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In this paper we show that the conditional distribution
of perturbed chi-square risks can be approximated by cer-
tain distributions including the Gaussian distributions. Our
results are of interest for conditional extreme value models
and multivariate extremes as shown in three applications.
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1. INTRODUCTION

Let (Xi1, Xi2), i ≥ 1 be independent bivariate Gaus-
sian random vectors with N(0, 1) distributed marginals and
correlation coefficient ρ ∈ (−1, 1). We have the following
stochastic representation

(Xi1, Xi2)
d
= (Xi1, ρXi1 +

√
1− ρ2Wi), i ≥ 1,(1)

with Wi, i ≥ 1 being independent N(0, 1) random variables
(rvs) which are further independent of Xi1, i ≥ 1. For fixed
m ≥ 2 we define a bivariate chi-square random vector (ζ1, ζ2)
by

ζ1 =

m∑
i=1

X2
i1, ζ2 =

m∑
i=1

X2
i2.(2)

Apart from the case ρ = 0, the bivariate random vector
(ζ1, ζ2) has dependent components. By a direct analytic
proof (see Appendix) it follows that, as v → ∞, the con-
ditional risk (defined almost surely)

ζ∗v :=
ζ2 − ρ2v

2ρ
√
(1− ρ2)v

∣∣∣(ζ1 = v)
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can be approximated by a standard Gaussian rv W , in such
a way that

lim
v→∞

sup
x∈R

∣∣∣∣∣P {ζ∗v ≤ x} − P {W ≤ x}
∣∣∣∣∣ = 0.(3)

Instead of conditioning on {ζ1 = v} one can also condition
on the event {ζ1 > v}. Again, the same Gaussian approx-
imation of ζ2 given that {ζ1 > v} can be obtained (see
Theorem 2.1 below).

The motivation of analyzing the distributional proper-
ties of the conditional models stems both from theory-
and applied-oriented problems. Commonly in finance and
risk management applications there are few observations of
risks being large. Therefore, a conditional model, which can
be reasonably approximated by some known distribution
functions (dfs), is valuable for statistical models; see e.g.,
[5, 4, 14, 17, 20, 26, 27, 33, 6] for various results.

Conditional limit results are also crucial for the investi-
gation of the asymptotic behaviour of maximum of random
processes and that of maxima of triangular arrays; see e.g.,
[1, 7, 8, 28, 21, 34, 2, 18] and references therein. Other im-
portant applications of approximations of the conditional
dfs of chi-square risks can be found in [24]. Consider ζ1,v
and ζ2,v to be realizations of some stationary chi-square pro-
cess {ζ(t), t ≥ 0} at threshold dependent times t1(v), t2(v).
In this case we have threshold dependent correlation coef-
ficient ρv instead of constant ρ. In order to get results as
those of Berman (see also [1]) we need to assume that ρv
tends to 1 at a certain speed. This case has been considered
in the context of maxima of chi-square triangular arrays in
Theorem 2.1 in [24], which shows that (ζ2,v−ζ1,v)|(ζ1,v > v)
can be approximated, as v → ∞, by a Gaussian rv with df
N(−λ, 4λ), provided that

lim
v→∞

2v(1− ρv) = λ ∈ (0,∞).(4)

Given the importance of approximation of conditional dfs
both for constant ρ and for ρ(= ρv) that changes with the
threshold v, in this paper we shall investigate approxima-
tions of multivariate conditional perturbed chi-square risks
(see Section 2 for the definition) using ideas and techniques
from extreme value theory.

Our findings provide a concrete framework for the condi-
tional extreme value model developed in [27, 11], and there-
fore statistical inference can be performed by utilising the
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conditional extreme value methodology therein. Since our
approach is asymptotic in nature, distributional assump-
tions can be dropped. This makes the model more appealing
for applications. More precisely, we shall drop any distribu-
tional assumption on Xi1, i ≥ 1. The Gaussianity of the
components Wi, i ≥ 1 in (1) seems to be crucial; however
there are specific models (see Section 3) where this assump-
tion is relaxed.

In this paper we present three applications: The first ap-
plication establishes the so-called Berman’s sojourn limit
theorem and the tail asymptotics of supremum for a class of
time-changed stationary chi-square processes. The second
application strengthens the convergence in distribution of
maxima of chi-square triangular arrays (see [24] and [25]) to
convergence of the corresponding probability density func-
tions (pdfs). We conclude Section 4 with the third appli-
cation concerning extremal behaviour of aggregated log-chi
risks.

This contribution is organised as follows: We begin with
the description of two main (dependent) perturbed chi-
square models for our multivariate framework and then de-
rive conditional limit theorems for the models both with
fixed parameters and with parameters that depend on the
threshold; see Section 2. Section 3 is devoted to discussions.
The aforementioned applications are displayed in Section 4.
Proofs of all results are relegated to Section 5 followed by a
short Appendix.

2. MAIN RESULTS

We first introduce the multidimensional perturbed chi-
square random vectors. Let (Xi1, . . . , Xi(k+1)), 1 ≤ i ≤ m
be (k + 1)-dimensional random vectors with stochastic rep-
resentations

(Xi1, . . . , Xi(k+1))

d
=
(
Xi1, ρ1Xi1 +Wi1, . . . , ρkXi1 +Wik

)
(5)

1 ≤ i ≤ m, where ρj ∈ R \ {0}, 1 ≤ j ≤ k, and
W := {Wij}1≤i≤m,1≤j≤k is an m × k matrix of centered
(non-standard) Gaussian rvs. Define the (k+1)-dimensional
perturbed chi-square risk ζ := (ζ1, . . . , ζk+1) by

ζ1 =

m∑
i=1

X2
i1, . . . , ζk+1 =

m∑
i=1

X2
i(k+1).(6)

In the sequel we shall consider the following framework:
Assumption A: Random vector (X11, . . . , Xm1) and the

Gaussian random matrix W are mutually independent. Fur-
ther, we assume that the rows of W are independent and
have the same df as the centered k-dimensional Gaussian
random vector W = (W1, . . . ,Wk). Suppose that ζ1 has its
support on [0,∞).

Note that we do not assume X11, . . . , Xm1 to be inde-
pendent or normally distributed. If they are independent

N(0, 1) distributed and for any 1 ≤ i ≤ m, Wij has variance
1 − ρ2j ∈ (0, 1) for all 1 ≤ j ≤ k, then ζ is the (classical)
chi-square risk.

In order to obtain an approximation for the conditional
perturbed chi-square risk (ζ2, . . . , ζk+1)|(ζ1 > v) we need to
impose an asymptotic tail condition on ζ1. We shall assume
that ζ1 has df G in the GMDA with positive scaling function
w(·), i.e.,

lim
v→∞

1−G(v + x/w(v))

1−G(v)
= exp(−x), x ∈ R.(7)

We refer to [32, 13, 15] for more details on GMDA. Due to
the restrictions imposed by our dependence structure, not
every possible scaling function w(·) can be considered. Thus
we assume that

lim
v→∞

(
√
vw(v))−1 = 2c ∈ [0,∞).(8)

Next, we state our first result which shows convergence
in distribution of the conditional perturbed chi-square risk.

In what follows, the standard notation
d→ and

p→ denote
convergence in distribution and convergence in probability,
respectively, when the argument tends to infinity.

Theorem 2.1. Let ζ := (ζ1, . . . , ζk+1) be a perturbed chi-
square risk given in (6). Assume that Assumption A is sat-
isfied, and let U = (U1, . . . , Uk) have the same df as the
centered Gaussian random vector W . Then

P

{
ζ2 − ρ21v

2ρ1
√
v

≤ x1, . . . ,
ζk+1 − ρ2kv

2ρk
√
v

≤ xk

∣∣∣ζ1 = v

}
→ P {U1 ≤ x1, . . . , Uk ≤ xk} , v → ∞(9)

holds for any (x1, . . . , xk) on Rk. Further, if G satisfies (7)
with some positive scaling function w(·) which satisfies (8),
then(

w(v)(ζ1 − v),
ζ2 − ρ21v

2ρ1
√
v

, . . . ,
ζk+1 − ρ2kv

2ρk
√
v

)∣∣∣(ζ1 > v)

d
=
(
ζ̃v, ζ̃v

)
d→ (E, ρ1cE + U1, . . . , ρkcE + Uk),(10)

where E is a unit exponential rv independent of U and
(ζ̃v, ζ̃v), v > 0 are defined on the same probability space
as ζ.

Remark 2.2. In view of Theorem 2.1, Proposition 4.1 in
[10] implies that the random vector ζ has asymptotically in-
dependent components, i.e.,

lim
v→∞

P {ζj > v|ζi > v} = 0(11)

for any pair (i, j) of different indices; see [25] for a similar
result.
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Our second result is concerned with the threshold depen-
dent perturbed (k + 1)-dimensional chi-square risk ζv :=
(ζ1,v, . . . , ζk+1,v), which is defined similarly as (6) with
ρj,v, v > 0 instead of ρj and Gaussian random matrices
Wv, v > 0 instead of W (note that ζ1,v = ζ1). For ρj,v’s we
shall impose the following conditions (compare with (4)):

lim
v→∞

4vw(v)(1− ρj,v) = λj ∈ [0,∞),(12)

1 ≤ j ≤ k.

Since limv→∞ vw(v) = ∞, then (12) implies that
limv→∞ ρj,v = 1. In the special case that G is a chi-square
df, we have w(v) ≡ 1/2 and thus (12) reduces to (4).

Theorem 2.3. Let ζv := (ζ1,v, . . . , ζk+1,v), v > 0 be a fam-
ily of threshold dependent perturbed chi-square risks with
correlation coefficients ρj,v ∈ R \ {0}, 1 ≤ j ≤ k, v > 0.
Denote the first row of Wv by W v and assume that As-
sumption A holds for every v > 0. Suppose further that G
satisfies (7) with some positive scaling function w(·).

i) Assume that condition (12) is satisfied and

w(v)
√
vW v

d→ U ,√
w(v)W v

p→ 0 = (0, . . . , 0) ∈ Rk(13)

holds for a random vector U ∈ Rk. Then for any
(x1, . . . , xk) ∈ Rk

P
{
w(v)(ζ2,v − v) ≤ x1, . . . , w(v)(ζk+1,v − v) ≤ xk∣∣∣ζ1 = v +

x

w(v)

}
(14)

→ P

{
2U1 −

λ1

2
+ x ≤ x1, . . . , 2Uk − λk

2
+ x ≤ xk

}
holds locally uniformly for x ∈ R as v → ∞.

ii) If (14) holds locally uniformly for x ∈ [0,∞), then(
w(v)(ζ1 − v), w(v)(ζ2,v − v), . . . , w(v)(ζk+1,v − v)

)
∣∣∣(ζ1 > v)(15)

d→
(
E,E + 2U1 −

λ1

2
, . . . , E + 2Uk − λk

2

)
,

with E being a unit exponential rv independent of U .

An immediate consequence of the above result is the fol-
lowing interesting limit relationship.

Corollary 2.4. Under the assumptions and notation of ii)
in Theorem 2.3 we have

lim
v→∞

sup
(x1,...,xk)∈Rk

∣∣∣∣∣P{w(v)(ζ2,v − ζ1) ≤ x1, . . . ,

w(v)(ζk+1,v − ζ1) ≤ xk

∣∣∣ζ1 > v
}

(16)

−P

{
2U1 −

λ1

2
≤ x1, . . . , 2Uk − λk

2
≤ xk

} ∣∣∣∣∣ = 0.

The claim in (16) is of interest for statistical modeling;
results in this direction are already available for some other
interesting models (see [14]).

Remarks 2.5. a) The relation between (14) and (15) is
known from several works of Berman; see e.g., [7] where
additional conditions on the scaling function w(·) are im-
posed.

b) Assume ζv = (ζ1,v, ζ2,v), v > 0 to be a family
of 2-dimensional threshold dependent chi-square risks with
V ar(Wi1,v) = 1 − ρ21,v ∈ (0, 1), 1 ≤ i ≤ m and thus
w(x) = 1/2. Then from (12) we have that (13) holds with
U1 =

√
λ1V1/2.

c) The proof of (3) shows that under the assumptions of
b), similar convergence as in (14) also holds for the corre-
sponding pdfs.

3. DISCUSSIONS

As we can see from the proof of Theorem 2.1 (Eq. (33)
therein) the symmetry property of Gaussian rvs plays a cru-
cial role. In this section, we are mainly concerned with two
tractable models relaxing the Gaussian assumptions.

First, we consider a bivariate perturbed chi-square risk
(ζ1, ζ2) as in (6). We drop the Gaussian assumption on
Wi1, 1 ≤ i ≤ m in (5) and assume that (X11, . . . , Xm1) is a
random vector with polar representation

(X11, . . . , Xm1) = R(O1, . . . , Om),

where R > 0 is a rv with infinite upper endpoint, and
(O1, . . . , Om) is a random vector which is independent of
R and satisfies

∑m
i=1 O

2
i = 1 almost surely. Since

ζ2 = ρ21

m∑
i=1

X2
i1 + 2ρ1

m∑
i=1

Xi1Wi1 +

m∑
i=1

W 2
i1

= ρ21R
2 + 2Rρ1

m∑
i=1

OiWi1 +

m∑
i=1

W 2
i1

we obtain

ζ2 − ρ21v

2ρ1
√
v

∣∣(ζ1 = v)
d
=

m∑
i=1

OiWi1 +

∑m
i=1 W

2
i1

2ρ1
√
v

d→
m∑
i=1

OiWi1

as v → ∞. Assume further that O = (O1, . . . , Om) is
uniformly distributed on the unit sphere of Rm. Then
(cf. [8, 19])

m∑
i=1

OiWi1
d
= O1

√√√√ m∑
i=1

W 2
i1,(17)

which is in general not Gaussian.
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Another tractable model is obtained from (6) by restrict-
ing the following conditions on the random matrix W . Sup-
pose that each column (W1j , . . . ,Wmj), 1 ≤ j ≤ k of the
random matrix W has stochastic representation

(W1j , . . . ,Wmj) = RjOj = Rj(O1j , · · · , Omj),

where Rj and Oj are independent for any 1 ≤ j ≤ k. Here
O1, . . . ,Ok are independent copies of the random vector O
which is uniformly distributed on the unit sphere of Rm. It
follows that for any v in the support of ζ1(

ζ2, . . . , ζk+1

)∣∣∣(ζ1 = v)

d
=

(
m∑
i=1

(ρ1ui + Ṽ1)
2, . . . ,

m∑
i=1

(ρkui + Ṽk)
2

)
,(18)

where Ṽj = RjO1j , 1 ≤ j ≤ k with uj , 1 ≤ j ≤ k are such
that

∑m
j=1 u

2
j = v; the proof of (18) is given in Appendix.

A direct implication of (18) is that

ζ̃v
d
=

(
ζ2 − ρ21v

2ρ1
√
v

, . . . ,
ζ2k+1 − ρ2kv

2ρk
√
v

)∣∣∣(ζ1 = v)

d→
(
Ṽ1, . . . , Ṽk

)
, v → ∞.

Consequently, (9) holds with U
d
= (Ṽ1, . . . , Ṽk).

Finally, we mention an extension of Theorem 2.3. It is
possible therein to drop the assumptions that the rows of
the matrix Wv have the same df. To this end, the condi-
tion (13) needs to be re-stated, requiring the convergence of
w(v)

√
vWv to some random matrix U .

4. APPLICATIONS

As mentioned in the Introduction, conditional limit re-
sults are important in various theoretical and applied mod-
els. In this section, we shall present three applications. The
first one concerns the derivation of Berman’s sojourn limit
theorems and the tail asymptotic behaviour of the supre-
mum for certain time-changed stationary chi-square pro-
cesses. In the second application we shall investigate the
maxima of perturbed chi-square triangular arrays establish-
ing both the convergence of the maxima and a density type
convergence result. Finally, motivated by the findings of [3],
we shall derive the tail asymptotics of aggregated log-chi
risks.

Berman’s sojourn limit theorem and extremes of
time-changed chi-square processes:

Consider {Xi(t), t ≥ 0}, 1 ≤ i ≤ m to be m indepen-
dent centered stationary Gaussian processes with covariance
functions ri(·), 1 ≤ i ≤ m satisfying

ri(t) = 1− Ci|t|α + o(|t|α), t → 0,

ri(t) < 1, ∀t > 0,(19)

with α ∈ (0, 2] and Ci, 1 ≤ i ≤ m given positive con-
stants. Define a time-changed stationary chi-square process
{ζ(t), t ≥ 0} by

ζ(t) =

m∑
i=1

X2
i (Θit), t ≥ 0,

where Θ = (Θ1, . . . ,Θm) is a random vector with non-
negative and bounded components being independent of the
processes Xi, 1 ≤ i ≤ m. We remark that time-changed
processes are used extensively; see e.g., [12] and references
therein. Next, let {Zi(t), t ≥ 0}, 1 ≤ i ≤ m be independent
copies of a fractional Brownian motion {Z(t), t ≥ 0} with
Hurst index α/2 ∈ (0, 1], i.e., a centered Gaussian process
with covariance function

Cov(Z(s), Z(t)) = tα + sα − |t− s|α, s, t ≥ 0.

We obtain below a conditional limit result which is
crucial for the derivation of Berman’s sojourn limit theo-
rems and the tail asymptotic behaviour of the supremum
for the time-changed stationary chi-square processes. Since
ζ(0) has a chi-square df, it follows that its df G satis-
fies (7) with scaling function w(v) ≡ 1/2. We have, for
any 0 < t1 < t2 < · · · < td and x > 0 (set Δi(tj) =
Xi(q(v)tj)−ri(q(v)tj)Xi(0), Xi,v(tj) := ri(q(v)tj)Xi(0) and
q(v) = v−1/α)(

w(v)(ζ(q(v)t1)− v), . . . , w(v)(ζ(q(v)td)− v)

)
∣∣∣∣∣(ζ(0) = v + x/w(v))

d
=

(
1

2

m∑
i=1

(Δi(Θit1))
2 +

m∑
i=1

Δi(Θit1)Xi,v(Θit1)

+
1

2

( m∑
i=1

(Xi,v(Θit1))
2 − ζ(0)

)
+ x, . . . ,

1

2

m∑
i=1

(Δi(Θitd))
2 +

m∑
i=1

Δi(Θitd)Xi,v(Θitd)

+
1

2

( m∑
i=1

(Xi,v(Θitd))
2 − ζ(0)

)
+ x

)∣∣∣∣∣(ζ(0) = v + 2x).

By (19) it follows that

Δi(Θitj) → 0, ri(q(v)Θitj) → 1

almost surely as v → ∞ for all 1 ≤ i ≤ m, 1 ≤ j ≤ d.
Consequently, the independence of Δi(Θitj) and ζ(0) im-
plies
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(
w(v)(ζ(q(v)t1)− v), . . . , w(v)(ζ(q(v)td)− v)

)
∣∣∣∣∣(ζ(0) = v + x/w(v))

d
=

(
Op(1) + (1 + o(1))

m∑
i=1

Δi(Θit1)Xi(0)

− 1

2

m∑
i=1

(1− (ri(q(v)Θit1))
2)(Xi(0))

2 + x, . . . ,

Op(1) + (1 + o(1))
m∑
i=1

Δi(Θitd)Xi(0)−
1

2
×

m∑
i=1

(1− (ri(q(v)Θitd))
2)Xi(0) + x

)∣∣∣∣∣(ζ(0) = v + 2x).

Furthermore, since (X1(0), . . . , Xm(0)) is a standard Gaus-
sian random vector, we have the stochastic representa-
tion

(X1(0), . . . , Xm(0)) = R(O1, . . . , Om),

where (O1, . . . , Om) is a random vector uniformly dis-
tributed on the unit sphere of Rm being further indepen-
dent of R > 0 which is such that R2 has a chi-square df
with m degrees of freedom. Hence, in view of the indepen-
dence between the random variables (or vectors) we con-
clude that(

w(v)(ζ(q(v)t1)− v), . . . , w(v)(ζ(q(v)td)− v)

)
∣∣∣∣∣(ζ(0) = v + x/w(v))

d
=

(
Op(1) +

√
v + 2x

m∑
i=1

Δi(Θit1)Oi

− 1

2
(v + 2x)

m∑
i=1

(1− (ri(q(v)Θit1))
2)O2

i + x, . . . ,

Op(1) +
√
v + 2x

m∑
i=1

Δi(Θitd)Oi −
1

2
(v + 2x)×

m∑
i=1

(1− (ri(q(v)Θitd))
2)O2

i + x

)∣∣∣∣∣(R2 = v + 2x)

d→
(

m∑
i=1

Zi(C
1/α
i Θit1)Oi −

m∑
i=1

CiO
2
iΘ

α
i t

α
1 + x, . . . ,

m∑
i=1

Zi(C
1/α
i Θitd)Oi −

m∑
i=1

CiO
2
iΘ

α
i t

α
d + x

)

as v → ∞, where Zi, Oi, 1 ≤ i ≤ m,Θ are independent
random elements. Consequently, Theorem 2.3 implies the

weak convergence of finite dimensional distributions

1

2
(ζ(q(v)t)− v)

∣∣∣(ζ(0) > v)
d→

Z̃(t) :=

m∑
i=1

Zi(C
1/α
i Θit)Oi −

m∑
i=1

CiO
2
iΘ

α
i t

α + E,

where E is a unit exponential rv which is further indepen-
dent of all the other random elements. Note that if Ci = C ∈
(0,∞), 1 ≤ i ≤ m andΘ has all components equal to 1, then

Z̃(t)
d
= Z(C1/αt)− Ctα + E, t ≥ 0,

which agrees with the findings of [7].

Define the sojourn time of the process ζ above a level v
in the interval [0, t] by

Lt(v) =

∫ t

0

1(ζ(s) > v) ds, t > 0,(20)

where 1(·) is the indicator function. By checking the As-
sumptions in Theorem 3.1 in [7] (as it was done in Theo-
rem 10.1 therein), we obtain the following Berman’s sojourn
limit theorem for the time-changed stationary chi-square
processes.

Proposition 4.1. Let {ζ(t), t ≥ 0} be the time-changed
stationary chi-square process with covariance functions sat-
isfying (19), and let Lt(v) be defined as in (20). Then, for
all t > 0 small enough

lim
v→∞

∫ ∞

x

P
{
v1/αLt(v) > y

}
v1/αE{Lt(v)}

dy = B(x)(21)

holds at all continuity points x > 0 of B(x) =

P{
∫∞
0

1(Z̃(s) > 0) ds > x}.

Our next result concerns the tail asymptotics of the
supremum of ζ(t) over a fixed interval [0, T ]. See [22] and the
references therein for recent developments in this direction.

Proposition 4.2. Let {ζ(t), t ≥ 0} be the time-changed
stationary chi-square process with covariance functions sat-
isfying (19). Then, for any T > 0

P

{
sup

t∈[0,T ]

ζ(t) > v

}
= Hα[C1, . . . , Cm]

21−m/2T

Γ(m/2)
×

v
1
α+m

2 −1 exp
(
−v

2

)
(1 + o(1)),(22)

as v → ∞, where Γ(·) denotes the Euler Gamma function
and

Hα[C1, . . . , Cm] = lim
a↓0

1

a
P

{
sup
k≥1

Z̃(ak) ≤ 0

}
∈ (0,∞).
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Maxima of perturbed chi-square triangular arrays:
We write below Hλ for the bivariate Hüsler-Reiss max-

stable df defined as

Hλ(x, y) = exp

(
−e−xΦ

(√λ

2
+

y − x√
λ

)
− e−yΦ

(√λ

2
+

x− y√
λ

))
, x, y ∈ R,

with λ ∈ (0,∞) the dependence parameter, and Φ the stan-
dard Gaussian df. This distribution appeared initially in [9],
and was later studied in [28]. It follows that the pdf hλ of
Hλ can be written as

hλ(x, y) = e−xHλ(x, y)

(
1√
λ
ϕ
(√λ

2
+

y − x√
λ

)
(23)

+ e−yΦ
(√λ

2
+

y − x√
λ

)
Φ
(√λ

2
+

x− y√
λ

))
, x, y ∈ R,

with ϕ the pdf of Φ.

Let (X
(n)
i1 , X

(n)
i2 ), 1 ≤ i ≤ n, n ≥ 1 be a bivariate

Gaussian triangular array. Assume that, for any n ≥ 1,

(X
(n)
i1 , X

(n)
i2 ), 1 ≤ i ≤ n are independent bivariate Gaus-

sian random vectors with N(0, 1) marginals and correlation
ρn ∈ (−1, 1)/{0}. The seminal contribution [28] shows that

the componentwise maxima of (X
(n)
i1 , X

(n)
i2 ), 1 ≤ i ≤ n is

attracted by Hλ if the Hüsler-Reiss condition

lim
n→∞

4 lnn(1− ρn) = λ ∈ [0,∞)(24)

holds. Let Hn denote the joint df of a bivariate chi-square

random vector (ζ
(n)
1 , ζ

(n)
2 ) as defined in (2), where in (1)

we put ρn ∈ (−1, 1)/{0} instead of ρ. In [24] the result of
[28] was extended to chi-square case proving that under the
condition (24) (set below tn(x) = anx+ bn)

lim
n→∞

sup
x,y∈R

∣∣∣∣∣(Hn(tn(x), tn(y)))
n −Hλ(x, y)

∣∣∣∣∣ = 0,(25)

with an = 2 and

bn = 2 lnn+ (m− 2) ln(lnn)− 2 ln Γ(m/2).(26)

Later on, in Theorem 2.2 in [25] the same result for a per-
turbed chi-square vector was obtained, where the Gaussian
assumption on Xi1, 1 ≤ i ≤ m in (2) is removed. Instead
therein both marginals Hn,j , i = 1, 2 of Hn are assumed to
be in the GMDA, i.e.,

lim
n→∞

sup
x∈R

∣∣∣∣∣(Hn,j(tn(x)))
n − exp(− exp(−x))

∣∣∣∣∣ = 0(27)

for j = 1, 2, where

an = 1/w(bn) = 2(1 + o(1)), bn = G−1(1− 1/n),(28)

with G = Hn,1 the df of ζ
(n)
1 , and further the Hüsler-Reiss

condition

lim
n→∞

2
bn
an

(1− ρ2n) = λ ∈ [0,∞)(29)

holds. Under the conditions (28) and (29), we have by (15)
and Remarks 2.5, b) that

nP
{
ζ
(n)
1 > tn(x), ζ

(n)
2 > tn(y)

}
=

P
{
ζ
(n)
1 > tn(x)

}
P
{
ζ
(n)
1 > bn

} ×

P

{
ζ
(n)
2 − tn(x)

an
> y − x

∣∣∣ζ(n)1 > tn(x)

}
(1 + o(1))

→ exp(−x)P
{√

λV − λ/2 + E > y − x
}

as n → ∞, where V is an N(0, 1) rv independent of the unit
exponential rv E. This together with (27) implies (25), and
thus the claim of Theorem 2.2 in [25] follows. The result
stated in (14) can be utilised to extend the convergence of
dfs (25) to a convergence of the corresponding pdfs; see e.g.,
[15] for discussions on the convergence of densities.

Proposition 4.3. Let (ζ
(n)
1 , ζ

(n)
2 ), n ≥ 1 be a family of bi-

variate chi-square random vectors defined as in (2) with
joint df Hn(x, y), where in (1) we put ρn ∈ (−1, 1)/{0}
instead of ρ. If (29) is satisfied with an and bn in (26)

and ĥn(x, y) is the pdf of (Hn(tn(x), tn(y)))
n with tn(x) =

anx+ bn, then

lim
n→∞

ĥn(x, y) = hλ(x, y)(30)

holds for any x, y ∈ R.

Aggregation of log-chi risks:

Let k ≥ 2, and define ζ := (ζ1, . . . , ζk) to be a k-
dimensional chi-square risk with m degrees of freedom de-
fined as in (6) where Wij in (5) has variance 1− ρ2j ∈ (0, 1)
for any 1 ≤ i ≤ m, 1 ≤ j ≤ k−1. Define further I1, . . . , Ik to
be iid Bernoulli rvs with P {Ii = 1} = p = 1 − P {Ii = −1}
and p ∈ (0, 1], which are independent of ζ. For any constants
σj > 0, μj ∈ R, 1 ≤ j ≤ k, define a k-dimensional log-chi
risk Z = (Z1, . . . , Zk) by

Zj = exp(σjIj
√
ζj + μj), 1 ≤ j ≤ k.

The introduction of log-chi risks is motivated by [3] where
log-normal risks were considered, which are retrieved when
m = 1 and p = 1/2. As a generalization of the result therein,
we obtain the asymptotics of the aggregated log-chi risks.

Proposition 4.4. Let Z1, . . . , Zk be log-chi risks with m
degrees of freedom as above. Let σ̃ := σ1 ≥ σ2 ≥ · · · ≥ σk >
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0, μ̃ = max1≤j≤k:σj=σ̃ μj, and Jk = �{1 ≤ j ≤ k : σj =
σ̃, μj = μ̃}. Then

P

⎧⎨⎩
k∑

j=1

Zj > u

⎫⎬⎭ =
pJk

2m/2−1Γ(m/2)σ̃m−2
×(31)

(lnu− μ̃)m−2 exp

(
− (lnu− μ̃)2

2σ̃2

)
(1 + o(1))

as u → ∞.

Note in passing that the tail asymptotics of the
maximum max1≤j≤k Zj can be further shown to be tail-

equivalent with the total risk
∑k

j=1 Zj ; see [16] for more
examples on this topic.

5. PROOFS

Proof of Theorem 2.1. For any v > 0 we have(
ζ2 − ρ21v

2ρ1
√
v

, . . . ,
ζk+1 − ρ2kv

2ρk
√
v

)
d
=(∑m

i=1(ρ1Xi1 +Wi1)
2 − ρ21v

2ρ1
√
v

, . . . ,

∑m
i=1(ρkXi1 +Wik)

2 − ρ2kv

2ρk
√
v

)
d
=(

2ρ1
∑m

i=1 Xi1Wi1 +
∑m

i=1 W
2
i1

2ρ1
√
v

, . . . ,

2ρk
∑m

i=1 Xi1Wik +
∑m

i=1 W
2
ik

2ρk
√
v

)
.

Since further by the independence of (X11, . . . , Xm1) and
the Gaussian random matrix W we have(

m∑
i=1

Xi1Wi1, . . . ,

m∑
i=1

Xi1Wik

)∣∣∣∣(ζ1 = v)
d
=

(√√√√ m∑
i=1

X2
i1W1, . . . ,

√√√√ m∑
i=1

X2
i1Wk

)∣∣∣∣(ζ1 = v)(32)

d
= (

√
vW1, . . . ,

√
vWk),(33)

where (32) can be established by checking the charac-
teristic functions of the rvs on both sides; see e.g., [23].
Thus, the first claim follows immediately by the fact that∑m

i=1 W
2
ij/

√
v

p→ 0 for any 1 ≤ j ≤ k.
Next, the assumption thatG of ζ1 is in the GMDA implies

limv→∞ vw(v) = ∞ and the convergence in distribution

w(v)(ζ1 − v)|(ζ1 > v)
d→ E, v → ∞.

By the above we obtain (set vz := v + z/w(v))

P
{ζ2 − ρ21v

2ρ1
√
v

≤ x1, . . . ,
ζk+1 − ρ2kv

2ρk
√
v

≤ xk∣∣∣∣ζ1 = v + z/w(v)
}

= P
{ζ2 − ρ21vz + ρ21z/w(v)

2ρ1
√
vz

√
vz/v ≤ x1, . . . ,

ζk+1 − ρ2kvz + ρ2kz/w(v)

2ρk
√
vz

√
vz/v ≤ xk

∣∣∣∣ζ1 = vz

}
(8)
= P

{ζ2 − ρ21vz
2ρ1

√
vz

+ ρ1cz ≤ x1, . . . ,

ζk+1 − ρ2kvz
2ρk

√
vz

+ ρkcz ≤ xk

∣∣∣∣ζ1 = vz

}
(1 + o(1))

→ P {W1 ≤ x1 − ρ1cz, . . . ,Wk ≤ xk − ρkcz}

as v → ∞, where the convergence holds uniformly with re-
spect to z ∈ R, meaning that we can substitute z by zv, v > 0
satisfying limv→∞ zv = z ∈ R in the above. Consequently,
in view of Lemma 4.2 in [19], we obtain

P

{
ζ2 − ρ21v

2ρ1
√
v

≤ x1, . . . ,
ζk+1 − ρ2kv

2ρk
√
v

≤ xk

∣∣∣∣ζ1 > v

}
=

∫ ∞

v

P

{
ζ2 − ρ21v

2ρ1
√
v

≤ x1, . . . ,
ζk+1 − ρ2kv

2ρk
√
v

≤ xk∣∣∣∣ζ1 = s

}
dG(s)/(1−G(v))

=

∫ ∞

0

P

{
ζ2 − ρ21v

2ρ1
√
v

≤ x1, . . . ,
ζk+1 − ρ2kv

2ρk
√
v

≤ xk(34)

∣∣∣∣ζ1 = v + z/w(v)

}
dG(v + z/w(v))/(1−G(v))

(8)→
v→∞

∫ ∞

0

P {W1 ≤ x1 − ρ1cz, . . . ,Wk ≤ xk − ρkcz}

× exp(−z) dz,

= P {U1 + ρ1cE ≤ x1, . . . , Uk + ρkcE ≤ xk} ,

establishing the proof. �
Proof of Theorem 2.3. First note that (12) implies as

v → ∞

w(v)(v − ρ2j,vv) = 2vw(v)(1− ρj,v)(1 + o(1)) = λj/2

for 1 ≤ j ≤ k. Further, the scaling function w(·) is self-
neglecting, i.e.,

lim
v→∞

w(v + x/w(v))

w(v)
= 1, ∀x ∈ R.

Therefore, the claim of statement i) follows by the assump-
tion (13) and the convergence in distribution
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(
w(v)(ζ2,v − ρ21,vv), . . . , w(v)(ζk+1,v − ρ2k,vv)

)
∣∣∣(ζ1 = v)

d→ (2U1, . . . , 2Uk),

which can be confirmed as in (33), with the aid of the as-
sumption (13). The claim of statement ii) can be estab-
lished using similar arguments as in (34). This completes the
proof. �

Proof of Proposition 4.3. Denote by hn(x, y) the pdf
ofHn(x, y) and write hn,j , j = 1, 2 for its marginal pdfs. Fur-

ther, write hn(·|x) for pdf of ζ(n)2 |ζ(n)1 = x. By Theorem 2.3
and Remarks 2.5 b) we have for any x, y ∈ R

lim
n→∞

P
{
ζ
(n)
2 ≤ tn(y)|ζ(n)1 = tn(x)

}
=P

{
V ≤

√
λ

2
+

y − x√
λ

}
,

with V an N(0, 1) rv. By symmetry

lim
n→∞

P
{
ζ
(n)
1 ≤ tn(x)|ζ(n)2 = tn(y)

}
=P

{
V ≤

√
λ

2
+

x− y√
λ

}
.

Consequently, since limn→∞(Hn(tn(x), tn(y)))
n = Hλ(x, y)

ĥn(x, y) = a2nn(Hn(tn(x), tn(y)))
n−1hn(tn(y)|tn(x))

×hn,1(tn(x)) + a2nn(n− 1)(Hn(tn(x), tn(y)))
n−2

×hn,1(tn(x))hn,2(tn(y))P
{
ζ
(n)
2 ≤ tn(y)|ζ(n)1 = tn(x)

}
×P
{
ζ
(n)
1 ≤ tn(x)|ζ(n)2 = tn(y)

}
= (1 + o(1))Hλ(x, y)

[
anhn(tn(y)|tn(x))annhn,1(tn(x))

+ e−x+yP

{
V ≤

√
λ

2
+

y − x√
λ

}
P

{
V ≤

√
λ

2
+

x− y√
λ

}]
.

Since G is a chi-square df we have limn→∞ nanhn1(tn(x)) =
exp(−x). Further, in the light of Remarks 2.5 c) we obtain
that

lim
n→∞

anhn(tn(y)|tn(x)) = g(y|x),

with g(·|x) the pdf of
√
λV − λ/2 + x, implying thus

lim
n→∞

ĥn(x, y) = e−xHλ(x, y)

[
1√
λ
ϕ(

√
λ

2
+

y − x√
λ

)

+ e−yΦ(

√
λ

2
+

y − x√
λ

)Φ(

√
λ

2
+

x− y√
λ

)

]
= hλ(x, y),

hence the proof is complete. �
Proof of Proposition 4.4. The proof is based on The-

orem 4.2 in [30]. Let Z̃ = exp(σ̃I1
√
ζ1 + μ̃). Since ζ1 is

a chi-square df with m degrees of freedom, it follows that
(e.g., [23])

P
{
Z̃ > u

}
=

p

2m/2−1Γ(m/2)σ̃m−2
(lnu− μ̃)m−2

× exp

(
− (lnu− μ̃)2

2σ̃2

)
(1 + o(1))

as u → ∞, implying that Z̃ has df in the GMDA with scaling
function w(x) = (lnx)/(σ̃2x). Since further limx→∞ w(x) =
0, in view of Theorem 4.2 in [30] we conclude the claim by
checking Assumptions 2.3–2.5 therein. In our setup it suf-
fices to show these assumptions for k = 2. For the simplicity
of presentation, we assume further that σ1 = σ2 = 1, p = 1
and μ1 = μ2 = 0. For any a > 0 we have

P {w(u)Z2 > a|Z1 > u} = P
{
Z2 > au/ lnu

∣∣∣Z1 > u
}

v=(lnu)2

= P
{
ζ2 > (ln a+

√
v − ln

√
v)2
∣∣∣ζ1 > v

}
= P

{
ζ2 − ρ21v√

v
>

√
v
[(

1 + (ln a− ln
√
v)/

√
v
)2

− ρ21

]
∣∣∣ζ1 > v

}
→ 0

as u → ∞, where the last convergence follows from Theo-
rem 2.1 and the fact that ρ21 < 1, hence Assumption 2.3 and
Assumption 2.4 (by symmetry) in [30] hold. The Assump-
tion 2.5 in [30] follows if we show that

P {min(Z1, Z2) > u/ lnu}
P {Z1 > u} =

P {min(ζ1, ζ2) > v∗}
P {ζ1 > (lnu)2} → 0

as u → ∞, where v∗ = (lnu − ln lnu)2 = (lnu)2(1 + o(1)).
By the definition of (ζ1, ζ2) we have the stochastic represen-
tation

ζ1 + ζ2
d
= (1 + ρ1)

m∑
i=1

W 2
i + (1− ρ1)

2m∑
i=m+1

W 2
i ,

where Wi, 1 ≤ i ≤ 2m are iid N(0, 1) rvs. Let X =
(X11, X12, X21, X22, · · · , Xm1, Xm2). The last formula fol-
lows by the fact that the covariance matrix Σ of X can be
written as Σ = Adiag(λ1, · · · , λ2m)A	, where λ1 = · · · =
λm = 1−ρ1, λm+1 = · · · = λ2m = 1+ρ1, and A ∈ Rm×m is
some orthogonal matrix. Without loss of generality we may
assume that ρ1 > 0. Let c := 2/(1 + ρ1) > 1. We have

P {min(ζ1, ζ2) > u} ≤ P {ζ1 + ζ2 > c(1 + ρ1)u}

= (1 + 1/ρ1)
m/2 2

1−mcm/2−1

Γ(m/2)
um/2−1

× exp
(
−cu

2

)
(1 + o(1))

as u → ∞; see e.g., [23]. Consequently,

lim
u→∞

P {min(Z1, Z2) > u/ lnu}
P {Z1 > u}
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≤ lim
v→∞

P {ζ1 + ζ2 > c(1 + ρ1)v
∗}

P {ζ1 > v∗(1 + o(1))} = 0

and thus the proof is complete. �
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APPENDIX

In this section we first present the proof of (18) and then
give a direct proof of (3).

For notational simplicity we consider only the case k = 2.
We have, for any v in the support of ζ1(

ζ2, ζ3

)∣∣∣(ζ1 = v)

d
=
( m∑
i=1

(ρ1Xi1 +Wi1)
2,

m∑
i=1

(ρ2Xi1 +Wi2)
2
)∣∣∣∣∣(ζ1 = v)

d
=

(
ρ21v + 2ρ1

m∑
i=1

Xi1Wi1 +

m∑
i=1

W 2
i1,

ρ22v + 2ρ2

m∑
i=1

Xi1Wi2 +

m∑
i=1

W 2
i2

)∣∣∣∣∣(ζ1 = v).

The assumption that (W1j , . . . ,Wmj)
d
= RjOj , j = 1, 2 im-

plies for any v in the support of ζ1(
ζ2, ζ3

)∣∣∣(ζ1 = v)

d
=

(
ρ21v + 2ρ1R1O11

√√√√ m∑
i=1

X2
i1 +R2

1,

ρ22v + 2ρ2R2O12

√√√√ m∑
i=1

X2
i1 +R2

2

)∣∣∣∣∣(
m∑
i=1

X2
i1 = v

)
d
=

(
ρ21v + 2ρ1R1O11

√
v +R2

1,

ρ22v + 2ρ2R2O21

√
v +R2

2

)
d
=
( m∑
i=1

(ρ1ui +Wi1)
2,

m∑
i=1

(ρ2ui +Wi2)
2
)

for any ui, i ≤ m such that
∑m

i=1 u
2
i = v, where in the first

equality in distribution we used the same technique as in
(17). Hence the claim of (18) follows.

Next, we show the proof of (3). In view of [29] (see also
[31]), we have the stochastic representation

(ζ1, ζ2)
d
= (Um, Vm),

where (set N = m+ 1)

Um =

N∑
i=1

(
Xi1 −XN1

)2
, Vm =

N∑
i=1

(
Xi2 −XN2

)2
and

XN1 :=

N∑
i=1

Xi1

N
, XN2 :=

N∑
i=1

Xi2

N
,

which follow from the facts that (Um, Vm) is independent
of (XN1, XN2), and (XN1

√
N,XN2

√
N) has the same df as

(X11, X12). From equation (3) in [31] we have the following
expression for the pdf hm of (Um, Vm):

hm(u, v) =
(uv)m/2−1

2m(Γ(m/2))2 (ρ2∗)
m/2

exp
(
−u+ v

2ρ2∗

)
× 0F1

(
;
m

2
;
ρ2uv

(2ρ2∗)
2

)
, ∀u, v ∈ (0,∞),(35)

where ρ∗ :=
√
1− ρ2 and 0F1(; a;x) =

∑∞
n=0

Γ(a+n)
Γ(a)

xn

n! . By

(35) the pdf gm(x|v), x ∈ R of the conditional rv

Z∗
v =

ζ2 − ρ2v

ρ∗
√
v

∣∣∣(ζ1 = v)

is given by (set xρ := ρ̃x
√
v + ρ2v where ρ̃ := 1− ρ2)

gm(x|v) = ρ̃
√
v

Γ(m/2)(2ρ̃)m/2
x(m−2)/2
ρ exp

(
−x

√
v

2

)

× exp

(
−ρ2v

ρ̃

)
0F1

(
;
m

2
;
ρ2vxρ

(2ρ̃)2

)
.

Utilising the well-known asymptotic expansion

0F1(;m; z) =
Γ(m)

2
√
π
z1/4−m/2 exp(2

√
z)
(
1 +O(1/

√
z)
)

as z → ∞, we can further write as v → ∞

gm(x|v) = ρ̃
√
v

Γ(m/2)(2ρ̃)m/2
x(m−2)/2
ρ exp

(
−x

√
v

2

)

× exp

(
−ρ2v

2ρ̃

)
Γ(m/2)

2
√
π

(
ρ2vxρ

(2ρ̃)2

)(1−m)/4

× exp

((
ρ2vxρ

ρ̃2

)1/2)
(1 + o(1))

=
1

2
√
π

√
vρ̃√

2ρ̃ρv
exp

(
−x

√
v

2

)
exp

(
−ρ2v

ρ̃

)

× exp

(
ρ2v

ρ̃

(
1 +

ρ̃x

ρ2
√
v

)1/2)
(1 + o(1))
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=
1

2
√
π

√
ρ̃√
2ρ

exp

(
−x

√
v

2

)
exp

(
−ρ2v

ρ̃

)

× exp

(
ρ2v

ρ̃

(
1 +

ρ̃x

2ρ2
√
v
− 1

8

ρ̃2x2

ρ4v
+ o(v)

))
(1 + o(1))

=
1√
2π

√
ρ̃

2
√
ρ
exp

(
− ρ̃x2

8ρ2
+ o(v)

)
(1 + o(1))

=
1√
2π

√
ρ̃

2
√
ρ
exp

(
− ρ̃x2

8ρ2

)
(1 + o(1)).

Consequently, for any x ∈ R

P

{
ζ2 − ρ2v

2ρ
√
1− ρ2

√
v
≤ x
∣∣∣ζ1 = v

}

= P

{
Z∗
v ≤ 2ρx√

1− ρ2

}
→ P {W1 ≤ x} , v → ∞.

The uniform convergence (in x) of the last formula follows
since both functions on the right and left hand sides are
continuous, bounded and increasing.
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