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A numerical characteristic of extreme values∗

Takaaki Shimura

A numerical characteristic of large random numbers is
studied. Let F be a distribution on the real numbers with
infinite endpoint. X denotes a random variable with distri-
bution F . Consider the transformation for a decimal number
d1d2d3 . . . dn.dn+1 . . . in [10n−1, 10n) to 0.d2d3 . . . in [0, 1).
We are interested in the distribution of transformed X for
large X, which implies the behavior of the large random
number except the first figure. It is shown that the distri-
bution of transformed X conditioned by the first figure con-
verges as X becomes large for most distributions. Moreover,
it turns out that the limit distribution depends on the tail
behavior of F and the first figure. A similar problem for
distributions with finite endpoints is also considered. In this
case, the distance until the endpoint is a matter of concern
and parallel results to the ones for infinite endpoint case are
given.
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1. INTRODUCTION

We investigate a numerical characteristic for large ran-
dom numbers. For a positive random number X =
d1d2d3 . . . dn.dn+1 . . . , we call dm the mth figure of X.
Our interest is in the distribution of these figures. We as-
sume F , the distribution of X, has an infinite endpoint:
sup{x : F (x) < 1} = ∞. Define a normalized random vari-
able Y on [0, 1) as

Y = X/10N−1 −K,

where N is the number of figures before the decimal point
when it is expressed in the decimal system and K is the first
figure of X: 10N−1 ≤ X < 10N and X/10N−1 − 1 < K ≤
X/10N−1. Y expresses the behavior of X except the first
figure. We consider the conditional distribution

F k,n(y) = P (Y ≤ y|K = k,N = n),

for k = 1, 2, . . . , 9. Our main interest is in the behavior of
F k,n as n → ∞ for each k.

∗This study was carried out under the ISM Cooperative Research Pro-
gram (2012-ISM · CRP-5009, 2013-ISM · CRP-5012).

In preparation, we introduce the regular variation
and related derivations to characterize the tail behaviors
(see [1], [3]). A measurable positive function f(x) on [0,∞)
is said to be regularly varying with index ρ(∈ R) if
limx→∞ f(λx)/f(x) = λρ for each λ > 0. The case of ρ = 0
is called slowly varying. If limx→∞ f(λx)/f(x) = ∞ for each
λ > 1 (resp. λ < 1), it is called to be rapidly varying with
index ∞ (resp. −∞). A measurable positive non-decreasing
function f(x) is said to be Π-varying if there exist a(x) > 0
and b(x) such that

lim
x→∞

(
f(λx)− b(x)

)
/a(x) = log λ for each λ > 0.

We express the sets of regularly or rapidly varying functions
with index ρ ∈ [−∞,∞] and Π-varying functions as RVρ

and Π, respectively. It is known that Π ⊂ RV0.
Denote the tail of F by F̄ (x) = 1− F (x). We say that F

has a regularly (resp. rapidly) varying tail if F̄ (x) is regu-
larly (resp. rapidly) varying. In the same way, we say that F
has a 1/Π-varying tail if 1/F̄ (x) ∈ Π for convenience. Most
well-known distributions have one of these tails, rapidly
varying, regularly varying and 1/Π-varying. The normal,
the exponential, the Poisson and the log-normal distribu-
tion have a rapidly varying tail. Thus wide variety of distri-
butions are included in this class. The Pareto distribution,
the stable distribution like the Cauchy distribution and the
F-distribution have a regularly varying tail. Although dis-
tributions with 1/Π tail do not seem to be so familiar, the
log-Cauchy distribution and the distribution with F (x) =
1 − (log x)−1(x ≥ e), both have a 1/Π tail. [2] calls slowly
varying tail super-heavy tail and studies a test to distinguish
between heavy and super-heavy tailed distributions.

Our main result is that the limit distribution of F k,n ex-
ists for these three types of tails. In the case of a rapidly
varying tail, the limit distribution is the delta distribution
at 0 (The distribution concentrated at a single point 0)
for every k. In the case of regularly varying tails, a non-
degenerate limit distribution appears and it depends on k.
The limit distribution for 1/Π-varying tail is identical with
the limit of the limit distributions of the regularly varying
case.

Some properties of the non-degenerate limit distributions
are studied. For the degenerate case, the rate of convergence
to the delta distribution is shown.

A similar problem for distributions with finite endpoints
is also considered. In this case, the distance until the end-
point is a matter of concern and parallel results to the ones
for infinite endpoint case are given.
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The limit distribution of F k,n is shown in Section 2. In
Section 3, the property of limit distribution is investigated.

2. LIMIT DISTRIBUTION FOR EXTREME
VALUES

2.1 Limit distribution for large random
numbers

We consider the limit distribution of the normalized ran-
dom large number as n goes to infinity. F k,n(y) = P (Y ≤
y|K = k,N = n) is written as

F k,n(y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 for y < 0,
F [k10n−1, (k + y)10n−1]
/F [k10n−1, (k + 1)10n−1)

for 0 ≤ y < 1,
1 for y ≥ 1.

The following is our main result. limn→∞ F k,n(y) exists
for most distributions and the limit distributions are re-
stricted to three types depending on the tail behavior of F
and the first figure k.

Theorem 2.1. (i) If F̄ (x) ∈ RV−∞, then for every k =
1, 2, . . . , 9,

lim
n→∞

F k,n(y) = 1{y≥0},(1)

where 1A is the indicator function for a set A.
(ii) If F̄ (x) ∈ RV−α(α > 0), then for 0 ≤ y ≤ 1,

lim
n→∞

F k,n(y) =
1− (1 + y

k )
−α

1− (1 + 1
k )

−α
.(2)

(iii) If 1/F̄ (x) ∈ Π, then for 0 ≤ y ≤ 1,

lim
n→∞

F k,n(y) =
log(1 + y

k )

log(1 + 1
k )

.(3)

Proof.

F k,n(y) = P (Y ≤ y|K = k,N = n)(4)

=
P (k10n−1 ≤ X ≤ (k + y)10n−1)

P (k10n−1 ≤ X < (k + 1)10n−1)
.

(i)

F k,n(y) =
1

1 + I
,

where

I =
P ((k + y)10n−1 < X < (k + 1)10n−1)

P (k10n−1 ≤ X ≤ (k + y)10n−1)
.

I ≤ F̄ ((k + y)10n−1)

P ((k + 1
2y)10

n−1 < X ≤ (k + y)10n−1)

∼ F̄ ((k + y)10n−1)

F̄ ((k + 1
2y)10

n−1)
→ 0 (n → ∞)

for y > 0 (∼ denotes that the ratio of both sides goes to 1),
we have (1). In the cases of (ii) and (iii), the last term of (4)
is asymptotically equal to

F̄ (k10n−1)− F̄ ((k + y)10n−1)

F̄ (k10n−1)− F̄ ((k + 1)10n−1)

=
1− F̄ ((k + y)10n−1)/F̄ (k10n−1)

1− F̄ ((k + 1)10n−1)/F̄ (k10n−1)
.

If F̄ (x) ∈ RV−α(α > 0), then limn→∞ F̄ ((k + y)10n−1)/
F̄ (k10n−1) = (1+y/k)−α. If 1/F̄ (x) ∈ Π, then F̄ (k10n−1)−
F̄ ((k + y)10n−1) ∼ log(1 + y

k )a(k10
n−1)F̄ (k10n−1)F̄ ((k +

y)10n−1) ∼ log(1+ y
k )a(k10

n−1)(F̄ (k10n−1))2, where in the
last asymptotical equivalence we use the fact that F̄ (x) ∈
RV0. Thus we get (2) and (3).

Let

Gk
α(y) =

1− (1 + y
k )

−α

1− (1 + 1
k )

−α
and Gk

0(y) =
log(1 + y

k )

log(1 + 1
k )

.

Remark 2.1. (a) (i) and (iii) are regarded as the limit of
(ii): Gk

α(y) converges to δ0 and Gk
0 as α → ∞ and α →

0, respectively.
(b) If F is the Pareto distribution, F k,n(y) = Gk

α(y) holds
for k10n−1 ≥ inf{x : F (x) > 0}.

Although the assumption of (iii) looks slightly strict, we
can not relax the condition to slowly varying tails as we
show below.

Theorem 2.2. For arbitrary distribution F with slowly
varying tail and arbitrary distribution G on [0, 1), there ex-
ists a distribution FG such that limx→∞ F̄G(x)/F̄ (x) = 1

and F k,n
G = G.

Proof. Let X, N and K be the same as before. Put X1 =
K10N−1 and X2 = X −X1. Since X1 ≤ X < 2X1, we have
P (X > x) ∼ P (X1 > x). Let Z be a random variable with
distribution G and set X3 = X1 + 10N−1Z. Then P (X >
x) ∼ P (X1 > x) ∼ P (X3 > x). The distribution of X3 is a
desired one as FG.

The following shows the rate of converge to δ0 in (i) of
Theorem 2.1.

Theorem 2.3. Assume that F̄ (x) ∈ RV−∞, F is absolutely
continuous and its hazard function h(t) belongs to RVρ(ρ ≥
−1). For 0 ≤ y < 1,

lim
n→∞

1

10n−1h(10n−1)
logF k,n(y) = −c(ρ, k, y),
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where

c(ρ, k, y) =

{
(ρ+ 1)−1{(k + y)ρ+1 − kρ+1} ρ > −1
log(1 + y

k ) ρ = −1

Proof. We can express F̄ (x) as

F̄ (x) = F̄ (a) exp

{
−
∫ x

a

h(t)dt

}
,

where a is a constant. By F̄ (x) ∈ RV−∞,

F k,n(y) =
F̄ ((k + y)10n−1)− F̄ ((k + 1)10n−1)

F̄ (k10n−1)− F̄ ((k + 1)10n−1)

∼ F̄ ((k + y)10n−1)

F̄ (k10n−1)
.

Thus

logF k,n(y) = log
F̄ ((k + y)10n−1)

F̄ (k10n−1)
+ o(1)

= −10n−1

∫ k+y

k

h
(
10n−1t

)
dt+ o(1).

1

10n−1h(10n−1)
logF k,n(y)

= − 1

h(10n−1)

∫ k+y

k

h
(
10n−1t

)
dt+

o(1)

10n−1h(10n−1)
.

The first term of the right-hand side goes to

−
∫ k+x

k
tρdt = −c(ρ, k, y) as n → ∞. While the second term

goes to 0 because limt→∞ th(t) = ∞ from the rapid varia-
tion of F̄ .

Theorem 2.3 shows the relation between the convergence
rate and the first figure k. c(ρ, k, y) implies the speed of
convergence. c(ρ, k, y) is a decreasing function of k for −1 ≤
ρ < 0. In the case of ρ = 0, F has a slowly varying hazard
function and c(0, k, y) does not depend on k. Especially, F k,n

does not depend on k if F is an exponential distribution.
c(ρ, k, y) is an increasing function of k for ρ > 0.

2.2 Limit distribution for small random
numbers

From now on, we deal with distributions with finite end-
point and consider the length until the endpoint. We assume
F , the distribution of X, has a finite endpoint. For simplic-
ity, let the endpoint be 0: sup{x : F (x) < 1} = 0. Define a
normalized random variable Y on [0, 1) as

Y = −10NX −K,(5)

where K is the first non-zero figure of X and N is the num-
ber of zeros before the first non-zero figure:−10−N+1 < X ≤
−10−N and −10NX − 1 < K ≤ −10NX. Y expresses the

behavior of X except the first non-zero figure. The following
conditional distribution is considered.

F k,n(y) = P (Y ≤ y|K = k,N = n),

for k = 1, 2, . . . , 9. As the large case, the behavior of F k,n

as n → ∞ for each k is investigated. We show the results
without proofs since they are similar to the ones for the large
case.

Theorem 2.4. (i) If F̄ (−1/x) ∈ RV−∞, then for every
k = 1, 2, . . . , 9,

lim
n→∞

F k,n(y) = 1{y≥1},

where 1A is the indicate function of a set A.
(ii) If F̄ (−1/x) ∈ RVα(α < 0), then for 0 ≤ y ≤ 1,

lim
n→∞

F k,n(y) =
(1 + y

k )
−α − 1

(1 + 1
k )

−α − 1
.

(iii) If 1/F̄ (−1/x) ∈ Π, then for 0 ≤ y ≤ 1,

lim
n→∞

F k,n(y) =
log(1 + y

k )

log(1 + 1
k )

.

Example 2.1. (a) The exponential distribution and the
log-normal distribution have a rapidly varying tail at
their endpoint.

(b) The Beta distribution and the Pareto distribution have
a regularly varying tail at their endpoint.

The limit distributions are identical with an extension of
Gk

α (α ≥ 0) in Theorem 2.1 to non-positive parameters α
(≤ 0). We use the same notation for these limit distributions.
However, the case of α ≤ 0 is more various than the case
of α ≥ 0. The densities of the latter are always decreasing.
On the other hand, the densities of the former have three
patterns: decreasing (−1 < α ≤ 0), constant (α = −1) and
increasing α < −1. This two parameter distribution class is
investigated in the following section in detail.

Theorem 2.5. For arbitrary distribution F with slowly
varying tail at 0 and arbitrary distribution G on [0, 1), there
exists a distribution FG such that limx↑0 F̄G(x)/F̄ (x) = 1

and F k,n
G = G.

Theorem 2.6. Assume that F̄ (−1/x) ∈ RV−∞ is abso-
lutely continuous and its hazard function satisfies h(−1/t) ∈
RVρ(ρ ≥ 1). For 0 < y ≤ 1,

lim
n→∞

10n

h(−10−n)
logF k,n(y) = −c̃(ρ, k, y),

where

c̃(ρ, k, y) =

{
(ρ− 1)−1{(k + y)1−ρ − (k + 1)1−ρ} ρ > 1
log( k+1

k+y ) ρ = 1
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3. PROPERTY OF LIMIT DISTRIBUTIONS

3.1 Dependency on the tail index and the
first figure

In this subsection, we study the limit distribution Gk
α

(α ∈ (−∞,∞), k = 1, 2, . . . , 9). We consider how Gk
α varies

depending on α and k. It is shown that the density function
and the distribution function have monotonicity in various
senses. The density functions of Gk

α(α ∈ (−∞,∞)) denoted
by pkα(y) are given as

pkα(y) =
αk−1(1 + y

k )
−α−1

1− (1 + 1
k )

−α
and pk0(y) =

1

log(1 + 1
k )

1

k + y

for 0 ≤ y ≤ 1.

Proposition 3.1. (i) For each k, pkα(y) is a decreasing
(resp. constant, increasing) function of y and α > −1
(resp. α = −1, α < −1).

(ii) pkα(0) is an increasing function of α for each k. While
pkα(1) is decreasing function of α for each k.

(iii) pkα(0) is a decreasing (resp. constant, increasing) func-
tion of k for α > −1 (resp. α = −1, α < −1).
pkα(1) is an increasing (resp. constant, decreasing) func-
tion of k for α > −1 (resp. α = −1, α < −1).

Proof. (i) is obvious. Direct calculations lead (ii) and (iii).

Proposition 3.2. (i) Gk
α(y) is an increasing function of

α for each k and y.
(ii) Gk

α(y) is a decreasing (resp. constant, increasing) func-
tion of k for α > −1 (resp. α = −1, α < −1).

Proposition 3.2 is proved by direct calculation. It is
slightly troublesome and omitted.

Denote the mean of the limit distributions Gk
α by Mk

α.

Noticing Mk
α = 1−

∫ 1

0
Gk

α(y)dy, we reach a corollary.

Corollary 3.1. (i) Mk
α is a decreasing function of α for

each k.
(ii) Mk

α is an increasing (resp. constant, decreasing) func-
tion of k for α > −1 (resp. α = −1, α < −1).

3.2 Limit distribution of mth figure

We take an interest in the distribution of mth figure
of an extreme value. Instead, we study the distribution of
mth figure of a random variable possessing the distribution
function Gk

α. Note that here the mth figure is defined as
in the beginning of Section 1. Denote the distribution by
Hk

m (k = 1, 2, . . . , 9, m = 2, 3, . . .). Hk
m is a distribution on

{0, 1, . . . , 9} and Hk
m({j}) = Hk

m(j) is written as

Hk
m(j) =

10m−2−1∑
l=0

Gk
α

[
l

10m−2
+

j

10m−1
,

l

10m−2
+

j + 1

10m−1

)

for j = 0, 1, . . . , 9.

Although Hk
m(j) is monotone for j from Proposition 3.1,

this property disappears as m goes to ∞ as follows.

Theorem 3.1. For each k, Hk
m converges to the uniform

distribution on {0, 1, . . . , 9} as m → ∞.

Proof. From the monotonicity, it is enough to show that
limm→∞ Hk

m(0) = 10−1.

Hk
m(0) =

10m−2−1∑
l=0

Gk
α

[
l

10m−2
,

l

10m−2
+

1

10m−1

)

=
1

k−α − (k + 1)−α

10m−2−1∑
l=0

Ikl (m),

where

Ikl (m) =

(
k +

l

10m−2

)−α

−
(
k +

l

10m−2
+

1

10m−1

)−α

.

If α > 0,

α

(
k +

l

10m−2
+

1

10m−1

)−α−1
1

10m−1

≤ Ikl (m) ≤ α

(
k +

l

10m−2

)−α−1
1

10m−1
.

Since (
k +

l

10m−2
+

1

10m−1

)−α−1

≥
(

k + l
10m−2

k + l
10m−2 + 1

10m−1

)α+1(
k +

l

10m−2

)−α−1

≥
(

k

k + 1
10m−1

)α+1(
k +

l

10m−2

)−α−1

,

we have

α

(
k

k + 1
10m−1

)α+1(
k +

l

10m−2

)−α−1
1

10m−1

≤ Ikl (m) ≤ α

(
k +

l

10m−2

)−α−1
1

10m−1
.

Therefore we see

Hk
m(0) ∼ α

k−α − (k + 1)−α

10m−2−1∑
l=0

(
k +

l

10m−2

)α−1
1

10m−1
.

Using

lim
m→∞

10m−2−1∑
l=0

(
k +

l

10m−2

)−α−1
1

10m−2

=

∫ 1

0

(k + x)−α−1dx =
1

α

(
k−α − (k + 1)−α

)
,
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we get limm→∞ Hk
m(0) = 10−1. Dividing α ≤ 0 into four

case α = 0, −1 < α < 0 and α ≤ −1, we can prove our
assertion in the same way.

Remark 3.1. Theorem 3.1 means that the characteristic of
each distribution vanishes in the distance, but to put it the
other way around, the second figure exposes it exceedingly.
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