile likeli-
hood approaches for heavy-tailed GPD and found the later
is better for both small and large samples. In this paper,
we adapt the inference in Wang, Yu and Jones (2010) and
propose an approach that does not depend on asymptotic
normality for calculating the exact and generalized confi-
dence intervals for the GPD.

1.2 Challenging issues

Since in the POT approach only a proportion of the orig-
inal sample is used for fitting the GPD, the sample size of
the excess, n, is often small. Generally, the sample size n
for modelling the GPD is determined by threshold u. Ac-
cording to (2), a high threshold generally provides better
approximation of the data on the tail with smaller bias.
However, higher u also leads to smaller sample size n, which
may increase estimation variance and bring other problems
to the GPD estimation. Furthermore, for some estimators,
their asymptotic properties based on large samples may not
be valid when n is too small. Consequently, interval esti-
mations that are based on asymptotic theory or bootstrap
approaches become less efficient and less accurate. In prac-
tice the GPD fitting is often confronted with small samples,
although definitions of ‘small’ and ‘large’ samples are some-
how vague. We illustrate this via a simple example: in fi-
nance, a typical one-year dataset of daily returns (or losses)
normally consists of around 250 samples (as there are around
250 trading days per year), which might not be very large
but at least not ‘small’. If 10% data on the tail is selected
from the original dataset, there are only 25 samples available
for fitting the GPD; even if 30% of data is selected there are
still only 75 samples. It is possible to increase the sample
size by using a longer sampling period, but it is not always
wise as older data could be out-of-date. Data from other
fields of research might contain larger samples, nonetheless,
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as not the entire dataset is used, the effective sample size
for estimating the GPD is often much smaller. In this paper,
we focus on sample size n ≤ 50.

As described in the previous section, some of the dis-
tributional properties of the GPD vary distinctively as the
value of the shape parameter ξ changes, an ideal estimator
for GPD should be reliable and consistent regardless of its
‘shape’, namely, the tail behaviour of the underlying dis-
tribution. However, performance of some existing methods
are heavily impacted by the value of ξ, or even become in-
valid.

For example, the MLE method does not exist for ξ < −1
since it can have no local maximum. The MOM estimates
do not exist for ξ ≥ 0.5 and the PWM estimates do not
exist for ξ ≥ 1, since the second and first moments of the
GPD become infinite in each case, respectively. Although
[14] suggested that it should be sufficient to restrict to
−0.5 < ξ < 0.5 when considering reliability, [4] made a
good line of argument that a good estimator for the GPD
should cover a wider domain of ξ for both practical and
theoretical reasons. The EPM method (elemental percentile
method) they proposed for parameter estimations is reli-
able under a wider domain of ξ (from –2 to 2), but it does
not outperform classic methods as long as the value of ξ
falls into (−0.5, 0.5). The LME method proposed by [28]
has high asymptotic efficiency when ξ is close to its opti-
mal value. However, the LME is valid only if ξ > −0.5.
Also, some methods such as MOM and PWM sometimes
conflict with data (see, e.g., [4], [9]). That is, for ξ < 0, the
supported domain of x is 0 < x < −σ/ξ, however, invalid
estimation of σ and ξ may be given so that some observa-
tions can be out of this domain. This is referred to as a
non-feasible solution or an invalid estimation issue in the
literature.

Although some methods may be preferred for certain
ranges of ξ, it is typical that the tail behaviour of the un-
derlying data is unknown prior to modelling in real-world
practice. In this paper, we elaborate on the reliability of dif-
ferent methods, with regard to ξ ∈ (−1, 1), including the
method we proposed.

In this paper, the proposed new approach to deal with
these challenges in fitting GPD may not be always the best
in all scenarios, but it is indeed the most versatile with over-
all the smallest bias for parameter estimations under very
small sample size. The new method based confidence inter-
val estimation is consistently reliable for moderately small
sample sizes. Details of this method are described in Sec-
tion 2. Results and discussions of simulation tests for dif-
ferent methods and for CI estimations are presented in Sec-
tion 3. It is noticed that better performance on parame-
ter estimation does not necessarily lead to better perfor-
mance in estimating higher upper quantiles of the GPD.
An example using real-world data will be discussed in Sec-
tion 4, and finally summary and conclusions in the last sec-
tion.

2. EXACT INFERENCE FOR THE GPD

2.1 Point estimation

Let {Xi}ni=1 be the sample from the GPD, and let X1:n ≤
X2:n ≤ ... ≤ Xn:n be the associated order statistics from the
GPD. Re-parametrize the GPD with α = ξ/σ, for ξ �= 0, the
proposed estimator for α is then given via some transforma-
tion from the c.d.f. (3) as follows. First, let

V(i) = − log (1− FGPD(Xi:n;α, ξ))

=
1

ξ
log (1 + αXi:n) , i = 1, 2, ..., n

be a sequence of ascending order statistics of samples from
the standard exponential distribution ([25]). V(i) are not in-
dependent, so let

Wi = (n− i+ 1)(V(i) − V(i−1)), i = 1, 2, ..., n;

where V(0) = 0, then W1, ...,Wn are random variables from
independent standard exponential distributions (see [22] as
an example). Then for i = 1, 2, ..., n let

Di =
i∑

j=1

Wj

(8)

=
1

ξ

( i∑
j=1

log (1 + αXj:n) + (n− i) log (1 + αXi:n)

)
,

and

Ui:n =
Di

Dn

(9)

=

∑i
j=1 log (1 + αXj:n) + (n− i) log (1 + αXi:n)∑n

j=1 log (1 + αXj:n)
,

{Ui:n}n−1
i=1 can be equivalently regarded as an induced order

statistics of an i.i.d. sample which has a standard uniform
U(0, 1) distribution ([22]). Note that Ui:n is also an ancillary
statistic that only depends on parameter α. The mean of
{Ui:n}n−1

i=1 converges with probability one to 1/2. Hence α̂ is
determined by solving

(10) Ū(α) =
1

2
,

where

Ū(α) =
1

n− 1

n−1∑
i=1

Ui:n.

Since V(i) can be seen as order statistics from standard

exponential distribution, it has sample mean 1
n

∑n
i=1 V(i) =
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1. This leads to an estimator for the shape parameter ξ,
given estimator α̂:

(11) ξ̂ =
1

n

n∑
i=1

log(1 + α̂Xi).

Note that (11) is identical with the log-likelihood function
for ξ as in MLE. The method we proposed is referred as
NEW henceforth.

We notice that the idea behind (10) is similar to [15],
which assume that the probabilities of the GPD given data
(X1, X2, ..., Xn) can also be regarded as uniformly U(0, 1)
distributed, and then the estimator α̂ of α can be obtained
by solving the equation

1

n

n∑
i=1

FGPD(Xi; α̂, ξ̂) =
1

2
,

along with the profile log-likelihood function (11). The es-
sential difference between NEW method and the approach
in Hüsler et. al is that the later requires to solve ξ̂ and α̂
simultaneously. For the NEW method, α̂ can be obtained
directly, since Ui:n is an ancillary statistic that does not de-
pend on any parameters other than α. This provides the
flexibility of employing different method of estimating the
shape parameter ξ, given α̂. Through simulations we found
that the profile log-likelihood estimate for ξ̂ as shown in (11)
is the most accurate one.

Thus, our estimators for the GPD parameters are finally
given by combining (10) and (11). And the pth quantile of

the GPD is estimated by either Q̂(p; σ̂, ξ̂) or Q̂(p; α̂, ξ̂), using
the inverse distribution function as shown in (4).

2.2 Exact and generalized confidence
intervals estimation

Confidence interval estimation for α and ξ can be derived
from (10). Note that the mean of n independent uniformly
U(0, 1) distributed random variables follows the Bates dis-
tribution ([3]), which has the p.d.f. as

fX(x;n) =

n

2 (n− 1)!

n∑
k=0

(−1)
k

(
n

k

)
(nx− k)

n−1
sgn(nx− k),

for x ∈ (0, 1), and

sgn (nx− k) =

⎧⎪⎨
⎪⎩
−1 nx < k

0 nx = k

1 nx > k.

Recall from the last section, given X = x, it is obvious
that the sample distribution of Ū(α) is the Bates distribu-
tion with size n− 1 (noted as Ū(α) ∼ Bates(n− 1)). Let μL

and μU be lower and upper boundaries such that the prob-
ability of the value of Ū(α) falls between these boundaries
are 1− β, i.e.

P(μL < Ū(α) < μU ) = 1− β.

Let Bates−1
τ (n) represent the τ -th quantile of the Bates dis-

tribution with sample size n, then μL = Bates−1
β/2(n−1) and

μU = Bates−1
1−β/2(n−1), respectively. Since Ū(α) is an pivot

quantity and monotonic, it is straightforward to show that

P(A(μL;x) < α < A(μU ;x)) = 1− β,

where A(μ;x) = α is the inverse function of Ū(α) = μ, given
X = x. That is, the exact (1 − β)% confidence interval for
α is

(12)

(
A(μL;x), A(μU ;x)

)
.

However, μL and μU are difficult to calculate analytically
from the Bates distribution, especially for large n. It is more
convenient to obtain these values via Monte Carlo simula-
tion. For example, generate a large amount (say, m ≥ 2000)
of random samples μ from Bates(n − 1) distribution, and
the τ -th population quantiles, Bates−1

τ (n − 1), can be well
approximated by the τ -th sample quantile of μ. Then the
confidence limits as in (12) can be obtained, using these
simulated sample quantiles.

The generalized confidence interval for the shape param-
eter ξ can be derived accordingly. Recall Di as in (8), and
let

T = 2Dn = 2

n∑
j=1

log (1 + αXj:n)
1
ξ .

As shown in Wang, Yu and Jones (2010), T has a χ2 distri-
bution with 2n degrees of freedom, regardless of the values
of α and X. Then consider the following generalized pivot
quantity for parameter ξ

(13) Z =
2
∑n

j=1 log
(
1 +A(μ;x)Xj:n

)
T

,

where A(μ;x) is previously defined. Note that the value of
Z will reduce to ξ if μ = 1/2. As there are no unknown
parameters in (13), Z is a generalized pivotal quantity for
ξ as defined in [26] and [27], and its distribution can be
approximated via Monte Carlo simulations, as follows:

1. generate random samples t ∼ χ2(2n), from the χ2 dis-
tribution with 2n degrees of freedom, with the same
sample size m as of random samples μ;

2. replace μ and T in (13) with μ and t, respectively. This
produces a simulated random sample set of Z, denoted
as z. Hence, the τ -th sample quantile of z can be used to
approximate the τ -th population quantile of Z, denoted
as Zτ ;
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3. give the the generalized (1−β)% confidence interval of
ξ by: (

Zβ/2 , Z1−β/2

)
.

Similarly, the generalized confidence interval for the
quantile of the GPD, QGPD (p;α, ξ), can be obtained via
the following generalized pivotal quantity:

(14) S = QGPD

(
p;A(μ;x), Z

)
.

The population quantiles of S can be derived along the same
line: replacing μ and Z in (14) with μ and z, which are pre-
viously defined, to obtain the Monte Carlo samples of S.
Then the τ -th population quantile of S, denoted as Sτ , can
be approximated by the τ -th sample quantile of the gen-
erated sample. Hence, the (1 − β)% generalized confidence
interval of QGPD(p;α, ξ) is given by

(Sβ/2, S1−β/2).

In the next section, we conducted a series of simulation
tests to compare the performance of the NEW method with
other methods, for both point estimation and interval esti-
mation.

3. SIMULATION STUDY

We conducted simulation experiments to compare param-
eter estimation from methods mentioned in previous sec-
tions. Random samples were generated from the GPD with
different settings to cover a wide range of scenarios: sample
sizes n = {50, 30, 15}, the scale parameter σ = 1, and, as ar-
guably the most important variable in modelling the GPD,
the shape parameter ξ ranging from −1 to 1 by 0.05 in-
terval, respectively. 5000 replicates were generated for each
scenario. Since the scope of the study is small sample sizes,
the MLE method is omitted for point estimation, as it has
been proved inefficient when the sample size is small (see
Section 1). Totally, five methods were adopted for point es-
timation, including method of moment (MOM), probabil-
ity weighted moment (PWM), likelihood moment estimation
(LME), Zhang and Stephens’ method (Z&S), and the new
method we proposed (NEW). MOM and PWM are listed as
benchmarking methods and the POT package ([19]) in the
statistical programming language R is used for the parame-
ter and quantile estimation. For the implementation of the
LME method, we need to know an auxiliary parameter r by
taking account of any preliminary information about ξ, but
r = −1/2 is recommended by [28] if no information about ξ
is available.

3.1 Parameter estimation

First, we investigated the performance of the estimators
σ̂ and ξ̂ from different models. Our main concern is how re-
liable the parameter estimators are under different tail be-
haviour, namely, different values of ξ. Estimation bias and
root mean square errors (RMSE) of the five tested meth-

ods were calculated plotted against ξ in Figure 1 and 2,
respectively. As for each sample size, there were 41 tests of
different values of ξ. To save space, instead of presenting all
results, we report several selected cases with different sample
sizes and ξ = {−1,−0.5,−0.25, 0, 0.25, 0.5, 0.75, 1}, through
Table 1 and 2. Both MOM and PWM methods have theo-
retical upper boundaries with regard to ξ, beyond which the
methods no longer exist, hence their results are truncated
in the figures and tables. The results can be summarized as
follows.

From Figure 1 and 2, it is intuitive that the NEW estima-
tors are the most versatile parameter estimators in terms of
bias. The bias of the scale estimator σ̂ of NEW shows slight
sensitivity to the tail behaviour and sample size, as the bias
slightly increases when the value of ξ increases, or the sam-
ple size decreases; the bias of the shape estimator ξ̂ of NEW
are consistently close to zero, through the tested range of ξ
and different sample sizes. The performance of other tested
methods are obviously more sensitive to the change of tail
behaviour. The MOM and PWM methods tend to have sig-
nificant estimation bias as the value of ξ closes to the the-
oretical boundaries (ξ =0.5 and 1, respectively). This gen-
erally agrees with findings in previous research, such as in
[29], Fig. 1&2 and [15], Fig. 2–5. LME, MOM and PWM
methods overestimate the scale parameter σ and underes-
timate the shape parameter ξ, and become more biased as
the tail of the GPD becomes heavier. But the bias from the
LME are generally smaller than the other two. The Z&S
estimators have an even smaller bias compared with MOM,
PWM and LME estimators, but they are still more biased
than the NEW and apparently more sensitive to ξ, as both
parameter estimators become more biased when ξ closes to
−1 or 1.

From the other aspect, the Z&S parameter estimators
have the smallest overall estimation error. This can be iden-
tified from both graphical and numerical evidences. The
RMSE of the LME, Z&S and NEW estimators are less sensi-
tive to ξ and have smaller ranges, compared with the MOM
and PWM methods. The second rows of Figure 1 and 2 sug-
gest that, as for smaller sample size, the Z&S estimators’
RMSE advantage becomes more obvious. The NEW esti-
mators’ performance in terms of RMSE is not far behind
the Z&S and is comparable with LME estimators. Excep-
tions are observed for the scale estimator σ̂: when the value
of ξ closes to 1, the NEW method actually has the smallest
RMSE of all methods.

It is safe to draw conclusions that, for parameter estima-
tion, the NEW method is the most versatile and consistent
among all tested methods, with regard to varying tail be-
haviour and small sample sizes of the simulated GPD sam-
ples. In particular, the shape parameter ξ̂ of the NEW is
unbiased, with small estimation variation.

3.2 Quantile estimation

In practice, it is of great interest to assess the quan-
tiles of the GPD. Thus we proceeded to analyze the per-
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Figure 1. Bias and RMSE of the scale estimator σ̂ plotted against ξ (from −1 to 1).

formance of different methods for quantile estimations us-
ing the same simulation data and results as in Section 3.1.
In the literature, it is often assumed that good parameter
estimators would naturally lead to good quantile estima-
tors of the GPD, and vise versa. However, through simu-
lation study we will show that this statement is arguably
vague. The interpretation of the results of quantile esti-
mation with different methods is somewhat more subtle.
For all tested approaches, the performance of quantile es-
timators are poor for extreme upper quantiles of heavy-
tailed GPD. In order to compare the results under vari-
ous quantile levels (p = 0.5, 0.75, 0.9) and shape parameters
(ξ = {−1,−0.5,−0.25, 0.0.25, 0.5, 0.75, 1}), percentage-bias
and percentage-RMSE for different methods are given in Ta-
bles 3 to 5. The percentage-bias and percentage-RMSE are
defined as the ratio of estimation bias and RMSE over the

theoretical quantile value, respectively:

Percentage-Bias =
Bias[Q̂(p; σ̂, ξ̂)]

Q(p;σ, ξ)
,

Percentage-RMSE =
RMSE[Q̂(p; σ̂, ξ̂)]

Q(p;σ, ξ)
.

We also plotted the percentage-bias and percentage-RMSE
of 0.5, 0.75 and 0.9 quantiles of the MOM, PWM, LME,
Z&S and NEW methods with sample size n = 30 against
the value of ξ in Figure 3.

The simulations seem to show that, when estimating less-
extreme quantiles of the GPD given different ξ values, such
as Q(0.5) and Q(0.75), the NEW method is still the least
sensitive to the changes of ξ and sample size, although the
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Figure 2. Bias and RMSE of the shape estimator ξ̂ plotted against ξ (from −1 to 1).

NEW method does not always have the smallest percentage-
bias. The MOM, PWM and LME methods have smaller
percentage-bias when estimating quantiles of very ‘short-
tailed’ GPD (−1 ≤ ξ ≤ −0.5), but their bias substantially
increase as the tail becomes heavier and the sample size be-
comes smaller. On the other hand, the Z&S method has the
smallest overall RMSE of parameter estimation, but that
does not give it the same advantage when estimating the
quantiles. The differences in percentage-RMSE of estimating
Q(0.5) and Q(0.75) among LME, Z&S and NEW are only
marginal. For example, for ξ = 1 and p = 0.5 or p = 0.75,
the NEW method has the smallest percentage-RMSE. For
0.5 and 0.75 quantiles, the quantile estimators of NEW are
generally the most reliable.

However, for estimating the higher upper quantiles that
close to 1, such as Q(0.9), performance of the NEW method
drops dramatically as its percentage-bias increases rapidly

as the tail becomes heavier. The performance of LME
and Z&S’ quantile estimators also drop significantly. Their
percentage-bias and percentage-RMSE almost doubled com-
pared with the 0.75 quantile cases, as seen in Tables 4 and 5.

The numerical evidence and analysis seemed to sug-
gest that the performance of different quantile estima-
tors may not be consistent when estimating different
quantiles. [14] show that, by Taylor expansion, Q(p) =
σp

(
1 + 1

2 (1 + ξ)p+O(p2)
)
, as p → 0, thus the accuracy

of Q̂(p) for small p is mainly affected by the accuracy of σ̂.
For large p, the mechanic is rather unclear. Hence, we con-
sidered the following subsequent tests. Figure 4 presented
the percentage-bias and percentage-RMSE of the quantile
estimators of the five methods, given sample size n = 30
and fixed values of ξ = {0.25, 0.5, 0.75, 1} (for each row of
figures, respectively), plotted against varying values of p,
ranged from 0.5 to 0.95 by 0.01 interval. Results were briefly

Point and exact interval estimation for the GPD with small samples 395



Table 1. Bias and RMSE of σ̂

Bias RMSE
n ξ MOM PWM LME Z&S NEW MOM PWM LME Z&S NEW

50

-1 0.024 0.015 0.012 -0.045 -0.008 0.242 0.232 0.171 0.152 0.183
-0.5 0.020 0.017 0.026 -0.031 0.002 0.217 0.226 0.187 0.178 0.194
-0.25 0.030 0.027 0.024 -0.020 -0.007 0.205 0.222 0.200 0.187 0.205
0 0.046 0.032 0.033 -0.016 0.009 0.211 0.230 0.220 0.206 0.222
0.25 0.121 0.040 0.048 -0.006 0.006 0.249 0.235 0.242 0.226 0.233
0.5 — 0.083 0.056 0.016 0.009 — 0.264 0.267 0.248 0.255
0.75 — 0.182 0.064 0.041 0.017 — 0.356 0.292 0.282 0.274
1 — — 0.079 0.065 0.029 — — 0.323 0.304 0.301

30

-1 0.060 0.042 0.028 -0.058 0.003 0.346 0.318 0.227 0.200 0.239
-0.5 0.050 0.045 0.042 -0.037 0.006 0.291 0.298 0.252 0.223 0.254
-0.25 0.045 0.039 0.058 -0.035 0.002 0.277 0.295 0.275 0.246 0.270
0 0.076 0.054 0.069 -0.017 0.014 0.285 0.306 0.301 0.270 0.292
0.25 0.171 0.074 0.075 0.002 0.015 0.339 0.319 0.328 0.295 0.312
0.5 — 0.124 0.089 0.029 0.030 — 0.357 0.361 0.331 0.337
0.75 — 0.261 0.108 0.066 0.032 — 0.614 0.394 0.364 0.365
1 — — 0.129 0.091 0.042 — — 0.442 0.415 0.402

15

-1 0.103 0.057 0.082 -0.107 0.006 0.543 0.451 0.348 0.290 0.352
-0.5 0.098 0.079 0.101 -0.070 0.004 0.480 0.458 0.397 0.324 0.378
-0.25 0.088 0.072 0.127 -0.059 0.014 0.429 0.440 0.431 0.346 0.395
0 0.145 0.107 0.142 -0.017 0.023 0.456 0.473 0.479 0.386 0.429
0.25 0.266 0.147 0.171 0.018 0.041 0.522 0.490 0.534 0.423 0.463
0.5 — 0.223 0.192 0.058 0.035 — 0.564 0.570 0.479 0.489
0.75 — 0.400 0.238 0.102 0.064 — 0.836 0.664 0.547 0.553
1 — — 0.267 0.181 0.070 — — 0.745 0.646 0.602

Table 2. Bias and RMSE of ξ̂

Bias RMSE
n ξ MOM PWM LME Z&S NEW MOM PWM LME Z&S NEW

50

-1 -0.031 -0.013 -0.015 0.057 0.014 0.332 0.315 0.188 0.167 0.209
-0.5 -0.019 -0.015 -0.029 0.033 0.005 0.201 0.222 0.150 0.144 0.166
-0.25 -0.027 -0.022 -0.027 0.024 0.011 0.157 0.186 0.152 0.143 0.166
0 -0.045 -0.031 -0.029 0.019 0.000 0.145 0.171 0.165 0.157 0.177
0.25 -0.103 -0.046 -0.039 0.009 -0.003 0.168 0.173 0.189 0.181 0.196
0.5 — -0.089 -0.044 -0.007 0.008 — 0.202 0.223 0.210 0.224
0.75 — -0.173 -0.046 -0.027 0.003 — 0.247 0.255 0.241 0.254
1 — — -0.057 -0.039 -0.004 — — 0.295 0.277 0.290

30

-1 -0.077 -0.043 -0.038 0.077 0.001 0.475 0.429 0.255 0.229 0.278
-0.5 -0.047 -0.040 -0.048 0.044 0.002 0.271 0.290 0.211 0.191 0.226
-0.25 -0.041 -0.034 -0.062 0.042 0.005 0.215 0.249 0.217 0.199 0.225
0 -0.079 -0.057 -0.063 0.018 -0.003 0.203 0.233 0.228 0.217 0.239
0.25 -0.144 -0.077 -0.066 0.007 0.001 0.224 0.235 0.259 0.241 0.258
0.5 — -0.128 -0.068 -0.012 -0.005 — 0.250 0.298 0.271 0.295
0.75 — -0.220 -0.081 -0.038 -0.011 — 0.303 0.334 0.305 0.336
1 — — -0.090 -0.060 -0.001 — — 0.383 0.350 0.377

15

-1 -0.133 -0.052 -0.116 0.155 -0.001 0.742 0.601 0.408 0.370 0.431
-0.5 -0.104 -0.078 -0.119 0.084 0.007 0.461 0.448 0.357 0.317 0.372
-0.25 -0.092 -0.071 -0.137 0.072 -0.001 0.349 0.375 0.355 0.316 0.361
0 -0.144 -0.106 -0.138 0.028 0.000 0.321 0.350 0.371 0.328 0.377
0.25 -0.230 -0.150 -0.144 -0.001 -0.012 0.342 0.354 0.412 0.361 0.402
0.5 — -0.226 -0.148 -0.040 -0.003 — 0.381 0.436 0.391 0.433
0.75 — -0.320 -0.182 -0.063 -0.019 — 0.430 0.500 0.435 0.498
1 — — -0.177 -0.109 0.001 — — 0.557 0.492 0.555
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Table 3. Percentage-bias and Percentage-RMSE of estimating Q(0.5; 1, ξ)

Percentage-bias Percentage-RMSE
n ξ MOM PWM LME Z&S NEW MOM PWM LME Z&S NEW

50

-1 -0.001 -0.004 0.000 -0.034 -0.012 0.133 0.132 0.113 0.107 0.121
-0.5 0.004 0.001 0.010 -0.027 -0.005 0.151 0.155 0.139 0.138 0.145
-0.25 0.014 0.011 0.008 -0.018 -0.011 0.157 0.165 0.156 0.151 0.161
0 0.025 0.013 0.016 -0.016 0.001 0.173 0.182 0.177 0.171 0.177
0.25 0.078 0.017 0.027 -0.009 -0.002 0.209 0.196 0.198 0.191 0.192
0.5 — 0.044 0.031 0.007 0.004 — 0.220 0.218 0.211 0.216
0.75 — 0.107 0.038 0.023 0.010 — 0.303 0.241 0.240 0.234
1 — — 0.046 0.043 0.019 — — 0.269 0.262 0.259

30

-1 0.007 0.003 0.004 -0.045 -0.011 0.171 0.170 0.146 0.140 0.154
-0.5 0.017 0.013 0.014 -0.033 -0.007 0.192 0.196 0.183 0.171 0.186
-0.25 0.018 0.012 0.024 -0.032 -0.010 0.205 0.213 0.207 0.196 0.208
0 0.038 0.020 0.034 -0.021 -0.001 0.224 0.234 0.233 0.220 0.231
0.25 0.109 0.035 0.038 -0.006 0.002 0.280 0.257 0.260 0.247 0.255
0.5 — 0.066 0.049 0.012 0.014 — 0.297 0.287 0.281 0.279
0.75 — 0.162 0.062 0.040 0.013 — 0.586 0.320 0.311 0.305
1 — — 0.076 0.056 0.026 — — 0.358 0.359 0.343

15

-1 0.001 -0.007 0.018 -0.084 -0.026 0.230 0.230 0.206 0.204 0.219
-0.5 0.022 0.013 0.032 -0.066 -0.025 0.275 0.278 0.266 0.246 0.264
-0.25 0.029 0.016 0.050 -0.059 -0.017 0.290 0.299 0.301 0.271 0.289
0 0.070 0.041 0.063 -0.030 -0.007 0.327 0.336 0.345 0.306 0.327
0.25 0.161 0.068 0.084 -0.005 0.007 0.411 0.371 0.394 0.345 0.362
0.5 — 0.114 0.104 0.019 0.003 — 0.443 0.440 0.395 0.392
0.75 — 0.246 0.127 0.056 0.023 — 0.741 0.499 0.466 0.445
1 — — 0.154 0.114 0.035 — — 0.574 0.549 0.490

Table 4. Percentage-bias and Percentage-RMSE of estimating Q(0.75; 1, ξ)

Percentage-bias Percentage-RMSE
n ξ MOM PWM LME Z&S NEW MOM PWM LME Z&S NEW

50

-1 -0.009 -0.008 -0.005 -0.023 -0.011 0.073 0.074 0.072 0.072 0.076
-0.5 -0.005 -0.006 -0.001 -0.020 -0.006 0.107 0.108 0.104 0.106 0.107
-0.25 0.003 0.000 -0.003 -0.013 -0.011 0.125 0.126 0.124 0.123 0.127
0 0.007 0.000 0.003 -0.011 -0.002 0.150 0.152 0.150 0.149 0.147
0.25 0.038 -0.001 0.011 -0.007 -0.005 0.190 0.176 0.177 0.174 0.172
0.5 — 0.008 0.014 0.005 0.009 — 0.207 0.202 0.204 0.208
0.75 — 0.033 0.021 0.015 0.016 — 0.289 0.238 0.241 0.241
1 — — 0.028 0.034 0.026 — — 0.283 0.281 0.282

30

-1 -0.010 -0.008 -0.008 -0.031 -0.015 0.093 0.094 0.093 0.093 0.096
-0.5 -0.001 -0.003 -0.004 -0.025 -0.012 0.133 0.134 0.135 0.131 0.136
-0.25 0.001 -0.004 0.000 -0.023 -0.014 0.161 0.163 0.163 0.159 0.163
0 0.008 -0.003 0.008 -0.019 -0.006 0.190 0.193 0.192 0.188 0.191
0.25 0.054 0.004 0.011 -0.005 0.000 0.253 0.229 0.227 0.227 0.229
0.5 — 0.016 0.023 0.009 0.014 — 0.277 0.267 0.271 0.268
0.75 — 0.069 0.034 0.031 0.015 — 0.606 0.316 0.317 0.314
1 — — 0.047 0.043 0.041 — — 0.371 0.386 0.380

15

-1 -0.023 -0.019 -0.013 -0.056 -0.033 0.130 0.134 0.128 0.136 0.138
-0.5 -0.014 -0.017 -0.010 -0.052 -0.034 0.187 0.190 0.190 0.186 0.188
-0.25 -0.007 -0.015 -0.002 -0.045 -0.027 0.223 0.227 0.226 0.220 0.221
0 0.016 -0.003 0.007 -0.028 -0.016 0.268 0.269 0.275 0.261 0.267
0.25 0.072 0.009 0.026 -0.009 -0.002 0.361 0.320 0.332 0.315 0.319
0.5 — 0.025 0.047 0.006 0.004 — 0.402 0.401 0.382 0.373
0.75 — 0.111 0.059 0.043 0.030 — 0.720 0.468 0.487 0.465
1 — — 0.098 0.095 0.067 — — 0.586 0.615 0.562
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Table 5. Percentage-bias and Percentage-RMSE of estimating Q(0.9; 1, ξ)

Percentage-bias Percentage-RMSE
n ξ MOM PWM LME Z&S NEW MOM PWM LME Z&S NEW

50

-1 -0.006 -0.003 -0.007 -0.010 -0.006 0.053 0.052 0.039 0.040 0.039
-0.5 -0.008 -0.007 -0.010 -0.010 -0.004 0.081 0.084 0.076 0.077 0.076
-0.25 -0.006 -0.006 -0.013 -0.003 -0.005 0.107 0.109 0.105 0.105 0.106
0 -0.011 -0.011 -0.007 0.000 0.002 0.144 0.144 0.144 0.146 0.143
0.25 -0.009 -0.018 -0.001 0.005 0.003 0.198 0.188 0.196 0.197 0.196
0.5 — -0.031 0.005 0.018 0.033 — 0.241 0.253 0.261 0.278
0.75 — -0.057 0.022 0.025 0.052 — 0.334 0.337 0.337 0.360
1 — — 0.038 0.055 0.077 — — 0.447 0.444 0.465

30

-1 -0.009 -0.003 -0.013 -0.013 -0.010 0.070 0.069 0.052 0.051 0.051
-0.5 -0.011 -0.009 -0.018 -0.010 -0.010 0.103 0.106 0.100 0.097 0.099
-0.25 -0.012 -0.012 -0.021 -0.005 -0.009 0.138 0.141 0.139 0.136 0.138
0 -0.022 -0.023 -0.014 -0.005 -0.001 0.184 0.184 0.184 0.188 0.188
0.25 -0.010 -0.024 -0.009 0.013 0.017 0.259 0.243 0.249 0.262 0.266
0.5 — -0.040 0.014 0.029 0.043 — 0.311 0.346 0.350 0.363
0.75 — -0.041 0.034 0.054 0.067 — 0.695 0.462 0.458 0.498
1 — — 0.071 0.078 0.137 — — 0.628 0.609 0.702

15

-1 -0.016 -0.005 -0.027 -0.017 -0.022 0.102 0.100 0.081 0.076 0.081
-0.5 -0.030 -0.025 -0.040 -0.020 -0.023 0.152 0.155 0.146 0.144 0.142
-0.25 -0.031 -0.030 -0.044 -0.010 -0.016 0.197 0.200 0.195 0.199 0.196
0 -0.035 -0.036 -0.037 0.001 0.004 0.257 0.257 0.264 0.273 0.276
0.25 -0.024 -0.044 -0.013 0.025 0.032 0.360 0.332 0.368 0.385 0.395
0.5 — -0.067 0.021 0.039 0.072 — 0.441 0.512 0.516 0.549
0.75 — -0.038 0.045 0.106 0.154 — 0.777 0.685 0.777 0.896
1 — — 0.160 0.192 0.301 — — 1.141 1.191 1.328

summarised as follows.
First, for all tested methods, accurately estimating ex-

treme upper quantiles is obviously more difficult beyond
certain p thresholds. The slopes of estimation bias and er-
ror curves increase steeply when the p value is close to 1,
even more so for heavier tails. A possible explanation for
this is that for small sample sizes such as n ≤ 50, the
estimated extreme upper quantiles seem to be heavily af-
fected by the largest sample point(s). Second, as pointed
out by one of the reviewers, better performance on the es-
timation of ξ does not necessarily translate into better per-
formance on the estimation of the upper quantiles, which is
opposite to the default intuitive belief. For example, both
of the Z&S and NEW methods have larger bias than the
LME method when estimating higher upper quantiles with
ξ = 0.25, 0.5, 0.75, although the LME method is obviously
more biased on both parameter estimators than the for-
mer two. Furthermore, when estimating less extreme quan-
tiles which are closer to the center of the distribution, the
NEW estimator generally outperforms the others, with con-
sistently smaller percentage-bias and RMSE. However, the
performance of the NEW quantile estimator drops dramat-
ically as p is close to or larger than 0.8.

The phenomenon stated above does raise some interesting
questions that are worth further investigation. In literature,
the POT approach is sometimes used for ‘extrapolating’ ex-
treme quantiles that are beyond the sample range. Despite

general belief that the results under the EVT framework
are usually better than results from conventional methods
(e.g., estimating the distribution of the entire dataset in-
stead of fitting the GPD to the tail), extra caution should
be paid when the sample size for fitting the GPD is small.
As discussed in this section, the methods we tested all
have significant performance loss when estimating higher
upper quantiles of extremely heavy-tailed GPD, such as
ξ ≥ 0.5 (namely, the GPD has infinite variance). Recall that
p = (Nn p∗), where p∗ is the extreme probability or quantile
level of the original distribution, FY , and N is the sample
size of the original data. p∗ and N are often predetermined,
but the value of p can still be adjusted by changing the
threshold value u (thus changing n). From what we have
observed, when p∗ and N are fixed, raising the threshold u
will lead to less-extreme p, which may reduce the bias and
error of Q̂(p). However, this partially contradicts the well-
known ‘bias-variance-tradeoff’ effect of the threshold selec-
tion, which, in general, suggests that lower thresholds will
lead to larger bias but smaller variance, and higher thresh-
olds will lead to smaller bias but larger variance. To an-
swer these questions would probably require comparing the
POT approach based on different methods with classic ap-
proaches and cross-examining different sample sizes and p
values. Such problems are beyond the main scope of this pa-
per. However, it can be concluded that choosing a threshold
which leads to a moderate p value (i.e., p ≤ 0.8) will benefit
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Figure 3. Percentage-bias and percentage-RMSE of estimating Q(p; 1, ξ), plotted against ξ, for different value of
p = 0.5, 0.75, 0.9, respectively; sample size n = 30.

the overall performance of quantile estimation of the GPD.
In particular, the NEW method we proposed has displayed
promising properties such as versatility under these circum-
stances.

3.3 Confidence interval estimation

In practice, confidence interval not only measures the un-
certainty of unknown quantities such as quantiles, but also
provides valuable tail-information in modelling GPD. In this
section we compare the performance of different confidence
interval methods in terms of average length and coverage
probability. These methods include the profile log-likelihood
method based on MLE estimates (Profile), the asymptotic
CI based on observed Fisher information of PWM and LME
methods, the generalized CI of NEW method and two boot-
strap methods: the percentile bootstrap confidence intervals
(PERC) and the bias-corrected and accelerated (BCa) con-

fidence intervals. Details of both bootstrap methods can be
found in [10] or seen in [23] for a more specific study of the
bootstrap CI for heavy-tailed GPD.

We mainly focused on CI of quantile estimation of the
GPD, which included 90% and 95% CI of Q(p), where
p = {0.75, 0.9}, respectively. CI for median Q(0.5) was not
reported because similar conclusions can be drawn from
the results. Random samples of different sizes (n = 50, 30)
were generated from σ = 1 with different values of shape
parameter ξ = {−0.25, 0.25, 0.5, 0.75}, under 1000 repli-
cates. For the NEW estimates, Θ(τ) was calculated based
on 2000 Monte Carlo random samples; the bootstrap meth-
ods were calculated based on 1000 bootstrap samples. For
each method, the average interval length and coverage prob-
ability are summarized in Tables 6 and 7. It is worth men-
tioning that CI estimation for sample size n = 15 is not
reported, due to tested methods that all failed to provide
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Figure 4. Percentage-bias and percentage-RMSE of estimating Q(p; 1, ξ), plotted against p (0.5 ≤ p ≤ 0.95), for heavy-tailed
GPD with different values of ξ = 0.25, 0.5, 0.75, 1, respectively; sample size n = 30.

reliable results in terms of coverage probability or average
interval length.

For the same reasons stated in the previous section, we
considered it important that the CI estimates should be
consistently reliable for different tail behaviours (different ξ
values). Also, ideally a good CI estimation should have the
shortest interval length, combined with an accurate coverage
probability (CP) close to the nominal (1 − β)% confidence
level, but as little above (1− β)% as possible ([16]).

Table 6 presents results for the less-extreme 75% quantile
of the GPD. The average CI length of all tested methods

increases as sample size decreases. Overall, the generalized
CIs provided by the NEW method have the most reliable
good performance for different value of ξs. The CP based
on PWM estimates is always lower than the nominal level,
decreasing as value of ξ increases. On the contrary, the CP
based on LME estimates is obviously much higher than the
nominal level when the value of ξ is smaller. But the CP of
LME-based CI estimates decreases as value of ξ increases,
and for the 90% and 95% CI of Q(0.9), it coincidentally
becomes very close to the nominal level. For the Q(0.75)
cases, CIs based on the profile log-likelihood method have

400 J. He et al.



Table 6. Average length and coverage probability (in parentheses) of confidence intervals of estimating Q(0.75; 1, ξ)

90% CI 95% CI
n ξ Profile PWM LME NEW PERC BCa Profile PWM LME NEW PERC BCa

50

-0.25
0.474 0.482 1.066 0.505 0.521 0.527 0.566 0.574 1.263 0.603 0.623 0.631
(0.893) (0.897) (0.997) (0.904) (0.886) (0.894) (0.922) (0.926) (0.997) (0.95) (0.947) (0.951)

0.25
0.961 0.926 1.703 1.016 0.963 0.982 1.170 1.110 2.038 1.235 1.165 1.193
(0.881) (0.868) (0.989) (0.89) (0.894) (0.891) (0.937) (0.924) (0.996) (0.947) (0.945) (0.953)

0.5
1.373 1.212 2.228 1.451 1.371 1.414 1.712 1.457 2.700 1.804 *** ***
(0.883) (0.859) (0.98) (0.897) (0.896) (0.894) (0.93) (0.905) (0.986) (0.938) (0.943) (0.948)

0.75
2.030 1.644 3.054 2.154 *** *** 2.490 1.864 3.621 2.633 *** ***
(0.885) (0.788) (0.97) (0.896) (0.908) (0.901) (0.942) (0.869) (0.987) (0.943) (0.929) (0.931)

30

-0.25
0.612 0.611 1.365 0.660 0.697 0.702 0.730 0.729 1.632 0.793 0.836 0.844
(0.868) (0.874) (0.998) (0.913) (0.909) (0.897) (0.935) (0.933) (0.999) (0.957) (0.948) (0.943)

0.25
1.245 1.169 2.184 1.371 1.303 1.348 1.569 1.410 2.644 1.732 1.576 1.640
(0.889) (0.884) (0.984) (0.918) (0.898) (0.896) (0.933) (0.919) (0.99) (0.948) (0.949) (0.950)

0.5
1.849 1.538 2.901 2.031 1.816 1.908 2.292 1.756 3.405 2.531 2.171 2.310
(0.900) (0.861) (0.980) (0.917) (0.890) (0.886) (0.947) (0.885) (0.986) (0.958) (0.941) (0.932)

0.75 2.796 1.842 3.989 3.107 *** *** 3.400 2.292 4.718 3.911 *** ***
(0.901) (0.774) (0.967) (0.908) (0.86) (0.853) (0.953) (0.836) (0.982) (0.955) (0.935) (0.930)

*** denotes value larger than 1× 105

Table 7. Average length and coverage probability (in parentheses) of confidence intervals of estimating Q(0.9; 1, ξ)

90% CI 95% CI
n ξ Profile PWM LME NEW PERC BCa Profile PWM LME NEW PERC BCa

50

-0.25
0.594 0.616 1.920 0.713 0.572 0.582 0.723 0.736 2.283 0.897 0.684 0.699
(0.864) (0.866) (1.000) (0.897) (0.858) (0.878) (0.913) (0.913) (1.000) (0.952) (0.916) (0.923)

0.25
2.243 1.976 3.869 2.539 1.841 2.011 2.810 2.368 4.567 3.174 2.190 2.466
(0.876) (0.845) (0.994) (0.898) (0.84) (0.843) (0.936) (0.897) (0.998) (0.953) (0.885) (0.899)

0.5
3.643 3.413 5.881 4.700 3.601 4.202 4.416 4.377 7.153 6.431 4.121 5.027
(0.902) (0.787) (0.973) (0.877) (0.846) (0.863) (0.938) (0.849) (0.986) (0.942) (0.886) (0.917)

0.75
4.587 4.898 9.720 9.525 *** *** 5.011 6.011 11.350 12.355 *** ***
(0.847) (0.613) (0.947) (0.881) (0.842) (0.849) (0.833) (0.663) (0.957) (0.943) (0.882) (0.901)

30

-0.25
0.764 0.780 2.430 1.031 0.708 0.718 0.989 0.937 2.927 1.389 0.855 0.872
(0.849) (0.842) (0.998) (0.900) (0.823) (0.841) (0.905) (0.897) (1.000) (0.946) (0.881) (0.889)

0.25
3.011 2.489 5.003 3.950 2.330 2.642 3.662 2.917 5.848 5.271 2.701 3.140
(0.874) (0.821) (0.982) (0.892) (0.81) (0.827) (0.93) (0.868) (0.991) (0.944) (0.833) (0.865)

0.5
4.151 4.271 7.792 8.143 24.477 2352.063 4.730 4.706 9.244 11.586 5.660 7.650
(0.862) (0.743) (0.957) (0.903) (0.82) (0.838) (0.911) (0.820) (0.972) (0.956) (0.862) (0.876)

0.75 4.725 5.873 13.305 18.083 84.915 *** 5.328 7.032 15.706 26.350 16.986 93.397
(0.710) (0.610) (0.919) (0.869) (0.772) (0.811) (0.784) (0.700) (0.954) (0.947) (0.851) (0.88)

*** denotes value larger than 1× 105

comparable performance with the NEW method, and are
even slightly better in terms of average interval length. For
the Q(0.9) cases, however, the profile log-likelihood based
CI estimates have obvious insufficient CPs.

Regarding bootstrap-method-based (PERC and BCa)
CIs for Q(0.75), their CPs are close to the nominal level in
most situations, but their interval lengths are very mislead-
ing when the GPD is extremely heavy-tailed, such as ξ =
0.5, 0.75. Extremely large average interval length (> 1×105)
have been observed for both bootstrap methods, as denoted
with ‘***’ in tables. For small sample sizes and extremely
heavy-tailed distributions, estimations from naive bootstrap

methods are dominated by the largest sample point (or sev-
eral extremely large sample points) and may not converge.
For more detailed analysis of naive bootstrap failure poten-
tial in heavy-tailed cases, please refer to [1] and [13]. These
extremely wide confidence intervals have basically no prac-
tical use.

For the CIs of higher quantiles Q(0.9), the CPs from
profile log-likelihood and PWM drop significantly as the
tail of the GPD gets heavier. The LME-based CI is ob-
viously overestimated, even CP=1 when ξ = −0.25. The
bootstrap methods have the same convergence problem for
heavy-tailed GPD, as shown in previous case, and their CPs
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Table 8. Comparison of goodness-of-fit of Florida flood claims data for GPD with four-method

σ̂ ξ̂ W 2 Asymptotic
p values

Bootstrap
p value

A2 Asymptotic
p values

Bootstrap
p value

Threshold
u = 26.302
NEW 9.210 0.727 0.038 0.939 0.942 0.278 0.939 0.932
PWM 10.830 0.524 0.069 0.758 0.762 0.466 0.758 0.761
LME 9.950 0.649 0.049 0.879 0.875 0.341 0.879 0.883
Z&S 9.436 0.703 0.040 0.926 0.937 0.292 0.926 0.918

Threshold
u = 32.527
NEW 13.312 0.701 0.041 0.919 0.924 0.326 0.919 0.894
PWM 16.033 0.469 0.057 0.827 0.832 0.499 0.827 0.711
LME 14.986 0.581 0.049 0.873 0.876 0.418 0.873 0.794
Z&S 14.407 0.620 0.045 0.897 0.903 0.380 0.897 0.815

Threshold
u = 45.532
NEW 22.083 0.612 0.089 0.632 0.635 0.402 0.632 0.708
PWM 26.902 0.364 0.128 0.461 0.447 0.578 0.461 0.573
LME 25.930 0.446 0.120 0.492 0.494 0.536 0.492 0.602
Z&S 23.427 0.550 0.099 0.585 0.589 0.441 0.585 0.682

are significantly below the nominal level. But for all cases
the NEW method has CPs close to the nominal level within
±0.03 differences. Although the average interval lengths of
CIs from the NEW method are large for extremely heavy-
tailed situations (for ξ = 0.75 the average length of the CI
is 26.35, while the true value of Q(0.9; 1, 0.75) ≈ 6.165),
we believe it is still reasonable since most other methods
which have shorter intervals also have very low CPs. Gen-
erally speaking, except the extremely heavy-tailed situation
where n = 15 (which is not reported here), the confidence
interval estimation based on the NEW method generally
outperforms other tested methods for all tested scenarios
and, most importantly, it is consistently reliable.

4. EXAMPLE

We also examined a real-world example, using the flood
insurance claim data from the U.S. National Flood Insur-
ance Program (NFIP1). More details of this dataset are
given in [5]. Average claim values per year (in thousands
of dollars) of each county of the Florida state from 1998
to 2008 were gathered, with a total sample size of 504.
We fit the GPD with this data by three different thresh-
old values u = 26.302, 32.527, 45.532 respectively. The three
different threshold values result in three different sample
sizes n = 50, 30, 15 in the analysis. For each threshold, the
Cramér-von Mises W 2 statistic and the Anderson-Darling
A2 statistic as well as Q-Q plot were used in the goodness-
of-fit test.

The asymptotic p value and the bootstrap p value gen-
erated from 2000 samples for each statistic were calculated.

1The data are available on the webpage: http://www.rff.org/Events/
Pages/Data-Climate-Change-Extreme-Events.aspx.

Results including estimated parameters, test statistics and
their p values were reported in Table 8. For three sam-
ple sets, most methods gave shape parameter estimators
ξ̂ close to or larger than 0.5, which implies that the un-
derlying data follow a very heavy-tailed distribution which
very likely has infinite second moments. The MOM method
based estimates are known for having poor performance or
even not existing, so MOM method is not included in this
analysis. For the two lower thresholds, the NEW, LME and
Z&S’ estimation results do not show large differences, while
the PWM method has notably smaller shape estimator and
larger scale estimator. Both asymptotic and bootstrap p
values are almost identical under both test statistics and
generally lead to the same conclusion. In all tested cases,
no method shows significant inadequate fitting. Judging by
the p values, PWM estimates have the lowest goodness-of-
fit level, while the NEW has the highest p values for all
cases.

The Q-Q plots of the four tested methods with their
threshold values are presented in Figure 5. Graphically, sim-
ilar conclusions to the goodness-of-fit tests can be drawn
from the Q-Q plots. Obviously the NEW and Z&S methods
have better fitting than the other two methods, especially
for the data on the upper tails.

5. CONCLUSIONS

In this paper, we introduce a new method for point esti-
mation and interval estimation of the GPD, specifically fo-
cusing on small sample cases. Numerical evidence has shown
that the new method provides consistent point estimates
against the varying tail behaviour of the GPD. At the same
time it provides consistent, even accurate, confidence inter-
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Figure 5. Q-Q plot for assessing the fitting of Florida flood claims data for GPD with four-method.

val estimates in terms of coverage probability and average
interval length, for sample sizes as small as n = 30.

At the same time, our numerical study shows that all
methods to fit GPD are sensitive to the value of shape pa-
rameter ξ. The new method, despite its reliability or ver-
satility, may not always be best under some of values of ξ.
In reality, however, it is not always possible to choose the
‘appropriate’ model according to ξ, as one cannot always
know for sure what range the value of ξ falls into or what
type of tail the underlying distribution may have. Thus, an
estimation method like the proposed one in this paper that
maintains reliable or versatile (not necessarily always the
best) performance without any prior information about ξ
can be a very useful in fitting GPD.
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