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Coupon collector’s problem and its extensions
in extreme value framework
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Let Nn = {1, 2, . . . , n}. We sample with replacement from
the set Nn, assuming that each element has the same prob-
ability of being drawn. We determine the limiting distribu-
tions and some related properties of the waiting time Mn

until all triples jjj, j ∈ Nn are sampled.
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1. INTRODUCTION

Many combinatorial problems in probability have been
considered by using different tools and approaches. Usually,
the goal of the investigations in this area is to obtain exact
and asymptotic results concerning random variables that
appear in such problems. References that should be pointed
out as pioneer works on asymptotic probability distribu-
tions in combinatorial problems are the paper of Goncharov
(1944) and the series of papers written by Erdös and his
coauthors.

Coupon collector’s problem is a classical combinatorial
problem that can be formulated as follows: We sample with
replacement from the set Nn = {1, 2, . . . , n}, assuming that
each element has the same probability of being drawn and
we are interested in the waiting time until all elements of
Nn or some other patterns are sampled. Erdös and Rényi
(1961) obtained the following asymptotic result concerning
the waiting time Mn until all elements of Nn are sampled:

lim
n→∞

P{Mn ≤ n(x+ log n)} = exp(−e−x).

Many variations of the coupon collector’s problem have
been considered, and different approaches and techniques
used, see, for example, Baum and Bilingsley (1965), Holst
(1986), Mladenović (2008) and references therein.

In this paper we consider the waiting time Mn until all
triples jjj, j ∈ N, are sampled. The remaining part of the
paper is organized as follows. In Section 2 we give some
preliminaries, notation and auxiliary results on the exact
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distributions of random variables related to the problem
considered. Main results are formulated in Section 3. We
provide the limiting distribution of the random variable Mn

and also the limiting distribution of the excess of Mn over
high thresholds. The rate of convergence is also determined.
Proofs are given in Section 4. The conclusion is formulated
in Section 5.

2. PRELIMINARIES, NOTATION AND
AUXILIARY RESULTS

Let Z1, Z2, Z3, . . . be a sequence of independent random
variables with the uniform distribution over the set Nn =
{1, 2, . . . , n} and

(1) Xnj = min{k : Zk−2 = Zk−1 = Zk = j},

where j ∈ Nn is a fixed number.
Let

Ỹnj = min{k : Zk−2 = Zk−1 = Zk = a

for some a ∈ A ⊂ Nn, |A| = j}.(2)

We introduce random variables Ynn, Yn,n−1, . . . , Yn1 as
follows: Ynn is the waiting time until the first triple j1j1j1,
where j1 ∈ Nn, occurs; Yn,n−1 is the waiting time for the
second triple j2j2j2, j2 ∈ Nn \ {j1}, after the occurrence

of the first triple j1j1j1; etc. Therefore, Ynj
d
= Ỹnj for any

j ∈ Nn, where X
d
= Y means that random variables X and

Y have the same distribution.
It is obvious that for any j ∈ Nn and any positive integer

k the following equality holds:

(3) P{Xn1 > k,Xn2 > k, . . . , Xnj > k} = P{Ynj > k}.

Let Mn be the waiting time until all triples jjj, j ∈ Nn are
sampled. Therefore,

(4) Mn = max{Xn1, Xn2, . . . , Xnn}.

Using inclusion-exclusion principle we obtain:

(5) P{Mn ≤ k} =
n∑

m=0

(−1)m
(
n

m

)
P{Ynm > k}.

Probability distributions and some related properties of ran-
dom variables Xnj and Ynj , j ∈ Nn, are determined in the
following theorems.
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Theorem 2.1. (a) The distribution of the random variable
Xnj for k ≥ 3 is given by

P{Xnj = k} =
∑

a≥0,s≥a

a+2s≤k−3

(
k − a− s− 3

s

)(
s

a

)
×

× 1

ns+a+3

(
1− 1

n

)k−s−a−3

.(6)

(b) If un = n3(x+ logn), then the following equality holds:

(7) lim
n→∞

n(1− Fn(un)) = lim
n→∞

nP{Xnj > un} = e−x.

Theorem 2.2. (a) The distribution of the random variable
Ynj is given by

(8) P{Ynj = k} =
ak−1

nk
,

where the sequence ak satisfies the recurrence relation
(9)
ak+4+(1−n2)ak+2+(−n2+2nj−2j+1)ak−(n−j)2ak−2 = 0,

for any k ≥ 2, with initial values:

a0 = a1 = 0, a2 = j, a3 = (n− 1)j,

a4 = n(n− 1)j, a5 = (n3 − n2 + n)j.(10)

(b) For any fixed j, the following relation holds, as n → ∞:

(11) P{Ynj > n3(x+ logn)} =
e−jx

nj
(1 + o(1)).

3. MAIN RESULTS

Limiting distribution of the maximum Mn as n → ∞ is
determined in the following theorem.

Theorem 3.1. Let Mn be the waiting time until all triples
jjj, j ∈ Nn, are sampled. For any real number x, the fol-
lowing equality holds:

(12) lim
n→∞

P{Mn ≤ n3(x+ logn)} = exp
(
−e−x

)
.

The following theorem gives the limiting distribution of
the excess of Mn over high thresholds, and determines the
rate of convergence to the limiting distribution for the cor-
responding normalizing constants and the threshold.

Theorem 3.2. Let Mn be the waiting time until all triples
jjj, j ∈ Nn, are sampled. Let (cn)n≥1 be a sequence of real
numbers such that cn → +∞ as n → ∞.
(a) For any x > 0 the following equality holds:

lim
n→∞

P{Mn ≤ n3(x+ cn + logn)|Mn > n3(cn + log n)}

= 1− e−x.(13)

(b) For any x > 0 the following equality holds, as n → ∞:

P{Mn ≤ n3(x+ cn + logn)|Mn > n3(cn + logn)}

− (1− e−x) ∼ e−x(e−x − 1)
1

2ecn
.(14)

Remark 3.3. If cn = c for all n ∈ N and some constant
c ∈ R, then the limit on the left hand side of (13) does not
belong to the family of generalized Pareto distributions and
depends on the threshold. Therefore, the threshold given
in the equality (13) is the lowest one such that it is possi-
ble to obtain a limit distribution in the sense of Theorem
Balkema – de Haan (1974).

4. PROOFS

Proof of the Theorem 2.1:
(a) Let Xnj be defined as in (1) and let us define the events
Ak and Ak,a,b as follows:

• Ak: no three adjacent of the random variables
Z1, Z2, . . . , Zk take the value j;

• Ak,a,b: among the random variables Z1, Z2, . . . , Zk,
there are exactly a pairs Zs−1 = Zs = j, Zs−2 	= j,
Zs+1 	= j, exactly b singles Zs = j, Zs−1 	= j,
Zs+1 	= j, and no three adjacent of the random vari-
ables Z1, Z2, . . . , Zk take the value j.

In that case the following equalities hold:

P (Ak,a,b)

=

(
k − 2a− b+ 1

a+ b

)(
a+ b

a

)
1

n2a+b

(
1− 1

n

)k−2a−b

,(15)

(16)

P (Ak) =
∑

a≥0,b≥0

a+b≤k−2a−b+1

P (Ak,a,b) =
∑

a≥0,b≥0

3a+2b≤k+1

P (Ak,a,b),

and

(17) P{Xnj = k} = P (Ak−4) ·
n− 1

n
· 1
n
, k ≥ 4.

The statement of Theorem 2.1 follows from (15), (16) and
(17), after applying the substitution s = a+ b.

(b) From Theorem 2.1 (a) it follows:

(18) 1− Fn(k) =

+∞∑
k=m+1

1

nk
(bk−3 + ak−3) ,

where the sequences ak and bk are defined as follows:

(19) ak =
∑

a=0,s≥a

a+2s≤k

(
k − a− s

s

)(
s

a

)
(n− 1)

k−a−s
,
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(20) bk =
∑

a≥1,s≥a

a+2s≤k

(
k − a− s

s

)(
s

a

)
(n− 1)

k−a−s
.

From problem 7(d), page 76 of Riordan (1968) it follows:

(21) ak = (n− 1)k
1

α

((
1 + α

2

)k+1

−
(
1− α

2

)k+1
)
,

where α =
√
1 + 4

n−1 . The following equality:

(22) ak+1 = (n− 1)(ak + ak−1)

follows easily. On the other hand, the following relations
hold:

bk =
∑

a≥1,s≥a

a+2s≤k

(
k − a− s

s

)(
s

a

)
(n− 1)

k−a−s

=
∑

a≥1,s≥a

a+2s≤k

(
k − a− s− 1

s

)(
s

a

)
(n− 1)

k−a−s

+
∑

a≥1,s≥a

a+2s≤k

(
k − a− s− 1

s− 1

)(
s− 1

a

)
(n− 1)

k−a−s

+
∑

a≥1,s≥a

a+2s≤k

(
k − a− s− 1

s− 1

)(
s− 1

a− 1

)
(n− 1)

k−a−s

= (n− 1)bk−1 + (n− 1)bk−2

+(n− 1)(bk−3 + ak−3).(23)

Using (22) and (23) we obtain the following equality:

bk+2 − (n− 1)bk+1 − (n− 1)bk

= (n− 1)bk+1 + ((n− 1)− (n− 1)2)bk

+((n− 1)− 2(n− 1)2)bk−1

− 2(n− 1)2bk−2 − (n− 1)2bk−3.(24)

Finally, from (24),

bk+2 − 2(n− 1)bk+1 + ((n− 1)2 − 2(n− 1))bk

+(2(n− 1)2 − (n− 1))bk−1

+2(n− 1)2bk−2 + (n− 1)2bk−3 = 0.(25)

The corresponding characteristic equation is

t5 − (2n− 2) t4 +
(
(n− 1)

2 − 2n+ 2
)
t3

+
(
2 (n− 1)

2 − n+ 1
)
t2

+2 (n− 1)
2
t+ (n− 1)

2
= 0,(26)

which can be factorized as(
−t3 + t2n− t2 + tn− t+ n− 1

) (
tn+ n− 1− t− t2

)
= 0.(27)

Solutions of the equation (27) are:

t1 =
1

2
(n− 1) +

1

2

√
(n− 1)2 + 4(n− 1),

t2 =
1

2
(n− 1)− 1

2

√
(n− 1)2 + 4(n− 1),

t3 =
1

6
C +

2

3C
(n2 + n− 2) +

1

3
(n− 1),

t4 = − 1

12
C − 1

3C
(n2 + n− 2) +

1

3
(n− 1)

+
1

2
i
√
3

(
1

6
C − 2

3C
(n2 + n− 2)

)
,

t5 = − 1

12
C − 1

3C
(n2 + n− 2) +

1

3
(n− 1)

− 1

2
i
√
3

(
1

6
C − 2

3C
(n2 + n− 2)

)
,(28)

where

A = 12n2 + 60n− 80 + 8n3,

B = 6n3 + 9n2 + 9n4 − 72n+ 48,

C =
3

√
A+ 12

√
B.(29)

As n → ∞, we obtain:

(30) C = 2n

(
1 +

2

n
− 1

n2
− 4

3n3
+ o

(
1

n2

))
,

and, consequently:

t1 = n− 1

n
+ o

(
1

n

)
,

t2 = −1 +
1

n
+ o

(
1

n

)
,

t3 = n− 1

n2
+ o

(
1

n2

)
,

t4 = −1

2
+

1

2n2
+ o

(
1

n2

)

+ i

√
3

2

(
1− 2

3n
− 32

9n2
+ o

(
1

n2

))
,

t5 = −1

2
+

1

2n2
+ o

(
1

n2

)

− i

√
3

2

(
1− 2

3n
− 32

9n2
+ o

(
1

n2

))
.(31)

Initial values are:

b0 =
∑

a≥1,s≥a

a+2s≤0

(
0− a− s

s

)(
s

a

)
(n− 1)

0−a−s
= 0,
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b1 =
∑

a≥1,s≥a

a+2s≤1

(
1− a− s

s

)(
s

a

)
(n− 1)

1−a−s
= 0,

b2 =
∑

a≥1,s≥a

a+2s≤2

(
2− a− s

s

)(
s

a

)
(n− 1)

2−a−s
= 0,

b3 =
∑

a≥1,s≥a

a+2s≤3

(
3− a− s

s

)(
s

a

)
(n− 1)

3−a−s
= n− 1,

b4 =
∑

a≥1,s≥a

a+2s≤4

(
4− a− s

s

)(
s

a

)
(n− 1)

4−a−s
= 2(n− 1)2.

(32)

Using (18), we obtain:

1− Fn(m) =

+∞∑
k=m+1

1

nk
(bk−3 + ak−3)

=

+∞∑
k=m+1

1

nk

(
C1t

k−3
1 + · · ·+ C5t

k−3
5

)

+

+∞∑
k=m+1

(n− 1)k−3

nk

1

α

((
1 + α

2

)k−2

−
(
1− α

2

)k−2
)

=
1

n3

(
C1 +

1 + α

2α

) (
t1
n

)m−2

1− t1
n

+
1

n3

(
C2 −

1− α

2α

) (
t2
n

)m−2

1− t2
n

+
1

n3
C3

(
t3
n

)m−2

1− t3
n

+
1

n3
C4

(
t4
n

)m−2

1− t4
n

+
1

n3
C5

(
t5
n

)m−2

1− t5
n

,(33)

where (C1, C2, C3, C4, C5)
T is the solution of the system of

linear equations:

(34)

∥∥∥∥∥∥∥∥∥∥

1 1 1 1 1
t1 t2 t3 t4 t5
t21 t22 t23 t24 t25
t31 t32 t33 t34 t35
t41 t42 t43 t44 t45

∥∥∥∥∥∥∥∥∥∥
·

∥∥∥∥∥∥∥∥∥∥

C1

C2

C3

C4

C5

∥∥∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∥∥∥

0
0
0

n− 1
2(n− 1)2

∥∥∥∥∥∥∥∥∥∥
,

where t1, t2, . . . , t5 are given by (28). Solving the system (34)
and using (31), we obtain:

(35) C1 ∼ −1, C2 ∼ 0, C3 ∼ 1, C4 ∼ 0, C5 ∼ 0,

as n → ∞. Now, let us determine m from the condition

(36) n(1− Fn(m)) → e−x.

In the sum (33), all the terms except the term

1

n3
C3

(
t3
n

)m−2

1− t3
n

can be neglected. Therefore, the condition (36) reduces to:

(37)
1

n2
C3

(
t3
n

)m−2

1− t3
n

→ e−x.

Using (31), (35) and (37), we obtain

(38)
1

n2

(
n3 + o(n3)

)(
1− 1

n3
+ o

(
1

n3

))m−2

→ e−x.

Consequently,

(39) − 2 logn+ 3 logn− m− 2

n3
→ −x,

therefore, m ∼ n3(x+ logn), as n → ∞.

Proof of the Theorem 2.2:
(a) Let A be a subset of Nn = {1, 2, . . . , n}, |A| = j. For any
positive integer l, let us consider the set S of all sequences
of the form

c1c2 . . . cl, c1, c2, . . . , cl ∈ Nn,

such that no sequence from S contains a subsequence of the
form aaa, a ∈ A. Let

(40) a0 = b0 = p0 = q0 = 0, r0 = 1,

and

(41) a1 = p1 = q1 = 0, b1 = j, r1 = n− j.

For k ≥ 2, we define the following sequences:

• al is the number of sequences from S such that cl−1 =
cl ∈ A;

• bl is the number of sequences from S such that cl ∈
A, cl−1 ∈ A, cl−1 	= cl;

• pl is the number of sequences from S such that cl−1 /∈
A, cl ∈ A;

• ql is the number of sequences from S such that cl /∈
A, cl−1 ∈ A;

• rl is the number of sequences from S such that cl−1, cl /∈
A.

Then, for any k ≥ 2, the following relations hold:

ak = j(qk−2 + rk−2) + (j − 1)(ak−2 + bk−2 + pk−2),

bk = (j − 1)2ak−2 + (j − 1)j(bk−2 + pk−2 + qk−2 + rk−2),

pk = j(n− j)(ak−2 + bk−2 + pk−2 + qk−2 + rk−2),

qk = (n− j)j(bk−2 + pk−2 + qk−2 + rk−2)

+ (n− j)(j − 1)ak−2,

rk = (n− j)2(ak−2 + bk−2 + pk−2 + qk−2 + rk−2).

(42)

Let sl = al+ bl+pl+ ql+ rl for l ≥ 0. Then, from (40), (41)
and (42) follows that s0 = 1, s1 = n and, for any k ≥ 2:

ak = jsk−2 − (ak−2 + bk−2 + pk−2),
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bk = (j − 1)jsk−2 − (j − 1)ak−2,

pk = j(n− j)sk−2,

qk = (n− j)jsk−2 − (n− j)ak−2,

rk = (n− j)2sk−2.(43)

Using relations (43) we obtain

(44) bk + pk = (−j + jn)sk−2 − (j − 1)ak−2

and

(45) bk−2 + pk−2 = (−j + jn)sk−4 − (j − 1)ak−4.

Substituting (45) into the first equality in (43) leads to:

(46) ak = jsk−2 − ak−2 + j(1− n)sk−4 + (j − 1)ak−4.

Summing all the equalities (43) and using (46), we obtain:

(47) sk = n2sk−2 − nak−2 + j(1− n)sk−4 + (j − 1)ak−4.

Subtracting (46) from (47), we obtain:

(48) sk − ak = (n2 − j)sk−2 − (n− 1)ak−2.

Therefore,

(49) sk = ak + (n2 − j)sk−2 − (n− 1)ak−2

and

(50) sk−2 = ak−2 + (n2 − j)sk−4 − (n− 1)ak−4.

Substituting (50) into (46), we obtain
(51)
ak = (j−1)ak−2+(jn2−j2+j−jn)sk−4+(−jn+2j−1)ak−4,

and the equalities

sk−4 =
ak − (j − 1)ak−2 + (jn− 2j + 1)ak−4

jn2 − j2 + j − jn
,(52)

sk−2 =
ak+2 − (j − 1)ak + (jn− 2j + 1)ak−2

jn2 − j2 + j − jn
,(53)

and

(54) sk =
ak+4 − (j − 1)ak+2 + (jn− 2j + 1)ak

jn2 − j2 + j − jn

follow easily. After the substitution of (53) and (54) into
(48), the equality
(55)
ak+4+(1−n2)ak+2+(−n2+2nj−2j+1)ak−(n−j)2ak−2 = 0,

for k ≥ 2, follows. Initial values can be easily checked.

(b) The corresponding characteristic equation for the re-
currence relation (9) is

(56) t6+(1−n2)t4+(−n2+2nj−2j+1)t2− (n− j)2 = 0.

Applying the substitution s = t2 the equation (56) is re-
duced to the equation of the third degree, which can be
solved algebraically. Solutions of the equation (56) are:

t1 =
1

6
C +

2

3

n2 + n− 2

C
+

1

3
(n− 1),

t2 = − 1

12
C − 1

3

n2 + n− 2

C
+

1

3
(n− 1)

+

√
3

2
i

(
1

6
C − 2

3

n2 + n− 2

C

)
,

t3 = − 1

12
C − 1

3

n2 + n− 2

C
+

1

3
(n− 1)

−
√
3

2
i

(
1

6
C − 2

3

n2 + n− 2

C

)
,

t4 =
1

6
D +

2

3

n2 + n− 2

D
− 1

3
(n− 1),

t5 = − 1

12
D − 1

3

n2 + n− 2

D
− 1

3
(n− 1)

+

√
3

2
i

(
1

6
D − 2

3

n2 + n− 2

D

)
,

t6 = − 1

12
D − 1

3

n2 + n− 2

D
− 1

3
(n− 1)

−
√
3

2
i

(
1

6
D − 2

3

n2 + n− 2

D

)
,(57)

where

A = 12n2 + 60n+ 28− 108j + 8n3,

B = 18n3 + 27n2 + 9n4 + 18n+ 9− 90nj

+81j2 − 42j − 18n2j − 12jn3,

C =
3

√
A+ 12

√
B,

D =
3

√
−A+ 12

√
B.

From Theorem 2.2 follows:

P{Ynj > k} =

+∞∑
m=k+1

P{Ynj = m} =

+∞∑
m=k+1

am−1

nm

=

+∞∑
m=k+1

1

nm

(
C1t

m−1
1 + C2t

m−1
2 + · · ·+ C6t

m−1
6

)

=
1

n

(
C1

(
t1
n

)k
1− t1

n

+
C2

(
t2
n

)k
1− t2

n

+ · · ·+
C6

(
t6
n

)k
1− t6

n

)
,

where (C1, C2, C3, C4, C5, C6)
T is the solution of the system

(58)∥∥∥∥∥∥∥∥∥∥∥∥

1 1 1 1 1 1
t1 t2 t3 t4 t5 t6
t21 t22 t23 t24 t25 t26
t31 t32 t33 t34 t35 t36
t41 t42 t43 t44 t45 t46
t51 t52 t53 t54 t55 t56

∥∥∥∥∥∥∥∥∥∥∥∥
·

∥∥∥∥∥∥∥∥∥∥∥∥

C1

C2

C3

C4

C5

C6

∥∥∥∥∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∥∥∥∥∥

0
0
j

(n− 1)j
n(n− 1)j

(n3 − n2 + 1)j

∥∥∥∥∥∥∥∥∥∥∥∥
,
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where t1, t2, . . . , t6 are given by (57). For any fixed j, as
n → ∞, we obtain:

C = 2n

(
1 +

2

n
− j

n2
− 3j + j2

3n3
+ o

(
1

n3

))
,

D = −2n

(
1− 1

n
+

j

n2
+

j2 − 6j

3n3
+ o

(
1

n3

))
,

and the solutions (57) of the characteristic equation become:

t1 = n

(
1− j

n3
+ o

(
1

n3

))
,

t2 = −1

2
+

j

2n2
+ o

(
1

n2

)

+

√
3

2
i

(
1− 2j

3n
+

3j − 2j2

9n2
+ o

(
1

n2

))
,

t3 = −1

2
+

j

2n2
+ o

(
1

n2

)

−
√
3

2
i

(
1− 2j

3n
+

3j − 2j2

9n2
+ o

(
1

n2

))
,

t4 = −n

(
1− j

n3
+ o

(
1

n3

))
,

t5 =
1

2
− j

2n2
+ o

(
1

n2

)

+

√
3

2
i

(
1− 2j

3n
+

3j − 2j2

9n2
+ o

(
1

n2

))
,

t6 =
1

2
− j

2n2
+ o

(
1

n2

)

−
√
3

2
i

(
1− 2j

3n
+

3j − 2j2

9n2
+ o

(
1

n2

))
.(59)

Solving the system (58) and using (59), we obtain:

C1 ∼ j

n2
, C2 = C3 = O

(
1

n

)
,

C4 = C5 = C6 = o

(
1

n2

)
,(60)

as n → ∞. From (59) and (60) follows that in asymptotic
behavior of the probability P{Ynj > k} as n → ∞, all terms

except the term C1(t1/n)
k

1−t1/n
can be neglected. Denote un =

n3(x + log n), rn = un − [un], and let us determine the
asymptotic behavior of P{Ynj > un} for any fixed j as n →
∞. Using (59) and (60) we obtain that

P{Ynj > un} =
j

n3

(
t1(m)

n

)[un] n

n− t1(m)

=
j

n3

e−mx

nm

n3

j
(1 + o(1))

=
e−mx

nm
(1 + o(1)),(61)

as n → ∞.

Proof of Theorem 3.1:
First, we prove a few lemmas.

Lemma 4.1. Let X∗
nj, j ∈ {1, 2, . . . , n}, be independent

random variables with the same probability distribution,

P{X∗
nj = k} =

∑
a≥0,s≥a

a+2s≤k−3

(
k − a− s− 3

s

)(
s

a

)

× 1

ns+a+3

(
1− 1

n

)k−s−a−3

,(62)

for k ≥ 3, and let M∗
n = max{X∗

n1, X
∗
n2, . . . , X

∗
nn}. For any

real number x the following equality holds:

(63) lim
n→∞

P{M∗
n ≤ n3(x+ logn)} = exp

(
−e−x

)
.

Proof: follows from Theorem 2.1 (b).

Lemma 4.2. Let pnj = P{Ynj > n3(x + logn)}. For any
positive integer j ≥ 2, the following relation holds as n →
∞:

(64) pnj − pn,j−1pn1 =
e−jx

nj+1
· o(1).

Proof: simply follows from Theorem 2.2 (b).

Lemma 4.3. (Condition D(un)) Let x be a real number and
k and l positive integers, such that k + l ≤ n. Then, there
exists a constant C(x) such that for un = n3(x+ logn), the
inequality

∣∣∣∣P
(k+l⋂

s=1

{Xjs ≤ un}
)

−P

( k⋂
s=1

{Xjs ≤ un}
)
P

( k+l⋂
s=k+1

{Xjs ≤ un}
)∣∣∣∣

≤ C(x)min{k, l} 1

n2
≤ C(x)

n

holds.

Proof is the same as in the paper Mladenović (2008), where
the problem of collecting pairs was considered.

Lemma 4.4. (Condition D′(un)) For un = n3(x + logn),
the following relation holds:

(65) lim
k→∞

lim sup
n→∞

n ·
[n/k]∑
j=2

P{Xn1 > un, Xnj > un} = 0.

Proof: It follows from (3) that P{Xn1 > un, Xnj > un} =
P{Yn2 > un}, for j ≥ 2. The statement of the lemma follows
from the relations:

n

[n/k]∑
j=2

P{Xn1 > un, Xnj > un}
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= n
([n

k

]
− 1

) e−2x

n2
(1 + o(1))

=
e−2x

k
(1 + o(1)), as n → ∞.(66)

Proof of Theorem: The statement of the Theorem fol-
lows from Lemma 4.1, Lemma 4.2, Lemma 4.3, Lemma 4.4
and Theorem 5.3.1 from Leadbetter, Lindgren and Rootzen
(1983).
Prooof of Theorem 3.2 (a) Bonferroni inequalities imply:

nP{Yn1 > k} −
(
n

2

)
P{Yn2 > k}

≤ P{Mn > k} ≤ nP{Yn1 > k}.(67)

Denote un = n3(x+ cn + logn), rn = un − [un], and let us
determine the asymptotic behavior of

(
n
m

)
P{Ynm > un} for

any fixed m as n → ∞.
Using (59) and (60), we obtain:(

n

m

)
P{Ynm > un} =

(
n

m

)
P{Ynm > [un]}

=

(
n

m

)
j

n3

(
t1(m)

n

)[un] n

n− t1(m)

=

(
n

m

)
j

n3

e−mx

nmemcn

n3

j
(1 + o(1))

=

(
n

m

)
e−mx

nmemcn
(1 + o(1)),(68)

as n → ∞.
For m = 1 and m = 2 it follows from (68) that:

nP{Yn1 > un} =
e−x

ecn
(1 + o(1)),(

n

2

)
P{Yn2 > un} =

e−2x

2e2cn
(1 + o(1)).(69)

Using (67) and (69) we obtain:

P{Mn > un} = P{Mn > n3(x+ cn + log n)}

=
e−x

ecn
(1 + o(1)),(70)

as n → ∞.
Finally, using (70) we obtain the following relations:

P{Mn ≤ n3(x+ cn + logn) |Mn > n3(cn + logn)}

(71)

=
P{Mn > n3(cn + logn)} − P{Mn > n3(x+ cn + log n)}

P{Mn > n3(cn + logn)}

=
1

ecn (1 + o(1))− e−x

ecn (1 + o(1))
1

ecn (1 + o(1))
→ 1− e−x,

as n → ∞.

(b) For m = 3, from (68) we obtain:

(72)

(
n

3

)
P{Yn3 > [un]} =

e−3x

6e3cn
(1 + o(1)),

as n → ∞. Bonferroni inequalities imply:

nP{Yn1 > k} −
(
n

2

)
P{Yn2 > k}+

(
n

3

)
P{Yn3 > k}

≥ P{Mn > k} ≥ nP{Yn1 > k} −
(
n

2

)
P{Yn2 > k}.(73)

Using (69), (72) and (73), we obtain:(
e−x

ecn
− e−2x

2e2cn
+

e−3x

6e3cn

)
(1 + o(1)) ≥ P{Mn > [un]}

≥
(
e−x

ecn
− e−2x

2e2cn

)
(1 + o(1)).(74)

Consequently,
(75)

P{Mn > [un]} =

(
e−x

ecn
− e−2x

2e2cn
+ o

(
1

e2cn

))
(1 + o(1)),

as n → ∞. Plugging (75) into the left hand side of the
equality (14), we obtain the following relations:

P{Mn ≤ n3(x+ cn + logn)|Mn > n3(cn + logn)}
−(1− e−x)

= 1− P{Mn > n3(x+ cn + log n)}
P{Mn > n3(cn + logn)} − (1− e−x)

= e−x − P{Mn > n3(x+ cn + logn)}
P{Mn > n3(cn + logn)}

= e−x −
(
e−x

ecn
− e−2x

2e2cn
+ o

(
1

e2cn

))
(1 + o(1))×

×
((

1

ecn
− 1

2e2cn
+ o

(
1

e2cn

))
(1 + o(1))

)−1

= e−x − e−x

ecn

(
1− e−x

2ecn
+ o

(
1

ecn

))
ecn ×

×
(
1− 1

2ecn
+ o

(
1

ecn

))−1

(1 + o(1))

= e−x

(
1−

(
1− e−x

2ecn
+

1

2ecn
+ o

(
1

ecn

)))
(1 + o(1))

∼ e−x(e−x − 1)
1

2ecn
,

as n → ∞.

5. CONCLUSION

In this paper we obtain the limiting distributions of the
random variable Mn in the coupon collector’s problem,
where Mn is defined as the waiting time until all triples
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of elements jjj, j ∈ Nn, are sampled. Corresponding results
for the waiting time until all pairs of elements jj, j ∈ Nn,
are sampled are given in the papers Mladenović (2008) and
Jocković, Mladenović (2011).

Although the technique is the same, the case of triples in-
volves a lot more effort in obtaining the exact distributions
of random variables Mn and Yn, precisely, solving the dif-
ference equations and the corresponding characteristic equa-
tions of the fifth and sixth degree. Both equations are re-
duced to the equations of the second and third degree and
solved algebraically.

The work presented here may be extended to the gen-
eral case, where Mn is the waiting time until all k-tuples
of elements are sampled, k ∈ N. However, it is not clear if
the corresponding characteristic equations can be reduced to
the product of polynomials of second and third degree, and,
therefore, solved algebraically, or their solutions can be ob-
tained only by using numerical techniques. Is the “solvabil-
ity” of the corresponding characteristic equations a general
property of the problem? This is the subject that requires
further research.

Received 26 September 2013
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University of Belgrade
Faculty of Pharmacy
Vojvode Stepe 450
11000 Belgrade
Serbia
E-mail address: haustor@pharmacy.bg.ac.rs

Pavle Mladenović
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