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Berman’s inequality under random scaling
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Berman’s inequality is the key for establishing asymp-
totic properties of maxima of Gaussian random sequences
and supremum of Gaussian random fields. This contribution
shows that, asymptotically an extended version of Berman’s
inequality can be established for randomly scaled Gaussian
random vectors. Two applications presented in this paper
demonstrate the use of Berman’s inequality under random
scaling.
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1. INTRODUCTION

In the analysis of extreme values of Gaussian processes
and Gaussian random fields, Berman’s inequality plays a
crucial role. Essentially, for given two Gaussian distribution
functions in R

d it bounds their difference by comparing the
covariances. The key result that motivated this comparison
method is Plackett’s partial differential equation given in
[27]. As explained in [20], it was then developed by Slepian
[28], Berman [1, 2], Cramér [4], Piterbarg [25, 26] and then
by Li and Shao [22]. Specifically, the developed results are
summarised by Berman’s inequality which we formulate be-
low in the most general form derived in [22]. Let therefore
X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) be two Gaus-
sian random vectors with N(0, 1) components and covari-

ance matrices Λ1 = (λ
(1)
ij ) and Λ2 = (λ

(2)
ij ), respectively. For

arbitrary constants ui, i ≤ n, [22] obtained

P (Xi ≤ ui, 1 ≤ i ≤ n)− P (Yi ≤ ui, 1 ≤ i ≤ n)

≤ 1

2π

∑
1≤i<j≤n

Aij exp

(
−

u2
i + u2

j

2(1 + ρij)

)
,

where

(1)
ρij := max(|λ(1)

ij |, |λ(2)
ij |),

Aij =
∣∣ arcsin(λ(1)

ij )− arcsin(λ
(2)
ij )
∣∣.
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Clearly, for arbitrary constants vi, ui, i ≤ n, set w :=
min1≤i≤n min(| ui |, | vi |)

P (−vi < Xi ≤ ui, 1 ≤ i ≤ n)− P (−vi < Yi ≤ ui, 1 ≤ i ≤ n)

(2)

≤ 2

π

∑
1≤i<j≤n

Aij exp

(
− w2

1 + ρij

)
,

for a detailed proof see [21]. Berman’s inequality can be ap-
plied also to non-Gaussian random vectors. For instance,
consider two random vectors X̃ = (S1X1, . . . , SnXn) and

Ỹ = (S1Y1, . . . , SnYn) with S, Si, i ≤ n some positive inde-
pendent random variables with common distribution func-
tion G being further independent from X and Y. In the
special case G is the uniform distribution on (0, 1), the up-
per bound in (2) implies

ΔS(u,v)(3)

:= P (−vi < SiXi ≤ ui, 1 ≤ i ≤ n)

−P (−vi < SiYi ≤ ui, 1 ≤ i ≤ n)

≤ 2

π

∑
1≤i<j≤n

Aij

∫ 1

0

∫ 1

0

exp

(
− (w/si)

2 + (w/sj)
2

2(1 + ρij)

)
dsidsj

≤ 2

π

∑
1≤i<j≤n

Aij exp

(
− w2

1 + ρij

)
.

Another tractable case is when G(x) = 1 − exp(−x), x >
0 is the exponential distribution. Indeed, by (2) for all
0 < a, b < 1 we have

ΔS(u,v)(4)

≤ 2

π

∑
1≤i<j≤n

Aij

∫ ∞

0

∫ ∞

0

exp

(
− (w/si)

2 + (w/sj)
2

2(1 + ρij)
− si − sj

)
dsidsj

=
2

π

∑
1≤i<j≤n

Aij

∫ ∞

0

∫ ∞

0

exp

(
− (w/si)

2 + (w/sj)
2

2(1 + ρij)
− asi − bsj

)
× exp (−(1− a)si − (1− b)sj) dsidsj
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≤ 2

π(1− a)(1− b)∑
1≤i<j≤n

Aij exp

(
−3

2
(a

2
3 + b

2
3 )(1 + ρij)

− 1
3w

2
3

)
.

Clearly, if we do not know the distribution function of
S it is not possible to obtain an explicit upper bound for
ΔS(u,v). Since for the analysis of extremes of Gaussian ran-
dom sequences or processes Berman’s inequality is applied
for large values of the ui’s and vi’s (see e.g., [26]), in this
paper we are concerned with the derivation of Berman’s in-
equality for some general scaling random variable S and all
ui’s and vi’s sufficiently large. We shall consider two partic-
ular cases for the random vector S = (S1, . . . , Sn), namely
it has independent components, and it is comonotonic with
S = (S, . . . , S) =: S1. From the proofs it can be seen that
the joint dependence of (Si, Sj) for any pair (i, j) is cru-
cial; our results can be in fact extended for certain tractable
dependence models. We shall focus on simplicity only with
these two cases.

Since random scaling is a natural phenomena related to
the time-value of money in finance, measurement errors in
experimental data, or physical constraints, the extension of
Berman’s inequality for inflated/deflated Gaussian random
vectors is of certain interest also for statistical applications.

Of course, Berman’s inequality alone is not enough for ex-
tending [17] to randomly scaled Gaussian triangular arrays;
some additional results (see [15, 16]) which show that for
some tractable tail assumptions on S the scaled random vec-
tor X̃ behaves similarly toX are also important. Specifically,
we shall deal with two large classes of random scaling: a) S is
a bounded random variable with a tractable tail behaviour
at the right endpoint of its distribution function, including
in particular the case that its survival function is regularly
varying, and b) S is a Weibull-type random variable.

In view of our findings, several known results for Gaus-
sian random sequences and processes can be extended to the
scaled Gaussian framework; we shall demonstrate this with
two representative applications.

Organisation of the rest of the paper: Section 2 presents
Berman’s inequality for scaled Gaussian random vectors. In
Section 3 we display two applications, while the proofs are
relegated to Section 4.

2. MAIN RESULTS

We consider first the case that S is non-negative with
distribution function G which has right endpoint equal to
1. Intuitively, large values of S do not influence significantly
large values of the product say SX if X is a Gaussian ran-
dom variable being independent of S. It turns out that the
following asymptotic upper bound

P (S > 1− 1/u) ≤ cAu
−τ(5)

valid for all u large and some cA > 0, τ ≥ 0 is sufficient for
the derivation of a useful upper bound for ΔS(u,v) defined
above.

A canonical example of such S is the beta random vari-
able, which is a special case of a power-tail random variable
S, namely

P (S > 1− 1/u) = (1 + o(1))cu−τ , u → ∞(6)

holds for some c > 0, τ ≥ 0. Hereafter we set w =
min1≤i≤n min(| ui |, | vi |) and write ΔS1(u,v) instead
of ΔS(u,v) if S = (S, . . . , S). Further write ΔS(u1) and
ΔS1(u1) instead of ΔS(u,v) if all components of v equal
−∞, u = (u, . . . , u) =: u1 and the covariance matrix Λ2 of
Y is identity matrix.

Theorem 2.1. Let X, X̃,Y, Ỹ, S, Si, i ≤ n be as above. If
(5) holds, then for all ui, vi, 1 ≤ i ≤ n large and ε > 0 we
have

ΔS(u,v)

(7)

≤ (KA + ε)w−4τ
∑

1≤i<j≤n

Aij(1 + ρij)
2τ exp

(
− w2

1 + ρij

)
and

ΔS1(u,v)

(8)

≤ (K∗
A + ε)w−2τ

∑
1≤i<j≤n

Aij(1 + ρij)
τ exp

(
− w2

1 + ρij

)
,

where KA = 2
π c

2
A(Γ(τ + 1))2 and K

∗
A = 21−τ

π cAΓ(τ + 1).

Corollary 2.1. Under the conditions of Theorem 2.1, for
all u large and some positive constants Q we have

ΔS(u1)(9)

≤ Qu−4τ
∑

1≤i<j≤n

|λ(1)
ij | exp

(
− u2

1 + |λ(1)
ij |

)

and

ΔS1(u1)(10)

≤ Qu−2τ
∑

1≤i<j≤n

|λ(1)
ij | exp

(
− u2

1 + |λ(1)
ij |

)
.

We shall investigate below the more difficult case that the
scaling random variable S has distribution function with an
infinite right endpoint. Motivated by the example of the ex-
ponential distribution in the Introduction, we shall assume
that S has tail behaviour similar to a Weibull distribution.
Specifically, for given constants α ∈ R, cB, L, p ∈ (0,∞) sup-
pose that

(11) P (S > u) = (1 + o(1))cBu
α exp(−Lup), u → ∞
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is valid. The class of distribution functions satisfying (11)
is quite large. More importantly, under (11) SX has also
a Weibull tail behaviour if X is a N(0, 1) random variable
independent of S, see e.g., [16]. We state next our second
result for Weibull-type random scaling.

Theorem 2.2. Let X, X̃,Y, Ỹ, S, Si, i ≤ n be as above. If
(11) holds, then for all ui, vi, 1 ≤ i ≤ n large and ε > 0 we
have

ΔS(u,v)(12)

≤ (KB + ε)w
4α+2p
2+p

∑
1≤i<j≤n

Aij(1 + ρij)
−2α−p

p+2

× exp
(
−2(1 + ρij)

− p
2+pTw

2p
2+p

)
and

ΔS1(u,v)(13)

≤ (K∗
B + ε)w

2α+p
2+p

∑
1≤i<j≤n

Aij(1 + ρij)
−2α−p
2(p+2)

× exp
(
−(2(1 + ρij)

−1)
p

2+pTw
2p

2+p

)
,

where T = L
2

p+2 p−
p

p+2 + (Lp)
2

p+2 2−1, KB = 4c2B ×
(Lp)

2(1−α)
p+2 (p + 2)−1 and K

∗
B = 2

3+2p+α
2+p π− 1

2 cB(Lp)
1−α
p+2 (p +

2)−
1
2 .

Corollary 2.2. Under the conditions of Theorem 2.2, for
all u large and some positive constants Q we have

ΔS(u1)(14)

≤ Qu
4α+2p
2+p

∑
1≤i<j≤n

|λ(1)
ij |

× exp
(
−2(1 + |λ(1)

ij |)−
p

2+pTu
2p

2+p

)
and

ΔS1(u1)(15)

≤ Qu
2α+p
2+p

∑
1≤i<j≤n

|λ(1)
ij |

× exp
(
−(2(1 + |λ(1)

ij |)−1)
p

2+pTu
2p

2+p

)
.

Remark 2.1. a) Clearly, when S is uniformly distributed
on (0, 1) then condition (5) holds with cA = τ = 1. For this
case we have two results, the one derived in the Introduction
and that given by (7). We see that the bound obtained by (7)
with cA = τ = 1 is better due to the term w−4τ .

b) Also for the case S is a unit exponential random vari-
ables we have two bounds, one which holds for all values of
ui, vi, i ≤ n and the asymptotic one given in Theorem 2.2.
The bound implied by (12) with cB = 1, α = 0, p = 1, L = 1
is asymptotically better than that implied by (4).

3. APPLICATIONS

An important contribution in extreme value theory con-
cerned with maxima of triangular arrays of Gaussian ran-
dom variables is [17]. Motivated by the findings of Hüsler
and Reiss in 1989 (see [18]) the aforementioned contribu-
tion considered a triangular array of N(0, 1) random vari-
ables {Xn,i, i, n ≥ 1} such that for each n, {Xn,i, i ≥ 1}
is a stationary Gaussian random sequence. Assume that
�n,j = E (Xn,iXn,i+j) satisfies for any j ≥ 1

lim
n→∞

(1− �n,j) lnn = δj ∈ (0,∞), δ0 := 0(16)

and for each n, �n,j decays fast enough as j increases.
Under some additional conditions (see Theorem 3.1 be-
low) the deep contribution [17] shows that for the maxima
Mn = max1≤i≤n Xn,i

(17) lim
n→∞

P (Mn ≤ anx+ bn) = exp(−ϑ exp(−x)), x ∈ R,

where

an = (2 lnn)−
1
2 ,

bn = (2 lnn)
1
2 − 1

2
(2 lnn)−

1
2 (ln lnn+ ln 4π)

(18)

and

ϑ = P

(
E/2 +

√
δk−1Wk ≤ δk−1, for all k ≥ 2

)
,

with E a unit exponential random variable independent of
Wk and {Wk, k ≥ 2} being jointly Gaussian with zero means
and covariances

E (WiWj) =
δi−1 + δj−1 − δ|i−j|

2
√
δi−1δj−1

.

The proof of (17) strongly relies on Berman’s inequality.
Hence, our first application extends the result of [17] to tri-
angular arrays of randomly scaled Gaussian random vari-
ables. In the following we investigate the effect of a comono-
tonic random scaling considering a bounded S and thus
S = S1.

Theorem 3.1. Let {Xn,i, i, n ≥ 1} be a triangular array of
standard Gaussian random variables defined as above satis-
fying (16), being further independent of the iid non-negative
random variables {Sn, n ≥ 1} where S1 satisfies (6). If there
exist positive integers rn, ln such that

lim
n→∞

ln
rn

= 0, lim
n→∞

rn
n

= 0,(19)

(20)

lim
n→∞

n2

rn
c−τ
n

n∑
j=ln

|�n,j |(1 + |�n,j |)τ√
1− �2n,j

exp

(
− cn
1 + |�n,j |

)
= 0,
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with cn := 2 lnn− (2τ + 1) ln lnn and further

(21) lim
m→∞

lim sup
n→∞

rn∑
j=m

n
− 1−�n,j

1+�n,j
(lnn)

τ(1−�n,j)−�n,j
1+�n,j√

1− �2n,j

= 0,

then for the maxima Mn = max1≤i≤n SnXn,i the result in
(17) holds with ϑ defined as above and

an = (2 lnn)−1/2,

bn = (2 lnn)1/2 + (2 lnn)−1/2(22)

×
(
ln(c(2π)−1/2Γ(1 + τ))− 2τ + 1

2
(ln lnn+ ln 2)

)
.

Remark 3.1. Using similar arguments as in the proof of
Theorem 3.1, the findings of the recent contribution [6] can
also be extended by considering a randomly scaled Gaussian
field on a lattice.

In our second application we consider scaled Gaussian
random vectors where the scaling vector S has independent

components. Let
{
Xn,k =

(
X

(1)
n,k, X

(2)
n,k

)
, 1 ≤ k ≤ n, n ≥

1
}

be a triangular array of bivariate centered stationary
Gaussian random vectors with unit-variance and correlation
given by

corr
(
X

(1)
n,k, X

(2)
n,k

)
= λ0(n),

corr
(
X

(i)
n,k, X

(j)
n,l

)
= λij(|k − l|, n),

where 1 ≤ k �= l ≤ n and i, j ∈ {1, 2}. Further, let{
X̂n,k =

(
X̂

(1)
n,k, X̂

(2)
n,k

)
, 1 ≤ k ≤ n, n ≥ 1

}
denote the associ-

ated iid triangular array of {Xn,k}, i.e., corr(X̂(1)
n,k, X̂

(2)
n,k) =

λ0(n) and corr(X̂
(i)
n,k, X̂

(j)
n,l ) = 0, for 1 ≤ k �= l ≤ n and

i, j ∈ {1, 2}. Let {Sn,k, 1 ≤ k ≤ n, n ≥ 1} be iid random
variables being independent of {Xn,k, 1 ≤ k ≤ n, n ≥ 1}
and {X̂n,k, 1 ≤ k ≤ n, n ≥ 1}, respectively. Assume that
the correlation λ0(n) satisfies

lim
n→∞

bn
an

(1− λ0(n)) = 2λ2 with λ ∈ [0,∞],(23)

where

an =
1

1− F (bn)

∫ ∞

bn

(1− F (x))dx, bn = F−1

(
1− 1

n

)
,

with F−1 the inverse of the df F of S1,1X̂
(1)
1,1 . It is well-known

(see e.g., [10]) that

lim
n→∞

sup
x,y∈R

∣∣∣∣P( max
1≤k≤n

Sn,kX̂
(1)
n,k ≤ un(x),

max
1≤k≤n

Sn,kX̂
(2)
n,k ≤ un(y)

)
−Hλ(x, y)

∣∣∣∣ = 0,

where un(z) = anz + bn, z ∈ R and the Hüsler-Reiss distri-
bution function Hλ is given by

Hλ(x, y)

(24)

= exp

(
−e−xΦ

(
λ+

y − x

2λ

)
− e−yΦ

(
λ+

x− y

2λ

))
,

with Φ the distribution function of an N(0, 1) random vari-
able.

In the following theorem, we are interested in the case
where only a fraction of random vectors is observed. Assume
therefore that εn,k is an indicator random variable of the
event that the random vector Xn,k is observed. Then Ξn =∑n

k=1 εn,k is the number of observed random vectors from
the set {Xn,1, . . . ,Xn,n}.

We shall impose the following condition:

Condition E. The indicator random variables εn,k are in-
dependent of Xn,k and Sn,k. Further, the convergence in
probability

Ξn

n

P→ η, n → ∞

holds with η some random variable taking values in (0, 1]
almost surely.

For notational simplicity we set

Mn(εn) :={
max{Sn,kXn,k, 1 ≤ k ≤ n, εn,k = 1}, if

∑n
k=1 εn,k ≥ 1,

inf{x|P (Sn,kXn,k ≤ x) > 0}, otherwise,

mn(εn) :={
min{Sn,kXn,k, 1 ≤ k ≤ n, εn,k = 1}, if

∑n
k=1 εn,k ≥ 1,

inf{x|P (Sn,kXn,k ≤ x) > 0}, otherwise

and Mn = max{Sn,kXn,k, 1 ≤ k ≤ n}, mn =
min{Sn,kXn,k, 1 ≤ k ≤ n}.

For Sn,k = 1, 1 ≤ k ≤ n almost surely, according to [12],
under Condition E we have

lim
n→∞

sup
x1,y1∈R

x1≤y1

∣∣∣P(M (1)
n (εn) ≤ un(x1),M

(1)
n ≤ un(y1)

)
−E
(
Λη(x1)Λ

1−η(y1)
)∣∣ = 0,

where un(x) = anx + bn with an and bn defined in
(18) and Λ(x) = exp (−e−x), x ∈ R, provided that

limn→∞ maxln<k<n λ11(k, n) lnn = 0 with ln = [nβ̂ ], 0 <

β̂ < (1− σ̂)/(1 + σ̂) and σ̂ = max1≤k<n,n≥2 |λ11(k, n)|. Be-
low we obtain a more general result for our 2-dimensional
setup considering Weibull-type random scaling.

Theorem 3.2. Let {(X(1)
n,k, X

(2)
n,k), 1 ≤ k ≤ n, n ≥ 1} be

a bivariate triangular array of standard Gaussian random
vectors defined as above. Let {Sn,k, 1 ≤ k ≤ n, n ≥ 1} be iid
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random variables being independent of {(X(1)
n,k, X

(2)
n,k), 1 ≤

k ≤ n, n ≥ 1}. Suppose that the correlation λ0(n) satisfy
(23) with λ ∈ (0,∞) and condition E holds. Let β be a

constant satisfying 0 < β < 2(1 + σ)−
p

2+p − 1 with σ =
max 1≤k<n,n≥2

i,j∈{1,2}
|λij(k, n)| < 1, and write ιn = [nβ ]. If (11)

holds and the covariance function satisfies

lim
n→∞

max
ιn≤k<n
i,j∈{1,2}

|λij(k, n)| lnn = 0,

then we have

lim
n→∞

sup
xi,yi∈R,i≤4

x1≤x3,x2≤x4,y1≤y3,y2≤y4∣∣∣P(−un(y1) < m(1)
n (εn) ≤ M (1)

n (εn) ≤ un(x1),

−un(y2) < m(2)
n (εn) ≤ M (2)

n (εn) ≤ un(x2),

−un(y3) < m(1)
n ≤ M (1)

n ≤ un(x3),

−un(y4) < m(2)
n ≤ M (2)

n ≤ un(x4)
)

−E

(
Hη

λ(x1, x2)H
η
λ(y1, y2)H

1−η
λ (x3, x4)H

1−η
λ (y3, y4)

)∣∣∣
= 0,

where Hλ is defined in (24) and norming constants an and
bn satisfy

an =
2 + p

2p
T− 2+p

2p (lnn)
2−p
2p ,

bn =

(
lnn

T

) 2+p
2p

+
2 + p

2p
T− 2+p

2p (lnn)
2−p
2p(25)

×
(
α

p
ln lnn− α

p
lnT + ln�B

)
with T = 2−1Q2 + LQ−p, �B = cB(2 + p)−

1
2Q−α and Q =

(pL)1/(2+p).

4. PROOFS

Proof of Theorem 2.1 By the independence of S and
(X,Y) and the generalised Berman’s inequality (see The-
orem 2.1 in [22] and Lemma 11.1.2 in [21]), if (5) holds,
then

ΔS(u,v)

= P (−vi < SiXi ≤ ui, 1 ≤ i ≤ n)

−P (−vi < SiYi ≤ ui, 1 ≤ i ≤ n)

=

∫
[0,1]n

(
P

(
−vi
si

< Xi ≤
ui

si
, 1 ≤ i ≤ n

)
−P

(
−vi
si

< Yi ≤
ui

si
, 1 ≤ i ≤ n

))
dG(s1) · · · dG(sn)

≤ 2

π

∫
[0,1]n

∑
1≤i<j≤n

Aij

exp

(
− (w/si)

2 + (w/sj)
2

2(1 + ρij)

)
dG(s1) · · · dG(sn)

=
2

π

∑
1≤i<j≤n

Aij

∫ 1

0

∫ 1

0

exp

(
− (w/s)2 + (w/t)2

2(1 + ρij)

)
dG(s)dG(t),

where ρij and Aij are defined in (1) and w =
min1≤i≤n min(| ui |, | vi |). Note that for 1 ≤ i, j ≤ n,
ε > 0∫ 1

0

exp

(
− 1

2(1 + ρij)

(w
s

)2)
dG(s)

∼
∫ 1

1
ε+1

exp

(
− 1

2(1 + ρij)

(w
s

)2)
dG(s)

=

∫ w(1+ε)

w

P

(
S >

w

s

)
d

(
1− exp

(
− 1

2(1 + ρij)
s2
))

=

∫ ε
1+ρij

w2

0

P

(
S >

w

w + (1 + ρij)w−1t

)(
1 +

1 + ρij
w2

t

)
exp

(
− 1

2(1+ ρij)
(w2 +2(1+ ρij)t+(1+ ρij)

2w−2t2)

)
dt

∼
∫ ε

1+ρij
w2

0

P

(
S > 1− 1+ ρij

w2
t

)
exp

(
−t− w2

2(1+ ρij)

)
dt

≤ cA(1 + ρij)
τw−2τ exp

(
− w2

2(1 + ρij)

)
×
∫ ε

1+ρij
w2

0

tτ exp (−t) dt

∼ cAΓ(τ + 1)(1 + ρij)
τw−2τ exp

(
− w2

2(1 + ρij)

)
,

as w → ∞. Consequently, for any ε > 0 and all large
ui, vi, i ≤ n

ΔS(u,v) ≤ 2

π
(Γ(τ + 1))2(c2A + ε)w−4τ

∑
1≤i<j≤n

Aij(1 + ρij)
2τ exp

(
− w2

1 + ρij

)
.

With similar arguments as above we have

ΔS1(u,v)

=

∫ 1

0

(
P

(
−vi

s
< Xi ≤

ui

s
, 1 ≤ i ≤ n

)
−P

(
−vi

s
< Yi ≤

ui

s
, 1 ≤ i ≤ n

))
dG(s)

≤ 2

π

∑
1≤i<j≤n

Aij

∫ 1

0

exp

(
− (w/s)2

1 + ρij

)
dG(s)

≤ 21−τ

π
Γ(τ + 1)(cA + ε)w−2τ
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∑
1≤i<j≤n

Aij(1 + ρij)
τ exp

(
− w2

1 + ρij

)
,

hence the claim follows. �

Proof of Theorem 2.2 According to the independence
of the scaling factors with the Gaussian random variables
and the generalised Berman’s inequality (see Theorem 2.1
in [22] and Lemma 11.1.2 in [21]) again if (11) holds, then
we have

ΔS(u,v)

=

∫
[0,∞]n

(
P

(
−vi
si

< Xi ≤
ui

si
, 1 ≤ i ≤ n

)
− P

(
−vi
si

< Yi ≤
ui

si
, 1 ≤ i ≤ n

))
dG(s1) · · · dG(sn)

≤ 2

π

∫
[0,∞]n

∑
1≤i<j≤n

Aij exp

(
− (w/si)

2 + (w/sj)
2

2(1 + ρij)

)
dG(s1) · · · dG(sn)

=
2

π

∑
1≤i<j≤n

Aij∫ ∞

0

∫ ∞

0

exp

(
− (w/s)2 + (w/t)2

2(1 + ρij)

)
dG(s)dG(t),

where ρij and Aij are defined in (1). Note that for 1 ≤
i, j ≤ n and some positive constants c1, c2, using similar
arguments as in the proof of Theorem 2.1 in [16], we have∫ ∞

0

exp

(
− 1

2(1 + ρij)

(w
s

)2)
dG(s)

∼
∫ c2w

2
p+2

c1w
2

p+2

exp

(
− 1

2(1 + ρij)

(w
s

)2)
dG(s)

∼ cBLp

∫ c2w
2

p+2

c1w
2

p+2

sα+p−1

× exp

(
−Lsp − 1

2(1 + ρij)

(w
s

)2)
ds

= cBLp

(
w2

Lp(1 + ρij)

)α+p
p+2
∫ c2(Lp(1+ρij))

1
p+2

c1(Lp(1+ρij))
1

p+2

tα+p−1

× exp

(
−Lp

(
w2

Lp(1 + ρij)

) p
p+2 (

p−1tp + 2−1t−2
))

dt

∼
√

2π

p+ 2
cB(Lp)

1−α
p+2 (1 + ρij)

−2α−p
2(p+2) w

2α+p
p+2

× exp
(
−(1 + ρij)

− p
p+2 (L

2
p+2 p−

p
p+2 + (Lp)

2
p+2 2−1)w

2p
p+2

)
,

as w → ∞. Hence for ε > 0 we have

ΔS(u,v) ≤
4(c2B + ε)(Lp)

2(1−α)
p+2

p+ 2
w

4α+2p
2+p

∑
1≤i<j≤n

Aij(1 + ρij)
−2α−p

p+2 exp
(
−2(1 + ρij)

− p
2+pTw

2p
2+p

)
,

where T = L
2

p+2 p−
p

p+2 + (Lp)
2

p+2 2−1. Proceeding as above

ΔS1(u,v)

=

∫ ∞

0

(
P

(
−vi

s
< Xi ≤

ui

s
, 1 ≤ i ≤ n

)
−P

(
−vi

s
< Yi ≤

ui

s
, 1 ≤ i ≤ n

))
dG(s)

≤ 2

π

∑
1≤i<j≤n

Aij

∫ ∞

0

exp

(
− (w/s)2

1 + ρij

)
dG(s)

≤ 2
3+2p+α

2+p π− 1
2 (cB + ε)(Lp)

1−α
p+2 (p+ 2)−

1
2w

2α+p
2+p

×
∑

1≤i<j≤n

Aij(1 + ρij)
−2α−p
2(p+2)

× exp
(
−(2(1 + ρij)

−1)
p

2+pTw
2p

2+p

)
,

hence the proof is complete. �
Lemma 4.1. Under the conditions of Theorem 3.1, for any
bounded set K ⊂ {2, 3 . . .} we have

lim
n→∞

P (SnXn,k ≤ un, k ∈ K|SnXn,1 > un)

= P

(
E/2 +

√
δk−1Wk ≤ δk−1, k ∈ K

)
,

where E is a standard exponential random variable indepen-
dent of {Wk, k ∈ K} and the Wk have a jointly Gaussian
distribution with mean zero and

E(WiWj) =
δi−1 + δj−1 − δ|i−j|

2
√
δi−1δj−1

, i, j ∈ K.

Proof of Lemma 4.1 A centered Gaussian random vector
Xn = (Xn,k, k ∈ K∪{1})� with covariance matrix B�

n Bn =
(�n,|i−j|)i,j∈K∪{1} has stochastic representation

(Xn,k, k ∈ K ∪ {1})� d
= RB�

n Um+1,

where m is the cardinality of set K, R is a positive random
variable such that R2 is chi-squared distributed with m+ 1
degrees of freedom and independent of Um+1 which is a
random vector uniformly distributed on the unit sphere of
R

m+1. Since Sn is independent of Xn,k using Corollary 5 in
[3] we have (set tn(y) := un + y/un)

(SnXn,k, k ∈ K|SnXn,1 = tn(y))
� d
= Rm,yB̂

�
n Um+tn(y)Σ12,

where Σ12 = (�n,k−1, k ∈ K)�, B̂�
n B̂n = (�n,|i−j| −

�n,i−1�n,j−1)i,j∈K and Rm,y is a positive random variable
independent of Um with distribution function Fm,y defined
by

Fm,y(x) =

∫ ((tn(y))
2+x2)1/2

tn(y)
(s2 − (tn(y))

2)
m
2 −1s1−mdF1(s)∫∞

tn(y)
(s2 − (tn(y))2)

m
2 −1s1−mdF1(s)

,
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x > 0, with F1 the distribution function of SnR. According
to Theorem 3.1 in [11] F1 in the Gumbel max-domain of
attraction and

(26) lim
n→∞

P (SnXn,1 > tn(y))

P (SnXn,1 > un)
= e−y, ∀y ∈ R.

Hence, by Theorem 3.1 in [8]

pn,y :=P (SnXn,k ≤ un, k ∈ K|SnXn,1 = tn(y))(27)

=P

(
un(1− �2n,k−1)

1/2

2
Zn,k +

�n,k−1

2
y

≤ u2
n(1− �n,k−1)

2
, k ∈ K

)
→P

(√
δk−1Wk +

y

2
≤ δk−1, k ∈ K

)
, n → ∞

uniformly on compact sets of y, where

(Zn,k, k ∈ K)�
d
= Rm,yB̃

�
n Um,

with

B̃�
n B̃n =

⎛⎝ �n,|i−j| − �n,i−1�n,j−1√
(1− �2n,i−1)(1− �2n,j−1)

⎞⎠
i,j∈K

and {Wk, k ∈ K} being jointly Gaussian with zero means
and covariances

E (WiWj) =
δi−1 + δj−1 − δ|i−j|

2
√

δi−1δj−1

, i, j ∈ K.

Since further

P (SnXn,k ≤ un, k ∈ K|SnXn,1 > un)

=

∫ ∞

0

pn,yd
P (SnXn,1 ≤ tn(y))

P (SnXn,1 > un)

the proof is established by applying Lemma 4.4 in [8] (recall
(26) and (27)). �

Proof of Theorem 3.1 According to (8), if 1 ≤ k1 <
· · · < ks ≤ n and k = min1≤i<s(ki+1 − ki) then the joint
distribution function Fk1,...,ks of SnXn,k1 , . . . , SnXn,ks sat-
isfies ∣∣∣∣∣Fk1,...,ks(un)−

s∏
i=1

P (SnXn,ki ≤ un)

∣∣∣∣∣
≤ Qu−2τ

n n

n∑
i=k

|�n,i|(1 + |�n,i|)τ√
1− �2n,i

exp

(
− u2

n

1 + |�n,i|

)
.

Suppose now that 1 ≤ i1 < · · · < ip < j1 < · · · < jp′ ≤
n and j1 − ip ≥ ln. Identifying {k1, . . . , ks} in turn with

{i1, . . . , ip, j1, . . . , jp′}, {i1, . . . , ip} and {j1, . . . , jp′}, we thus
have

|Fi1,...,ip,j1,...,jp′ (un)− Fi1,...,ip(un)Fj1,...,jp′ (un)|

≤ 3Qu−2τ
n n

n∑
i=ln

|�n,i|(1 + |�n,i|)τ√
1− �2n,i

exp

(
− u2

n

1 + |�n,i|

)
.

By Example 1 in [9] and Table 3.4.4 in [5] we have

lim
n→∞

nP (SnXn,1 ≥ un(x)) = e−x, ∀ x ∈ R,

where un(x) = anx + bn with an and bn defined in (22).
Consequently, as n → ∞

(28) u2
n(x) = 2 lnn− (2τ + 1) ln lnn+O(1).

Hence, in view of (19) and (20), Theorem 2.1 in [23] implies

lim
n→∞

[
P

(
max
1≤i≤n

SnXn,i ≤ un(x)

)
− exp

(
− nP (SnXn,1 > un(x))

P

( rn⋂
i=2

{SnXn,i ≤ un(x)}|SnXn,1 > un(x)
))]

= 0.

Note that for m ≤ j ≤ rn we have

P

⎛⎝W > un

√
1− �n,j
1 + �n,j

− y

un

�n,j√
1− �2n,j

⎞⎠
≤ Qn

− 1−�n,j
1+�n,j

(lnn)
τ(1−�n,j)−�n,j

1+�n,j√
1− �2n,j

,

where W is a N(0, 1) random variable. The claim can then
be established by using similar arguments as in the proof
of Theorem 2.1 in [17] making further use of (21) and
Lemma 4.1. �

Next, for some index sets In ⊂ N we define

M̂(In, εn) :=⎧⎨⎩max{Sn,kX̂n,k, k ∈ In, εn,k = 1}, if
∑

k∈In
εn,k ≥ 1;

inf
{
x
∣∣P(Sn,kX̂n,k ≤ x

)
> 0
}
, otherwise,

m̂(In, εn) :=⎧⎨⎩min{Sn,kX̂n,k, k ∈ In, εn,k = 1}, if
∑

k∈In
εn,k ≥ 1;

inf
{
x
∣∣P(Sn,kX̂n,k ≤ x

)
> 0
}
, otherwise.

For simplicity, we write M̂n(εn) = M̂({1, 2, . . . , n}, εn),
M̂(In) = max{Sn,kX̂n,k, k ∈ In}, M̂n = max{Sn,kX̂n,k,
1 ≤ k ≤ n}. Similarly we also define m̂n(εn), m̂(In), m̂n.
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Lemma 4.2. Let {(X̂(1)
n,i , X̂

(2)
n,i ), 1 ≤ i ≤ n, n ≥ 1} be a tri-

angular array of centered stationary Gaussian random vec-
tors defined as above with the correlation λ0(n) satisfying
(23) with λ ∈ (0,∞). Further let {Sn,k, 1 ≤ k ≤ n, n ≥ 1} be

iid random variables being independent of {(X̂(1)
n,i , X̂

(2)
n,i ), 1 ≤

i ≤ n, n ≥ 1} and satisfying (11). Then we have

lim
n→∞

P

(
−un(y1) < m̂(1)

n ≤ M̂ (1)
n ≤ un(x1),

−un(y2) < m̂(2)
n ≤ M̂ (2)

n ≤ un(x2)
)

= Hλ(x1, x2)Hλ(y1, y2).

Proof of Lemma 4.2 Our proof is similar to that of The-
orem 2.1 in [14]. For any integer n we may write

n (1− P (n, x1, x2, y1, y2))

= nP1(n, x1, x2) + nP2(n, y1, y2)

−nP3(n, x1, y2)− nP4(n, y1, x2),

where

P (n, x1, x2, y1, y2)

:= P

(
−un(y1) < Sn,1X̂

(1)
n,1 ≤ un(x1),

−un(y2) < Sn,1X̂
(2)
n,1 ≤ un(x2)

)
,

P1(n, x1, x2)

:= P

(
Sn,1X̂

(1)
n,1 > un(x1)

)
+ P

(
Sn,1X̂

(2)
n,1 > un(x2)

)
−P

(
Sn,1X̂

(1)
n,1 > un(x1), Sn,1X̂

(2)
n,1 > un(x2)

)
,

P2(n, y1, y2)

:= P

(
Sn,1X̂

(1)
n,1 ≤ −un(y1)

)
+ P

(
Sn,1X̂

(2)
n,1 ≤ −un(y2)

)
−P

(
Sn,1X̂

(1)
n,1 ≤ −un(y1), Sn,1X̂

(2)
n,1 ≤ −un(y2)

)
,

P3(n, x1, y2)

:= P

(
Sn,1X̂

(1)
n,1 > un(x1), Sn,1X̂

(2)
n,1 ≤ −un(y2)

)
,

P4(n, y1, x2)

:= P

(
Sn,1X̂

(1)
n,1 ≤ −un(y1), Sn,1X̂

(2)
n,1 > un(x2)

)
.

The random vector (X̂
(1)
n,1, X̂

(2)
n,1) has the following stochastic

representation

(X̂
(1)
n,1, X̂

(2)
n,1)

d
= (R cos θ,R cos(θ − ψn)),

where R is a positive random variable being independent
of the random variable θ which is uniformly distributed in
(−π, π) and ψn = arccos(λ0(n)). If Sn,1 satisfy (11) and

is independent of (X̂
(1)
n,1, X̂

(2)
n,1), using Laplace approxima-

tion (see e.g.,[16]) we have that the distribution function
of Sn,1R is in the max-domain of attraction of the Gum-
bel distribution. Hence, according to Remark 2.2 in [13] we

have

(29) lim
n→∞

nP
(
Sn,1X̂

(1)
n,1 > un(x)

)
= e−x, x ∈ R,

where un(x) = anx + bn with an and bn defined in (25).
Moreover, by Theorem 2.1 in [7]

lim
n→∞

nP1(n, x1, x2)

= Φ

(
λ+

x1 − x2

2λ

)
e−x2 +Φ

(
λ+

x2 − x1

2λ

)
e−x1

=: D(x1, x2)

and since (−Sn,1X̂
(1)
n,1,−Sn,1X̂

(2)
n,1)

d
= (Sn,1X̂

(1)
n,1, Sn,1X̂

(2)
n,1)

lim
n→∞

nP2(n, y1, y2) = D(y1, y2).

Since limn→∞ λ0(n) = 1, limn→∞ ψn = 0 implying

lim
n→∞

nP3(n, x1, y2)

= lim
n→∞

nP (Sn,1R cos(θ) > un(x1),

Sn,1R cos(θ − ψn) ≤ −un(y1))

= lim
n→∞

nP (Sn,1R cos(θ) > un(x1), cos(θ) > 0,

Sn,1R cos(θ − ψn) ≤ −un(y1), cos(θ − ψn) < 0)

= lim
n→∞

nP
(
Sn,1R cos(θ) > un(x1),

Sn,1R cos(θ − ψn) ≤ −un(y1),

max
(
−π

2
,−π + ψn

)
< θ < −π

2
+ ψn

)
= 0.

Similarly, we have limn→∞ nP4(n, y1, x2) = 0. Hence for all
x1, x2, y1, y2 ∈ R

lim
n→∞

P

(
−un(y1) < m̂(1)

n ≤ M̂ (1)
n ≤ un(x1),

−un(y2) < m̂(2)
n ≤ M̂ (2)

n ≤ un(x2)
)

= lim
n→∞

(P (n, x1, x2, y1, y2))
n

= lim
n→∞

(1− (1− P (n, x1, x2, y1, y2)))
n

= lim
n→∞

(
1− D(x1, x2) +D(y1, y2)

n
+ o

(
1

n

))n

= exp (−D(x1, x2)−D(y1, y2))

= Hλ(x1, x2)Hλ(y1, y2),

hence the proof is complete. �
Lemma 4.3. Under the conditions of Lemma 4.2, if the in-
dicator random variables εn = {εn,i, 1 ≤ i ≤ n} are indepen-

dent of both {(X̂(1)
n,i , X̂

(2)
n,i ), 1 ≤ i ≤ n} and {Sn,i, 1 ≤ i ≤ n}

and satisfying condition E, then

lim
n→∞

sup
xi,yi∈R,i={1,2,3,4}

x1≤x3,x2≤x4,y1≤y3,y2≤y4
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∣∣∣P(−un(y1) < m̂(1)
n (εn) ≤ M̂ (1)

n (εn) ≤ un(x1),

−un(y2) < m̂(2)
n (εn) ≤ M̂ (2)

n (εn) ≤ un(x2),

−un(y3) < m̂(1)
n ≤ M̂ (1)

n ≤ un(x3),

−un(y4) < m̂(2)
n ≤ M̂ (2)

n ≤ un(x4)
)

− E

(
Hη

λ(x1, x2)H
η
λ(y1, y2)H

1−η
λ (x3, x4)H

1−η
λ (y3, y4)

)∣∣∣
= 0.

Proof of Lemma 4.3 Using similar arguments as for the
derivation of [19], let Ks = {j : (s− 1)ν + 1 ≤ j ≤ sν}, 1 ≤
s ≤ l, ν = [nl ], x = (x1, x2, x3, x4), y = (y1, y2, y3, y4) and
βn = {βn,k, 1 ≤ k ≤ n} be a nonrandom triangular array
consisting of 0’s and 1’s. For some random variable η such
that 0 ≤ η ≤ 1 a.s., write

Bμ,l =

{
ω : η(ω) ∈

{
[0, 1

2l
], μ = 0,

( μ
2l
, μ+1

2l
], 0 < μ ≤ 2l − 1

}
,

Bμ,l,βn = {ω : εn,k(ω) = βn,k, 1 ≤ k ≤ n} ∩Bμ,l.

Set

P (Ks, βn,x,y)

= P

(
−un(y1) < m̂(1)(Ks, βn) ≤ M̂ (1)(Ks, βn) ≤ un(x1),

−un(y2) < m̂(2)(Ks, βn) ≤ M̂ (2)(Ks, βn) ≤ un(x2),

−un(y3) < m̂(1)(Ks) ≤ M̂ (1)(Ks) ≤ un(x3),

−un(y4) < m̂(2)(Ks) ≤ M̂ (2)(Ks) ≤ un(x4)
)

and

P (n, βn,x,y)

= P

(
−un(y1) < m̂(1)

n (βn) ≤ M̂ (1)
n (βn) ≤ un(x1),

−un(y2) < m̂(2)
n (βn) ≤ M̂ (2)

n (βn) ≤ un(x2),

−un(y3) < m̂(1)
n ≤ M̂ (1)

n ≤ un(x3),

−un(y4) < m̂(2)
n ≤ M̂ (2)

n ≤ un(x4)
)
.

Using similar arguments as in the proof of Lemma 3.3 in
[24] for n large we can choose a positive integer ν̃n such
that l < ν̃n < ν and ν̃n = o(n), by (29) we have∣∣∣∣∣P (n, βn,x,y)−

l∏
s=1

P (Ks, βn,x,y)

∣∣∣∣∣(30)

≤ (4l + 2)ν̃n(
P

(
Sn,1X̂

(1)
n,1 ≤ −un(y1)

)
+ P

(
Sn,1X̂

(1)
n,1 > un(x1)

)
+P

(
Sn,1X̂

(2)
n,1 ≤ −un(y2)

)
+ P

(
Sn,1X̂

(2)
n,1 > un(x2)

))
→ 0, n → ∞.

Note that

1− νμ

2l
Σ1 − ν

(
1− μ

2l

)
Σ2

+

(∑
j∈Ks

βnj

ν
− μ

2l

)
ν(Σ2 − Σ1)

≤ P (Ks, βn,x,y)

≤ 1− νμ

2l
Σ1 − ν

(
1− μ

2l

)
Σ2

+

(∑
j∈Ks

βnj

ν
− μ

2l

)
ν(Σ2 − Σ1) + νΣ3,

where

Σ1 = P1(n, x1, x2) + P2(n, y1, y2)

−P3(n, x1, y2)− P4(n, y1, x2),

Σ2 = P1(n, x3, x4) + P2(n, y3, y4)

−P3(n, x3, y4)− P4(n, y3, x4)

with Pi(n, z1, z2)’s defined in the proof of Lemma 4.2 and

Σ3 =
∑

i,j={1,2}

ν∑
t=2

(
P

(
Sn,1X̂

(i)
n,(s−1)ν+1 > un(xi),

Sn,1X̂
(j)
n,(s−1)ν+t > un(xj)

)
+P

(
Sn,1X̂

(i)
n,(s−1)ν+1 > un(xi),

Sn,1X̂
(j)
n,(s−1)ν+t ≤ −un(yj)

)
+P

(
Sn,1X̂

(i)
n,(s−1)ν+1 ≤ −un(yi),

Sn,1X̂
(j)
n,(s−1)ν+t > un(xj)

)
+P

(
Sn,1X̂

(i)
n,(s−1)ν+1 ≤ −un(yi),

Sn,1X̂
(j)
n,(s−1)ν+t ≤ −un(yj)

))
.

Since 0 ≤ 1− νμ
2l
Σ1 − ν(1− μ

2l
)Σ2 ≤ 1 applying Lemma 3 in

[19] we obtain

2l−1∑
μ=0

∑
βn∈{0,1}n

E

(∣∣∣∣∣
l∏

s=1

P (Ks, βn,x,y)(31)

−
l∏

s=1

[
1−

μ
2l
nΣ1 −

(
1− μ

2l

)
nΣ2

l

]∣∣∣∣∣ I (Bμ,l,βn)

)

≤
2l−1∑
μ=0

∑
βn∈{0,1}n

E

(
l∑

s=1

∣∣∣P (Ks, βn,x,y)

−
[
1−

μ
2l
nΣ1 −

(
1− μ

2l

)
nΣ2

l

]∣∣∣∣∣ I (Bμ,l,βn)

)

≤
2l−1∑
μ=0

l∑
s=1

E

⎛⎝
∣∣∣∑j∈Ks

εn,j

ν − μ
2l

∣∣∣
l

I (Bμ,l)

⎞⎠n(Σ1 − Σ2)
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+nΣ3

≤
l∑

s=1

[
2(2s− 1)

(
d

(
Ξνs

νs
, η

)
+ d

(
Ξν(s−1)

ν(s− 1)
, η

))
+

1

2l

]
n(Σ1 − Σ2)

l
+ nΣ3,

where d(X,Y ) stands for Ky Fan metric, i.e., d(X,Y ) =
inf{ε,P (|X − Y | > ε) < ε}. Furthermore,

2l−1∑
μ=0

∑
βn∈{0,1}n

E

(∣∣∣∣∣
l∏

s=1

[
1−

μ
2l
nΣ1 −

(
1− μ

2l

)
nΣ2

l

]
(32)

−
l∏

s=1

[
1− ηnΣ1 − (1− η)nΣ2

l

]∣∣∣∣∣ I(Bμ,l,βn)

)

≤
2l−1∑
μ=0

l∑
s=1

E

(∣∣∣ μ
2l

− η
∣∣∣ I(Bμ,l)

) n

l
(Σ1 +Σ2)

≤ n(Σ1 +Σ2)

2l
.

By the fact that limν→∞ d(Ξνs

νs , η) = 0 and utilising (29)–
(32), by passing to limit for n → ∞ and then letting ν → ∞
we obtain∣∣∣∣P (n, εn,x,y)− E

(
1− η(D(x1, x2) +D(y1, y2))

l

− (1− η)(D(x3, x4) +D(y3, y4))

l

)l
∣∣∣∣∣

≤ D(x1, x2) +D(y1, y2)

2l−1

+
1

l
(e−x1 + e−y1 + e−x2 + e−y2)2.

Next, letting l → ∞ implies

lim
n→∞

sup
xi,yi∈R,i={1,2,3,4}

x1≤x3,x2≤x4,y1≤y3,y2≤y4

|P (n, εn,x,y)

−E

(
Hη

λ(x1, x2)H
η
λ(y1, y2)H

1−η
λ (x3, x4)H

1−η
λ (y3, y4)

)∣∣∣
= 0,

hence the claim follows. �

Proof of Theorem 3.2 If (11) holds, by (12) for some
positive constant Q we have∣∣∣P(−un(y1) < m(1)

n (εn) ≤ M (1)
n (εn) ≤ un(x1),

−un(y2) < m(2)
n (εn) ≤ M (2)

n (εn) ≤ un(x2),

−un(y3) < m(1)
n ≤ M (1)

n ≤ un(x3),

−un(y4) < m(2)
n ≤ M (2)

n ≤ un(x4)
)

−P

(
−un(y1) < m̂(1)

n (εn) ≤ M̂ (1)
n (εn) ≤ un(x1),

−un(y2) < m̂(2)
n (εn) ≤ M̂ (2)

n (εn) ≤ un(x2),

−un(y3) < m̂(1)
n ≤ M̂ (1)

n ≤ un(x3),

−un(y4) < m̂(2)
n ≤ M̂ (2)

n ≤ un(x4)
)∣∣∣

≤ Qnw
4α+2p
2+p

∑
i,j=1,2

n∑
k=1

|λij(k, n)|

exp
(
−2(1 + |λij(k, n)|)−

p
2+pTw

2p
2+p

)
,

where w = min(|un(xi)|, |un(yi)|, 1 ≤ i ≤ 4). In view of
Lemma 3.3 in [13], the sum of the right side of the inequality
tends to 0. Thus the claim follows by Lemma 4.3. �
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