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Convergence rate of maxima of bivariate Gaussian
arrays to the Hüsler-Reiss distribution

Xin Liao and Zuoxiang Peng
∗

The limit distribution of maxima formed by a triangu-
lar array of independent and identically distributed bivari-
ate Gaussian random vectors is the Hüsler-Reiss max-stable
distribution if and only if the correlation of each vector ap-
proaches one with a certain rate. In this paper, we intro-
duce a second-order condition on the convergence rate of
this correlation. Under this condition we derive the uniform
convergence rate of the distribution of normalized bivariate
maxima to its ultimate limit distribution.
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1. INTRODUCTION

Let {(ξni, ηni), 1 ≤ i ≤ n, n ≥ 1} be a triangular array of
bivariate Gaussian random vectors, which are independent
for each fixed n. For a given n ≥ 1, let F (x, y) denote the bi-
variate Gaussian distribution function of (ξni, ηni), and the
correlation coefficient of unit Gaussian distributed ξni and
ηni is represented by ρn, 1 ≤ i ≤ n. The bivariate maxima
Mn is defined componentwise by

Mn = (Mn1,Mn2) =

(
max
1≤i≤n

ξni, max
1≤i≤n

ηni

)
.

For fixed x, y ∈ R, [16] showed that

lim
n→∞

P

(
Mn1 ≤ bn +

x

bn
,Mn2 ≤ bn +

y

bn

)
(1.1)

= lim
n→∞

Fn

(
bn +

x

bn
, bn +

y

bn

)
=Hλ(x, y)

if ρn satisfies the following Hüsler-Reiss condition (which is
also the necessary condition, see Lemma 21 in [17])

(1.2) lim
n→∞

b2n(1− ρn) = 2λ2 with λ ∈ [0,∞],

∗Corresponding author.

where the norming constant bn satisfies

(1.3)
√
2πn−1bn exp

(
b2n
2

)
= 1

and Hλ(x, y), the Hüsler-Reiss max-stable distribution, is
given by

Hλ(x, y) = exp

(
−Φ

(
λ+

x− y

2λ

)
e−y(1.4)

−Φ

(
λ+

y − x

2λ

)
e−x

)
,

with Φ(x) denoting the standard Gaussian distribution.
Note that from the discussion in [16],

H0(x, y) = lim
λ↓0

Hλ(x, y) = Λ(min(x, y))

and

H∞(x, y) = lim
λ↑∞

Hλ(x, y) = Λ(x)Λ(y),

where Λ(x) = exp(−e−x), x ∈ R, the standard Gumbel dis-
tribution function. We say that {ξni, 1 ≤ i ≤ n, n ≥ 1} and
{ηni, 1 ≤ i ≤ n, n ≥ 1} are asymptotic complete dependent
and independent if (1.1) holds with H0(x, y) and H∞(x, y),
respectively.

Motivated by the seminal work of [16], numerous con-
tributions on limiting distributions of extremes of bivariate
triangular arrays have appeared in the literature. [15] de-
rived general results for asymptotic dependence structures
of bivariate maxima in a triangular array of independent
random vectors. [14] considered the maxima of independent
and identically distributed bivariate Gaussian random vec-
tors with respect to two arbitrary directions. [9, 10] extended
the results to the case of triangular arrays of independent
elliptical random vectors. Related results can be found in
[4, 11, 12]. For statistical applications of Hüsler-Reiss distri-
butions, see [5].

In this paper, we are interested in the uniform conver-
gence rate of bivariate maxima Mn to its ultimate Hüsler-
Reiss max-stable distribution. For the univariate case, [3]
considered the uniform convergence rate of maxima to its
extreme value distribution by imposing some second order
regular variation conditions. For the extreme value distri-
butions of given distributions and their associated uniform
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convergence rates, we refer to [7, 8, 19, 21] and references
therein. There are relatively few studies on the convergence
rates of extremes under multivariate settings. [2] consid-
ered the convergence rates of bivariate extreme order statis-
tics under second-order regular varying conditions. For bi-
variate Hüsler-Reiss Gaussian sequences, recently [6] con-
sidered the penultimate and ultimate convergence rate of
(n(max1≤i≤n Φ(ξni)− 1), n(max1≤i≤n Φ(ηni)− 1)), and [13]
derived the second order expansions of the distribution of
normalized Mn under the following second order Hüsler-
Reiss condition

(1.5) lim
n→∞

b2n(λn − λ) = α ∈ R

with λn = ( 12b
2
n(1 − ρn))

1/2 and λ ∈ (0,∞). So far, there
are no results in the literature concerning the uniform con-
vergence rate of the distribution of normalized Mn to its
ultimate extreme value distribution. The main goal of this
paper is to derive such a result, filling the gap in the current
literature. Our proofs show that, for the Hüsler-Reiss Gaus-
sian triangular array, establishing the uniform convergence
rate is more technical and complicated than the higher-order
expansions of distribution of normalized Mn.

The rest of this paper is organized as follows. In Section
2, we provide the main results, and all proofs are given in
Section 3. Auxiliary lemmas and their proofs are deferred to
Appendix A.

2. MAIN RESULTS

In this section, we provide the main results which show
that the uniform convergence rate of Fn(bn + x/bn, bn +
y/bn) to its ultimate Hüsler-Reiss max-stable distribution is
of order O(1/ log n). For notational simplicity, let

Δ(Fn, Hλ;x, y) = Fn(bn + x/bn, bn + y/bn)−Hλ(x, y).

For the case of λ ∈ (0,∞), the following theorem establishes
the uniform convergence rate under the second-order Hüsler-
Reiss condition (1.5).

Theorem 1. For the triangular array of bivariate Gaussian
random vectors with each vector following distribution F ,
assume that the second order Hüsler-Reiss condition (1.5)
holds with λn = ( 12b

2
n(1 − ρn))

1/2 and λ ∈ (0,∞). Then
there exist absolute constants 0 < D1 < D2 such that

(2.1)
D1

logn
< sup

(x,y)∈R2

∣∣∣Δ(Fn, Hλ;x, y)
∣∣∣ < D2

logn

for n ≥ 2.

Remark 1. (i). Condition (1.5) is equivalent to

lim
n→∞

(log n)(λn − λ) = α/2

since b2n ∼ 2 logn as n → ∞ due to

bn = (2 logn)1/2 − log log n+ log 4π

2(2 logn)1/2
+ o

(
1

(log n)1/2

)
by (1.3), see, e.g., [18, 22].

(ii). Let δn = (λn − λ)−1. If (1.5) does not converge but
|δn| and b2n are the same order, then (2.1) also holds. Proofs
are similar, and details are omitted here.

(iii). If limn→∞ b2n/|δn| = ∞, with arguments similar to
that of Theorem 1, we can show that

(2.2)
D3

|δn|
< sup

(x,y)∈R2

∣∣∣Δ(Fn, Hλ;x, y)
∣∣∣ < D4

|δn|

for n ≥ 2, where 0 < D3 < D4 are absolute constants.
(iv). Conversely, for the bivariate Gaussian triangular ar-

rays with correlations {ρn} satisfying (1.2), we have the fol-
lowing assertions: (a). If (2.1) holds, then every subsequence
of b2n/δn, denoted by b2n′/δn′ , satisfies (1.5), or b2n′ and |δn′ |
are the same order; (b). If (2.2) holds, then every subse-
quence of b2n/δn satisfies limn→∞ b2n′/|δn′ | = ∞, or b2n′ and
|δn′ | are the same order.

Remark 2. (i). For the case of λ ∈ (0,∞), if (1.5) does not
converge, and δn and b2n are not the same order, there may
be no convergence rates for the extremes. An example is:
suppose that the bivariate Gaussian triangular arrays have
correlations {ρn} satisfying (1.2). Furthermore, assume that
limn→∞ b22n/δ2n = 0 and limn→∞ b22n+1/δ2n+1 = ∞. Hence
by Theorem 1 and Remark 1 (iii), we have

D1

log 2n
< sup

(x,y)∈R2

∣∣∣Δ(F 2n, Hλ;x, y)
∣∣∣ < D2

log 2n

and

D3

δ2n+1
< sup

(x,y)∈R2

∣∣∣Δ(F 2n+1, Hλ;x, y)
∣∣∣ < D4

δ2n+1

for n ≥ 1.
(ii). The situation that limn→∞ b2n/|δn| = ∞ is the one

that we are not so interested in since (2.2) shows that the
convergence rate 1/|δn| is related to correlation ρn and pa-
rameter λ.

Theorem 1 and the following remark show that the rate
of convergence with norming constant bn given by (1.3) is
optimal comparing with that with norming constant βn de-
noted by (2.3) even though bn − βn = o(1/(logn)1/2) by
Remark 1.

Remark 3. (i). Assume that the triangular array of bi-
variate Gaussian random vectors satisfies the second-order
Hüsler-Reiss condition (1.5) with α ∈ R. If the norming
constant bn is replaced by βn given by

(2.3) βn = 2(logn)1/2 − log logn+ log 4π

2(2 log n)1/2
,
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we can prove that

Δ̃(Fn, Hλ;x, y)(2.4)

=Fn(βn + x/βn, βn + y/βn)−Hλ(x, y)

∼
[
Φ

(
λ+

x− y

2λ

)
e−y +Φ

(
λ+

y − x

2λ

)
e−x

]

× (log logn)2

16 logn
Hλ(x, y)

as n → ∞ for all x, y ∈ R, from which shows that the con-
vergence rate is no better than (log logn)2/(16 logn).

(ii). Under the second-order Hüsler-Reiss condition (1.5)
with α = ±∞, we have

Δ̃(Fn, Hλ;x, y)(2.5)

=

[
(log log n)2

16 logn

(
Φ

(
λ+

x− y

2λ

)
e−y

+Φ

(
λ+

y − x

2λ

)
e−x

)
(1 + o(1))

− (λn − λ)2e−xϕ

(
λ+

x− y

2λ

)
(1 + o(1))

]
Hλ(x, y)

as n → ∞ for all x, y ∈ R, where the norming constant βn

is given by (2.3). By (2.5), we can see that the convergence
rate is no better than max{(log logn)2/(16 logn), |λn − λ|}.

For the two extreme cases λ = 0 and λ = ∞, we need
to deal with them separately. For the case of λ = ∞, the
results are stated as follows.

Theorem 2. Let norming constant bn be given by (1.3).
For ρn ∈ [−1, 1),

(i). assertion (2.1) holds if ρn ∈ [−1, 0].
(ii). if ρn ∈ (0, 1), assume that (1.2) holds with λ = ∞ and

(log bn)/((1 − ρn)b
2
n) → 0 as n → ∞, then (2.1) also

holds.

For the case of λ = 0, we have the following results.

Theorem 3. Let norming constant bn be given by (1.3).
For ρn ∈ (0, 1],

(i). assertion (2.1) holds if ρn ≡ 1 for all large n.
(ii). if ρn ∈ (0, 1), assume that b10n (1 − ρn) → c ∈ [0,∞) as

n → ∞, then (2.1) also holds.

Remark 4. For the case of ρn ∈ (0, 1), the proofs of Theo-
rem 2 and Theorem 3 depend heavily on Berman’s inequal-
ity. In order to derive the upper bound based on Berman’s
inequality, some sufficient conditions are needed. The con-
dition in Theorem 2 requires that (1 − ρn)b

2
n converges to

infinity faster than log bn; The condition imposed on Theo-
rem 3(ii) implies that (1.2) holds with λ = 0.

3. PROOFS

The aim of this section is to prove our main results. In
the sequel, we rewrite Hλ(x, y) as
(3.1)

Hλ(x, y) = exp

(
−e−x −

∫ ∞

y

Φ

(
λ+

x− z

2λ

)
e−zdz

)
.

For notational simplicity, throughout this paper let

un(z) = bn + z/bn, z ∈ R,

An = b2n

(
λn

(
1− λ2

n

b2n

)− 1
2

− λ

)
,

Bn =
1

2
b2n

(
1

λn

(
1− λ2

n

b2n

)− 1
2

− 1

λ

)
and

Cn = λn

(
1− λ2

n

b2n

)− 1
2

,

where the norming constant bn is given by (1.3) and λn =
(b2n(1−ρn)/2)

1/2. If the second-order Hüsler-Reiss condition
(1.5) holds with λ ∈ (0,∞), it is easy to check that

(3.2) An → 1

2
λ3 + α, Bn → −1

2
αλ−2 +

1

4
λ, Cn → λ

as n → ∞.

Proof of Theorem 1. By Lemma 1 and Lemma 3 in Ap-
pendix A and b2n ∼ 2 logn as n → ∞, for fixed x, y ∈ R we
have

Δ(Fn, Hλ;x, y) ∼
(
e−x

(
1 + x+

1

2
x2

)
+

1

2
κ3(x, y) + κ1(x, y)

)
× (2 logn)−1Hλ(x, y)

as n → ∞, where κ1(x, y) and κ3(x, y) respectively are given
by (A.4) and (A.13) in Appendix A. Hence there exists an
absolute constant D1 > 0 such that

sup
(x,y)∈R2

|Δ(Fn, Hλ;x, y)| ≥
D1

logn

for n ≥ 2. Thus we need to show further that

sup
(x,y)∈R2

|Δ(Fn, Hλ;x, y)| ≤
D2

logn
(3.3)

for n ≥ 2, where D2 is an absolute constant. By Lemma 4 in
Appendix A, it suffices to prove the following inequalities:

sup
(x,y)∈[−cn,dn]×[−cn,dn]

|Δ(Fn, Hλ;x, y)| ≤ D2b
−2
n ,(3.4)
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sup
(x,y)∈[−cn,dn]×[dn,∞)

|Δ(Fn, Hλ;x, y)| ≤ D3b
−2
n ,(3.5)

sup
(x,y)∈[dn,∞)×[dn,∞)

|Δ(Fn, Hλ;x, y)| ≤ D4b
−2
n(3.6)

for n ≥ n0 since both

(3.7) sup
(x,y)∈R×(−∞,−cn]

|Δ(Fn, Hλ;x, y)| ≤ D1b
−2
n

and

(3.8) sup
(x,y)∈[dn,∞)×[−cn,dn]

|Δ(Fn, Hλ;x, y)| ≤ D3b
−2
n

also hold by the arguments similar to those used in (A.20)
and (3.5), where Di > 0, 2 ≤ i ≤ 4, are absolute constants,
and cn and dn are given by Lemma 2 in Appendix A, i.e.,

cn = log log bn > 0, dn = − log log
b2n

b2n − 1
> 0

for n ≥ n0. Note that x ≥ −cn implies

un(x) ≥ bn − cn
bn

= bn

(
1− log log b2n

b2n

)
> 0, n ≥ n0.

So, the desired upper bound (3.3) can be obtained by (3.4)–
(3.8) and (A.20).

For the rest of the proof, let Ci, 7 ≤ i ≤ 13, stand for
absolute positive constants.

For (x, y) ∈ [−cn,∞) × [−cn,∞), let ψn(x, y) = 1 −
F (un(x), un(y)), then

(3.9) n logF (un(x), un(y)) = −nψn(x, y)−Rn(x, y),

where

0 < Rn(x, y) <
nψ2

n(x, y)

2(1− ψn(x, y))

due to

(3.10) − z − z2

2(1− z)
< log(1− z) < −z, 0 < z < 1.

By (1.3), (A.17) and (A.19),

sup
(x,y)∈[−cn,∞)×[−cn,∞)

ψn(x, y)

≤ 1− F (un(−cn), un(−cn))

=n−1

∫ ∞

−cn

Φ

(
un(−cn)− ρnun(z)√

1− ρ2n

)
e−z exp

(
− z2

2b2n

)
dz

+ 1− Φ(un(−cn))

≤ 1√
2π

(bn − cn
bn

)−1 exp

(
−
(bn − cn

bn
)2

2

)
+ n−1

∫ ∞

−cn

e−zdz

≤n−1(log b2n)
(
1 +

(
1− b−2

n log log b2n
)−1

)
<C7 < 1

for n ≥ n0, which implies

0 < sup
(x,y)∈[−cn,∞)×[−cn,∞)

Rn(x, y)

< sup
(x,y)∈[−cn,∞)×[−cn,∞)

nψ2
n(x, y)

2(1− ψn(x, y))

<b−2
n

for n ≥ n0. Hence by ex ≥ 1 + x, x ∈ R we have

(3.11) 1− exp
(
−Rn(x, y)

)
≤ Rn(x, y) < b−2

n

for n ≥ n0. Hence by (3.11) we have

|Δ(Fn, Hλ;x, y)| <Hλ(x, y)Nn(x, y) |Qn(x, y)− 1|(3.12)

+Hλ(x, y) |Nn(x, y)− 1|
<Hλ(x, y) |Qn(x, y)− 1|+ b−2

n

for n > n0, where

Qn(x, y) = exp
(
− nψn(x, y) + Φ

(
λ+

x− y

2λ

)
e−y

+Φ

(
λ+

y − x

2λ

)
e−x

)
and

Nn(x, y) = exp(−Rn(x, y)).

Note that

(3.13) − n
(
1−Φ(un(x))

)
+ e−x = (1+ b−2

n x)−1e−xZn(x)

with

Zn(x) = − exp

(
− x2

2b2n

)(
1−θnb

−2
n (1+b−2

n x)−2
)
+1+b−2

n x,

where 0 < θn < 1, cf., [7]. By arguments similar to those
used in [7], we have

b−2
n x < Zn(x) < b−2

n

(
2−1x2 + (1 + b−2

n x)−2 + x
)

by 1− z < e−z < 1 for z > 0, which implies

|Zn(x)| < b−2
n

(
2−1x2 + (1 + b−2

n x)−2 + |x|
)
.

Combining with (3.13), we have
(3.14)∣∣∣−n

(
1− Φ(un(x))

)
+ e−x

∣∣∣ < C8b
−2
n e−x

(
x2

2
+ |x|+ C9

)
for n ≥ n0, if x ≥ −cn.

Similarly, for x ≥ −cn we have

∣∣∣∣∣−
∫ ∞

y

Φ

(
un(x)− ρnun(z)√

1− ρ2n

)
e−z exp

(
− z2

2b2n

)
dz

(3.15)
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+

∫ ∞

y

Φ

(
λ+

x− z

2λ

)
e−zdz

∣∣∣∣
<

∫ ∞

y

∣∣∣∣∣Φ
(
un(x)− ρnun(z)√

1− ρ2n

)
− Φ

(
λ+

x− z

2λ

)∣∣∣∣∣ e−zdz

+ b−2
n e−y

(
y2

2
+ y + 1

)
by using |e−x − 1| < x for x > 0.

First, we prove (3.4). Combining (A.9), (3.14) and (3.15),
we have

∣∣∣∣−nψn(x, y) + Φ

(
λ+

x− y

2λ

)
e−y +Φ

(
λ+

y − x

2λ

)
e−x

∣∣∣∣
(3.16)

≤
∣∣∣− n (1− Φ(un(x))) + e−x

∣∣∣+ ∣∣∣∣∫ ∞

y

Φ

(
λ+

x− z

2λ

)
e−zdz

−
∫ ∞

y

Φ

(
un(x)− ρnun(z)√

1− ρ2n

)
e−z exp

(
− z2

2b2n

)
dz

∣∣∣∣∣
≤C8b

−2
n e−x

(x2

2
+ |x|+ C9

)
+ b−2

n e−y

(
y2

2
+ y + 1

)
+ b−2

n

(
e−y(C1|y|+ C2) + C3e

−x|x|+ C4

)
≤ b−2

n

[
C8e

−x

(
x2

2
+

(
1 +

C3

C8

)
|x|+ C9

)
+ e−y

(
y2

2
+ (C1 + 1)|y|+ C2 + 1

)
+ C4

]
for n ≥ n0. Note that

(3.17) e−xx2 ≤ 4, e−xx ≤ 1, for x > 0

and by using (3.16) we have∣∣∣∣−nψn(x, y) + Φ

(
λ+

x− y

2λ

)
e−y +Φ

(
λ+

y − x

2λ

)
e−x

∣∣∣∣
≤C10b

−2
n ≤ 1

for n ≥ n0 and any (x, y) ∈ [0, dn]×[0, dn]. Hence for (x, y) ∈
[0, dn]× [0, dn],

Hλ(x, y) |Qn(x, y)− 1|(3.18)

≤Hλ(x, y)
∣∣∣− nψn(x, y) + Φ

(
λ+

x− y

2λ

)
e−y

+Φ

(
λ+

y − x

2λ

)
e−x

∣∣∣(1 + exp
∣∣∣− nψn(x, y)

+ Φ

(
λ+

x− y

2λ

)
e−y +Φ

(
λ+

y − x

2λ

)
e−x

∣∣∣)
≤C10(e+ 1)b−2

n

since |ex − 1| ≤ |x|(e|x| + 1), x ∈ R.

For the case of (x, y) ∈ [−cn, 0]× [−cn, 0], (3.16) implies∣∣∣∣−nψn(x, y)+Φ

(
λ+

x− y

2λ

)
e−y +Φ

(
λ+

y − x

2λ

)
e−x

∣∣∣∣ ≤ 1

for n ≥ n0. For (x, y) ∈ [−cn, 0]× [−cn, 0],

Hλ(x, y) |Qn(x, y)− 1|(3.19)

≤ (e+ 1)b−2
n

[
C8e

−1− x2

2

(
x2

2
+

(
1 +

C3

C8

)
|x|+ C9

)
+ e−1− y2

2

(
y2

2
+ (C1 + 1)y + C2 + 1

)
+ C4

]
≤C10(e+ 1)b−2

n

for n ≥ n0 by noting that e−t > 1 − t + t2

2 for t < 0, and
t2

2 exp(− t2

2 ) ≤ 1 and t exp(− t2

2 ) ≤ 1 for t > 0.
By arguments similar to those used in (3.18) and (3.19),

for n ≥ n0 we have

Hλ(x, y) |Qn(x, y)− 1| ≤ C10(e+ 1)b−2
n(3.20)

if (x, y) ∈ [0, dn]× [−cn, 0] or (x, y) ∈ [−cn, 0]× [0, dn].
Combining (3.18)–(3.20) and (3.12), we get

sup
(x,y)∈[−cn,dn]×[−cn,dn]

|Fn(un(x), un(y))−Hλ(x, y)| ≤ D2b
−2
n ,

which completes the proof of (3.4).
Second, we consider the case in which (x, y) ∈ [−cn, dn]×

[dn,∞). By (A.10), (3.14) and (3.15), for all y ∈ [dn,∞) we
have∣∣∣∣−nψn(x, y) + Φ

(
λ+

x− y

2λ

)
e−y +Φ

(
λ+

y − x

2λ

)
e−x

∣∣∣∣
≤ b−2

n

(
C8e

−x

(
x2

2
+ |x|+ C9

)
+ (C5 + 4)

)
for n ≥ n0. Thus by the arguments similar to those used in
(3.18) and (3.19), we have

Hλ(x, y) |Qn(x, y)− 1| ≤ C11b
−2
n(3.21)

for n ≥ n0 if (x, y) ∈ [0, dn]× [dn,∞), and

Hλ(x, y) |Qn(x, y)− 1| ≤ C12b
−2
n(3.22)

for n ≥ n0 if (x, y) ∈ [−cn, 0] × [dn,∞). Combining (3.12),
(3.21) and (3.22), we can get (3.5).

Finally, we prove (3.6). Note that dn = − log log
b2n

b2n−1 , we

have

sup
(x,y)∈[dn,∞)×[dn,∞)

(
1−Hλ(x, y)

)
(3.23)

≤ 1−Hλ(dn, dn)

≤ b−2
n + 1− exp

(
−
∫ ∞

dn

e−zdz

)
= 2b−2

n .
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By using (3.11) and ez > 1 + z, z ∈ R, we have

sup
(x,y)∈[dn,∞)×[dn,∞)

(
1− Fn(un(x), un(y))

)
(3.24)

≤nψn(dn, dn) +Rn(dn, dn)

≤ (1 + C13)b
−2
n ,

where the last inequality is due to

nψn(dn, dn)

=

∫ ∞

dn

Φ

(
un(dn)− ρnun(z)√

1− ρ2n

)
e−z exp

(
− z2

2b2n

)
dz

+ n
(
1− Φ(un(dn))

)
<n

(
bn +

dn
bn

)−1
1√
2π

exp

(
−
(bn + dn

bn
)2

2

)
+

∫ ∞

dn

e−zdz

=

(
1 +

dn
b2n

)−1

e−dn exp

(
− d2n
2b2n

)
+ e−dn

<C13b
−2
n

for n ≥ n0 by using (A.17), (A.19) and

b2ne
−dn = b2n

(
− log(1− b−2

n )
)

<b2n

(
b−2
n +

b−4
n

2(1− b−2
n )

)
=1 +

1

2(b2n − 1)

as −z − z2

2(1−z) < log(1− z), 0 < z < 1.

Combining (3.23) with (3.24), we have

sup
(x,y)∈[dn,∞)×[dn,∞)

∣∣∣Δ(Fn, Hλ;x, y)
∣∣∣ ≤ D4b

−2
n

for n ≥ n0, which completes the proof of (3.6). The proof of
Theorem 1 is complete.

Proof of Theorem 2. (i). For the case of ρn ∈ [−1, 0],
we first consider two special cases, ρn ≡ −1 and ρn ≡ 0
respectively, then extend the result to the general case ρn ∈
[−1, 0] by using Slepian’s Lemma.

Note that, for ρn ≡ −1 and ρn ≡ 0, for the upper bound
of (2.1), by Lemma 4 in Appendix A we only need to check
that

(3.25) sup
(x,y)∈[−cn,∞)×[−cn,∞)

∣∣∣Δ(Fn, H∞;x, y)
∣∣∣ < D5b

−2
n

for large n, where cn = log log b2n, and D5 is an absolute
positive constant.

Let (ξ, η) be a bivariate Gaussian random vector with
correlation ρn ≡ 0. By (A.17) and (A.19), for (x, y) ∈
[−cn,∞)× [−cn,∞) we have

nP(ξ > un(x), η > un(y))(3.26)

<
1

√
2πbn exp(

b2n
2 )

(
1 +

x

b2n

)−1 (
1 +

y

b2n

)−1

e−x−y

<b−2
n

bn(log b
2
n)

2(1− log log b2n
b2n

)−2

√
2π exp(

b2n
2 )

<b−2
n

for large n.
By using (3.26) and (3.14) and arguments similar to those

used in [7], for (x, y) ∈ [−cn,∞)× [−cn,∞) we have

∣∣−n(1− F (un(x), un(y))) + e−x + e−y
∣∣(3.27)

≤
∣∣−n(1− Φ(un(x))) + e−x

∣∣+ ∣∣−n(1− Φ(un(y))) + e−y
∣∣

+ nP(ξ > un(x), η > un(y))

≤ b−2
n

(
1 + C8e

−x
(
x2/2 + |x|+ C9

)
+C8e

−y
(
y2/2 + |y|+ C9

))
for large n. Note that, by (3.27) and (3.17), for large n we
have

sup
(x,y)∈[−cn,0]×[0,∞)

∣∣−n(1− F (un(x), un(y))) + e−x + e−y
∣∣

≤ b−2
n

(
C8(log b

2
n)

(
(log log b2n)

2/2 + log log b2n + C9

)
+ C8 (3 + C9) + 1

)
≤ 1.

Obviously, for ρn ≡ 0,

Qn(x, y) = exp
(
−n(1−Φ(un(x)))+ e−x −n(1−Φ(un(y)))

+ e−y + nP(ξ > un(x), η > un(y))
)
.

So, for (x, y) ∈ [−cn, 0)× [0,∞),

H∞(x, y) |Qn(x, y)− 1|
≤H∞(x, y)

∣∣−n(1− F (un(x), un(y))) + e−x + e−y
∣∣

×
(
exp

∣∣−n(1− F (un(x), un(y))) + e−x + e−y
∣∣+ 1

)
≤ b−2

n (e+ 1)
(
1 + C8 (3 + C9)

+ C8 exp
(
−e−x − x

) (
x2/2 + |x|+ C9

) )
≤ b−2

n (e+ 1)
(
1 + C8 (3 + C9)

+ C8 exp
(
−1− x2/2

) (
x2/2 + |x|+ C9

) )
≤ (5C8 + 2C8C9 + 1) (e+ 1)b−2

n

for large n. Similarly, for large n we have

sup
(x,y)∈[0,∞)×[−cn,0]

H∞(x, y) |Qn(x, y)− 1|

≤ (5C8 + 2C8C9 + 1) (e+ 1)b−2
n ,
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sup
(x,y)∈[0,∞)×[0,∞)

H∞(x, y) |Qn(x, y)− 1|

≤ (6C8 + 2C8C9 + 1) (e+ 1)b−2
n

and

sup
(x,y)∈[−cn,0]×[−cn,0]

H∞(x, y) |Qn(x, y)− 1|

≤ (4C8 + 2C8C9 + 1) (e+ 1)b−2
n .

Combining above with (3.12), we can get (3.25), hence the
upper bound in (2.1) is derived. For the lower bound of (2.1)
as ρn ≡ 0, by (A.16) and arguments similar to those used
in [7], we have

1− F (un(x), un(y))

= n−1
[
e−x + e−y − b−2

n

(
e−x

(
x2/2 + x+ 1

)
+ e−y

(
y2/2 + y + 1

)
+O(b−2

n )
)]

for large n, where x, y are fixed real constants. Hence,

Fn(un(x), un(y))−H∞(x, y)(3.28)

= b−2
n H∞(x, y)

(
e−x

(
x2/2 + x+ 1

)
+ e−y

(
y2/2 + y + 1

)
+O(b−2

n )
)

for large n, which implies the left hand side inequality in
(2.1). From whence (2.1) is derived for ρn ≡ 0.

Next we consider the case of ρn ≡ −1. For (x, y) ∈
[−cn,∞)× [−cn,∞), noting that for large n we have

Qn(x, y) = exp
(
−n(1− Φ(un(x))) + e−x

−n(1− Φ(un(y))) + e−y
)

as P(ξ > un(x), η > un(y)) = 0 for large n. By arguments
similar to that of the case of ρn ≡ 0, we can derive (3.25).
Finally the lower bound of (2.1) can be derived by noting
that (3.28) also holds if ρn ≡ −1.

Let us now turn to the general case of ρn ∈ [−1, 0]. We
just proved that (2.1) holds for ρn ≡ −1 and ρn ≡ 0, respec-
tively. Hence by Slepian’s Lemma, one can check that (2.1)
also holds if ρn ∈ [−1, 0].

(ii). For the case of ρn ∈ (0, 1). If (x, y) ∈ [−cn,∞) ×
[−cn,∞), by Berman’s inequality in [18], we have

|Fn(un(x), un(y))− (Φ(un(x))Φ(un(y)))
n|(3.29)

≤C14b
−2
n exp

(
− (1− ρn)b

2
n

4
+ 3 log bn + 2 log log b2n

)
≤ b−2

n

for large n due to limn→∞ (1− ρn)
−1b−2

n log bn = 0, where
C14 is an absolute positive constant.

From the proof of (A.21), it shows that

(3.30) sup
(x,y)∈(−∞,−cn]×R

Fn(un(x), un(y)) < C6b
−2
n

for large n if ρn ∈ [−1, 1], hence

sup
(x,y)∈(−∞,−cn]×R

∣∣∣Fn(un(x), un(y))− (Φ(un(x))Φ(un(y)))
n
∣∣∣(3.31)

< 2C6b
−2
n

for large n. Similarly,

sup
(x,y)∈R×(−∞,−cn]

∣∣∣Fn(un(x), un(y))− (Φ(un(x))Φ(un(y)))
n
∣∣∣(3.32)

< 2C6b
−2
n

for large n. Combining (3.29), (3.31), (3.32), and (2.1) for
the case of ρn ≡ 0, the upper bound of (2.1) is derived if
ρn ∈ (0, 1).

Next we derive the lower bound in (2.1). For fixed x, y ∈
R, by Mills’ ratio we have
(3.33)

1−Φ

(
un(x)− ρnun(z)√

1− ρ2n

)
<

exp(− (1−ρn)b
2
n

4 − x
1+ρn

+ ρnz
1+ρn

)
√
2π(λn + x−z

2λn
+ λnz

b2n
)

if y < z < 4 log bn. Hence,
(3.34)∫ 4 log bn

y

(
1− Φ

(
un(x)− ρnun(z)√

1− ρ2n

))
e−zdz = O(b−4

n )

for large n. Similarly, for large n we have
(3.35)∫ 4 log bn

y

(
1− Φ

(
un(x)− ρnun(z)√

1− ρ2n

))
e−zz2dz = O(b−4

n ).

Note that∫ ∞

4 log bn

Φ

(
un(x)− ρnun(z)√

1− ρ2n

)
e−z

(
1− z2

2b2n

)
dz = O(b−4

n )

for large n. Hence by (3.34) and (3.35), for large n we have∫ ∞

y

Φ

(
un(x)− ρnun(z)√

1− ρ2n

)
e−z exp

(
− z2

2b2n

)
dz

=

∫ 4 log bn

y

(
Φ

(
un(x)− ρnun(z)√

1− ρ2n

)
− 1

)
e−zdz

+ 2−1b−2
n

∫ 4 log bn

y

(
1− Φ

(
un(x)− ρnun(z)√

1− ρ2n

))
e−zz2dz

+

∫ ∞

4 log bn

Φ

(
un(x)− ρnun(z)√

1− ρ2n

)
e−z

(
1− z2

2b2n

)
dz

+

∫ 4 log bn

y

e−z

(
1− z2

2b2n

)
dz +O(b−4

n )
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= e−y − b−2
n e−y

(
y2

2
+ y + 1

)
+O(b−4

n ).

Combining with (A.16), we have

1− F (un(x), un(y))

=n−1

∫ ∞

y

Φ

(
un(x)− ρnun(z)√

1− ρ2n

)
e−z exp

(
− z2

2b2n

)
dz

+ 1− Φ(un(x))

=n−1

[
e−x + e−y − b−2

n

(
e−x

(
x2

2
+ x+ 1

)
+ e−y

(
y2

2
+ y + 1

)
+O(b−2

n )

)]
for large n, so that the lower bound in (2.1) can be derived
if ρn ∈ (0, 1), which completes the proof.

Proof of Theorem 3. (i). For the case of ρn ≡ 1. Note
that

Fn(un(x), un(y)) = Φn(bn +min(x, y)/bn)

and H0(x, y) = Λ(min(x, y)). Hence by the arguments pro-
vided by [7], we can derive (2.1) if ρn ≡ 1.

(ii). If ρn ∈ (0, 1) such that b10n (1 − ρn) → c ∈ [0,∞)
as n → ∞, this implies that (1.2) holds with λ = 0. First,
note that, for (x, y) ∈ [−cn,∞) × [−cn,∞) and large n, by
Berman’s inequality in [20], we have

|Fn(un(x), un(y))− Φn(bn +min(x, y)/bn)|

<C15n
(π
2
− arcsin ρn

)
exp

(
−u2

n(x) + u2
n(y)

4

)
< 2

√
2C15n(1− ρn)

1
2 exp

(
−b2n + x+ y

2

)
< 8

√
πC15b

−2
n

(
b3n(log bn)(1− ρn)

1
2

)
<b−2

n

due to limρn→1 (1− ρn)
−1/2(π/2− arcsin(ρn)) =

√
2 and

limn→∞ b10n (1 − ρn) = c, where C15 is an absolute positive
constant. Combining (i) with (A.21), we can obtain the up-
per bound in (2.1).

Finally, we consider the lower bound in (2.1). For fixed
x, y ∈ R, if max(x, y) < z < 4 log bn we have

Φ

(
un(min(x, y))− ρnun(z)√

1− ρ2n

)

<
exp(− b2n(1−ρn)

4 − min(x,y)
1+ρn

+ ρnz
1+ρn

)
√
2π( z−min(x,y)

2λn
− λn − λnz

b2n
)

for large n. So, for max(x, y) < z < 4 log bn,

∫ 4 log bn

max(x,y)

Φ

(
un(min(x, y))− ρnun(z)√

1− ρ2n

)
e−z exp

(
− z2

2b2n

)
dz

(3.36)

<
bn
√
1− ρn exp(− b2n(1−ρn)

4 − min(x,y)
1+ρn

− max(x,y)
1+ρn

)
√
π(max(x, y)−min(x, y)− 2λ2

n − 8λ2
n log bn
b2n

)

= O(b−4
n )

for large n due to limn→∞ b10n (1− ρn) = c.
Note that

∫ ∞

4 log bn

Φ

(
un(min(x, y))− ρnun(z)√

1− ρ2n

)
e−z exp

(
− z2

2b2n

)
dz

(3.37)

=O(b−4
n )

for large n. By (A.16), (3.36) and (3.37), we have

1− F
(
un(x), un(y)

)
=n−1

∫ ∞

max(x,y)

Φ

(
un(min(x, y))− ρnun(z)√

1− ρ2n

)
e−z

× exp

(
− z2

2b2n

)
dz + 1− Φ

(
un(min(x, y))

)
=n−1

(
− b−2

n e−min(x,y)
(
(min(x, y))2/2 + min(x, y) + 1

)
+ e−min(x,y) +O(b−4

n )
)
,

which implies

Fn
(
un(x), un(y)

)
−H0(x, y)

= b−2
n

(
(min(x, y))2

2
+ min(x, y) + 1 +O(b−2

n )

)
×H0(x, y)e

−min(x,y)

for large n. Hence the lower bound in (2.1) is obtained if
ρn ∈ (0, 1) such that limn→∞ b10n (1− ρn) = c.

The proof is complete.

APPENDIX A

Auxiliary lemmas used in the proofs of the main results
are given in this appendix.

Lemma 1. Let norming constant bn be given by (1.3). Un-
der the second-order Hüsler-Reiss condition (1.5), for fixed
x, y ∈ R we have

b2n

∫ ∞

y

(
Φ

(
un(x)− ρnun(z)√

1− ρ2n

)
− Φ

(
λ+

x− z

2λ

))
e−zdz
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= (An +Bnx)

∫ ∞

y

ϕ

(
λ+

x− z

2λ

)
e−zdz

(A.1)

+ (Cn −Bn)

∫ ∞

y

ϕ

(
λ+

x− z

2λ

)
ze−zdz +O(b−2

n )

→ −κ1(x, y)
(A.2)

as n → ∞, and

b2n

∫ ∞

y

(
Φ

(
un(x)− ρnun(z)√

1− ρ2n

)
− Φ

(
λ+

x− z

2λ

))
z2e−zdz

= (An +Bnx)

∫ ∞

y

ϕ

(
λ+

x− z

2λ

)
z2e−zdz

+ (Cn −Bn)

∫ ∞

y

ϕ

(
λ+

x− z

2λ

)
z3e−zdz +O(b−2

n )

→ −κ2(x, y)
(A.3)

as n → ∞, where ϕ(x) denotes the standard Gaussian den-
sity function, and κ1(x, y), κ2(x, y) are respectively given
by

κ1(x, y) = (2λ4 − 2λ2x)e−x

(
1− Φ

(
λ+

y − x

2λ

))
(A.4)

− (2α+ 3λ3)e−xϕ

(
λ+

y − x

2λ

)
and

κ2(x, y) =
(
8λ8 + 32λ6 − 16λ6x+ 10λ4x2 − 20λ4x+ 16αλ3

− 2λ2x3 − 8αλx
)
e−x

(
1− Φ

(
λ+

y − x

2λ

))
−
(
8λ7 + 24λ5 − 4λ5y − 12λ5x+ 4λ3x2 + 4λ3xy

+3λ3y2 + 16αλ2 + 2αy2
)
e−xϕ

(
λ+

y − x

2λ

)
.

Proof: By Taylor expansion with the Lagrange remainder
term, we have

Φ

(
un(x)− ρnun(z)√

1− ρ2n

)
(A.5)

=Φ

(
λ+

x− z

2λ

)
+ ϕ

(
λ+

x− z

2λ

)(
un(x)− ρnun(z)√

1− ρ2n
− λ− x− z

2λ

)

+
1

2
νnϕ(νn)

(
un(x)− ρnun(z)√

1− ρ2n
− λ− x− z

2λ

)2

,

where min{un(x)−ρnun(z)√
1−ρ2

n

, λ + x−z
2λ } < νn <

max{un(x)−ρnun(z)√
1−ρ2

n

, λ+ x−z
2λ }. Note that

un(x)− ρnun(z)√
1− ρ2n

=λn

(
1− λ2

n

b2n

)− 1
2

+
x− z

2λn

(
1− λ2

n

b2n

)− 1
2

+
λnz

b2n

(
1− λ2

n

b2n

)− 1
2

and∫ ∞

y

ϕ(λ+
x− z

2λ
)e−zdz = 2λe−x

(
1− Φ

(
λ+

y − x

2λ

))
,∫ ∞

y

ϕ(λ+
x− z

2λ
)ze−zdz = 4λ2e−xϕ

(
λ+

y − x

2λ

)
+ (2λx− 4λ3)e−x

(
1− Φ

(
λ+

y − x

2λ

))
.

Combining with (3.2), we have

b2n

∫ ∞

y

(
un(x)− ρnun(z)√

1− ρ2n
− λ− x− z

2λ

)

× ϕ

(
λ+

x− z

2λ

)
e−zdz

= (An +Bnx)

∫ ∞

y

ϕ(λ+
x− z

2λ
)e−zdz

(A.6)

+ (Cn −Bn)

∫ ∞

y

ϕ(λ+
x− z

2λ
)ze−zdz

→
(
α+

1

2
λ3 − 1

2
αλ−2x+

1

4
λx

)∫ ∞

y

ϕ(λ+
x− z

2λ
)e−zdz

+

(
3

4
λ+

1

2
αλ−2

)∫ ∞

y

ϕ(λ+
x− z

2λ
)ze−zdz

= (2λ2x− 2λ4)e−x

(
1− Φ

(
λ+

y − x

2λ

))(A.7)

+ (2α+ 3λ3)e−xϕ

(
λ+

y − x

2λ

)
as n → ∞. Similarly,

b2n

∫ ∞

y

(
un(x)− ρnun(z)√

1− ρ2n
− λ− x− z

2λ

)2

νnϕ(νn)e
−zdz

(A.8)

=O(b−2
n ).

Combining with (A.6)–(A.8), we can derive (A.1) and (A.2).
By arguments similar to that of the first assertion, we can

derive (A.3). The proof is complete.

Lemma 2. For large n, let

cn := log log b2n > 0, dn := − log log
b2n

b2n − 1
> 0
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with bn given by (1.3). Then under the second-order
Hüsler-Reiss condition (1.5), with absolute positive con-
stants Ci, 1 ≤ i ≤ 5, we have

(1) for large n, the following inequality

∫ ∞

y

∣∣∣∣∣Φ
(
un(x)− ρnun(z)√

1− ρ2n

)
− Φ

(
λ+

x− z

2λ

)∣∣∣∣∣ e−zdz

(A.9)

≤ b−2
n

(
e−y(C1|y|+ C2) + C3e

−x|x|+ C4

)
holds uniformly for all (x, y) ∈ [−cn, dn]× [−cn, dn].

(2) for large n, the following inequality

∫ ∞

y

∣∣∣∣∣Φ
(
un(x)− ρnun(z)√

1− ρ2n

)
− Φ

(
λ+

x− z

2λ

)∣∣∣∣∣ e−zdz

(A.10)

≤C5b
−2
n

holds uniformly for all (x, y) ∈ [−cn, dn]× [dn,∞).

Proof: By the Taylor expansion with the Lagrange remain-
der, we have

∫ ∞

y

∣∣∣∣∣Φ
(
un(x)− ρnun(z)√

1− ρ2n

)
− Φ

(
λ+

x− z

2λ

)∣∣∣∣∣ e−zdz

(A.11)

=

∫ ∞

y

∣∣∣∣∣un(x)− ρnun(z)√
1− ρ2n

− λ− x− z

2λ

∣∣∣∣∣ϕ(νn)e−zdz

≤ b−2
n

(
|An|

∫ ∞

y

ϕ(νn)e
−zdz + |Bn| |x|

∫ ∞

y

ϕ(νn)e
−zdz

+(|Bn|+ |Cn|)
∫ ∞

y

ϕ(νn)|z|e−zdz

)

≤ b−2
n

(
|An|

∫ ∞

y

e−zdz + |Bn| |x|
∫ dn

y

ϕ(νn)e
−zdz

+ |Bn| |x|
∫ ∞

dn

e−zdz + (|Bn|+ |Cn|)
∫ ∞

y

|z|e−zdz

)

≤ 2b−2
n

(∣∣∣∣12αλ−2 − 1

4
λ

∣∣∣∣ |x| ∫ dn

y

ϕ(νn)e
−zdz

+

(∣∣∣∣12αλ−2 − 1

4
λ

∣∣∣∣+ λ

)(
2− (y + 1)e−y

)
+

∣∣∣∣12λ3 + α

∣∣∣∣ e−y +

∣∣∣∣12αλ−2 − 1

4
λ

∣∣∣∣ |x|e−dn

)
for large n, where min(un(x)−ρnun(z)√

1−ρ2
n

, λ+ x−z
2λ ) < νn <

max(un(x)−ρnun(z)√
1−ρ2

n

, λ + x−z
2λ ). Note that, with the second-

order Hüsler-Reiss condition (1.5), we have∣∣∣∣∣un(x)− ρnun(z)√
1− ρ2n

− λ− x− z

2λ

∣∣∣∣∣

≤ (cn + dn)

∣∣∣∣ 1

λn

(
1 +

λ2
n

2b2n
+O(b−4

n )

)
− 1

λ

∣∣∣∣
+

∣∣∣∣∣λn

(
1− λ2

n

b2n

)− 1
2

− λ

∣∣∣∣∣+ λn(cn + dn)

b2n

(
1− λ2

n

b2n

)− 1
2

≤
∣∣∣∣∣λn

(
1− λ2

n

b2n

)− 1
2

− λ

∣∣∣∣∣+ λn(cn + dn)

b2n

(
1− λ2

n

b2n

)− 1
2

+ (cn + dn)
|λ− λn|
λλn

+
(cn + dn)λn

2b2n
+O

(
cn + dn

b4n

)
→ 0

uniformly for all (x, z) ∈ [−cn, dn] × [−cn, dn] as n → ∞,
which implies that ϕ(νn) converges to ϕ

(
λ+ x−z

2λ

)
uni-

formly for (x, z) ∈ [−cn, dn]× [−cn, dn] since |ϕ(x)−ϕ(y)| <
|x− y| for all x, y ∈ R. Hence,∫ dn

y

ϕ(νn)e
−zdz < 2

∫ dn

y

ϕ(λ+
x− z

2λ
)e−zdz

=2e−x

∫ dn

y

ϕ(λ+
z − x

2λ
)dz

< 4λe−x

for (x, y) ∈ [−cn, dn]× [−cn, dn]. Combining with (A.11), we
have∫ ∞

y

∣∣∣∣∣Φ
(
un(x)− ρnun(z)√

1− ρ2

)
− Φ

(
λ+

x− z

2λ

)∣∣∣∣∣ e−zdz

≤ b−2
n

(
(C1 + C2|y|)e−y + C3|x|e−x + C4

)
for large n, which completes the proof of (A.9).

For (x, y) ∈ [−cn, dn]× [dn,∞], we can derive the desired
result immediately by (A.11) since∫ ∞

y

∣∣∣∣∣Φ
(
un(x)− ρnun(z)√

1− ρ2

)
−Φ

(
λ+

x− z

2λ

)∣∣∣∣∣ e−zdz≤C5b
−2
n

for large n. The proof is complete.

Lemma 3. Let norming constant bn be defined by (1.3).
Assume that the second-order Hüsler-Reiss condition (1.5)
holds. Then for fixed x, y ∈ R and sufficiently large n, we
have

Fn(un(x), un(y))−Hλ(x, y)

(A.12)

=Hλ(x, y)b
−2
n

(
e−x

(
1 + x+

1

2
x2

)
+

1

2
κ3(x, y)

− (An +Bnx)

∫ ∞

y

ϕ

(
λ+

x− z

2λ

)
e−zdz

+(Bn − Cn)

∫ ∞

y

ϕ

(
λ+

x− z

2λ

)
ze−zdz +O(b−2

n )

)
,
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where

κ3(x, y) =
(
y2 + 2y + 2

)
e−yΦ

(
λ+

x− y

2λ

)(A.13)

−
(
4λ4 − 4λ2x+ x2 + 2x+ 2

)
e−x

(
1− Φ

(
λ+

y − x

2λ

))
+

(
4λ3 − 2λx− 2λy − 4λ

)
e−xϕ

(
λ+

y − x

2λ

)
.

Proof: First note that

∫ ∞

y

Φ

(
un(x)− ρnun(z)√

1− ρ2n

)
e−z exp

(
− z2

2b2n

)
dz

(A.14)

=

∫ ∞

y

Φ

(
un(x)− ρnun(z)√

1− ρ2n

)
e−z

(
1− z2

2b2n

)
dz +O(b−4

n )

holds for large n due to |e−x − (1− x)| < x2/2 for x > 0.
Noting that

κ3(x, y) =

∫ ∞

y

Φ

(
λ+

x− z

2λ

)
z2e−zdz

and by (A.1) and (A.3), we have

∫ ∞

y

Φ

(
un(x)− ρnun(z)√

1− ρ2n

)
e−z

(
1− z2

2b2n

)
dz

(A.15)

=

∫ ∞

y

Φ

(
λ+

x− z

2λ

)
e−zdz − 2−1b−2

n κ3(x, y)

+

∫ ∞

y

(
Φ

(
un(x)− ρnun(z)√

1− ρ2n

)

−Φ

(
λ+

x− z

2λ

))
e−zdz

− b−2
n

2

∫ ∞

y

(
Φ

(
un(x)− ρnun(z)√

1− ρ2n

)

−Φ

(
λ+

x− z

2λ

))
z2e−zdz

=

∫ ∞

y

Φ

(
λ+

x− z

2λ

)
e−zdz − 2−1b−2

n κ3(x, y)

+ b−2
n (An +Bnx)

∫ ∞

y

ϕ

(
λ+

x− z

2λ

)
e−zdz

+ b−2
n (Cn −Bn)

∫ ∞

y

ϕ

(
λ+

x− z

2λ

)
ze−zdz +O(b−4

n )

for large n.
It follows from [7] that

(A.16)

1−Φ(un(x)) = n−1e−x

[
1− b−2

n

(
1 + x+

1

2
x2

)
+O(b−4

n )

]

for large n. Combining (1.3) and (A.14)–(A.16), we have

1− F (un(x), un(y))

=n−1

∫ ∞

y

Φ

(
un(x)− ρnun(z)√

1− ρ2n

)
e−z exp

(
− z2

2b2n

)
dz

+ 1− Φ(un(x))

=n−1
(∫ ∞

y

Φ

(
un(x)− ρnun(z)√

1− ρ2n

)
e−z

(
1− z2

2b2n

)
dz

+O(b−4
n )

)
+ 1− Φ(un(x))

=n−1

[
e−x − b−2

n e−x

(
1 + x+

1

2
x2

)
+

∫ ∞

y

Φ

(
λ+

x− z

2λ

)
e−zdz − 2−1b−2

n κ3(x, y)

+ b−2
n (An +Bnx)

∫ ∞

y

ϕ

(
λ+

x− z

2λ

)
e−zdz

+ b−2
n (Cn −Bn)

∫ ∞

y

ϕ

(
λ+

x− z

2λ

)
ze−zdz +O(b−4

n )

]
for large n, which implies the desired result (A.12). The
proof is complete.

Before proving Lemma 4, we cite the following distribu-
tional tail decomposition of standard Gaussian distribution
in [1], i.e., for x > 0,

1− Φ(x) =x−1ϕ(x)− r(x)(A.17)

=x−1
(
1− x−2

)
ϕ(x) + s(x),(A.18)

where

(A.19) 0 < r(x) < x−3ϕ(x), 0 < s(x) < 3x−5ϕ(x).

Lemma 4. Let norming constant bn be defined by (1.3).
For sufficiently large n, we have

sup
(x,y)∈(−∞,−cn]×R

|Δ(Fn, Hλ;x, y)| < D1b
−2
n ,(A.20)

where cn = log log b2n and D1 is an absolute positive con-
stant.

Proof: By (1.3), (A.18), (A.19) and ez > 1 + z, z ∈ R, for
all y ∈ R we have

1− F (un(−cn), un(y)) ≥ 1− Φ(un(−cn))

>n−1(log b2n)

(
1− (log log b2n)

2

2b2n
− b−2

n

(
1− log log b2n

b2n

)−2
)

for large n, which implies that

sup
(x,y)∈(−∞,−cn]×R

Fn(un(x), un(y))

(A.21)
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≤ sup
y∈R

Fn(un(−cn), un(y))

≤

⎡⎣1− log b2n
n

⎛⎝1− (log log b2n)
2

2b2n
− 1

b2n(1−
log log b2n

b2n
)2

⎞⎠⎤⎦n

≤ b−2
n exp

⎛⎝ (log b2n)(log log b
2
n)

2

2b2n
+

log b2n

b2n(1−
log log b2n

b2n
)2

⎞⎠
<C6b

−2
n

for large n, where C6 is an absolute positive constant. Hence,∣∣∣Fn(un(x), un(y))−Hλ(x, y)
∣∣∣ < (C6 + 1)b−2

n = D1b
−2
n

uniformly for all (x, y) ∈ (−∞,−cn] × R for large n, which
is the desired result.
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