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The tail behavior of randomly weighted sums
of dependent random variables

Xuan Leng and Taizhong Hu
∗,†

Consider dependent random variables X1, . . . , Xd with
a common distribution function F and denote by ωF

the right endpoint of the support of F . Let Θ1, . . . ,Θd

be non-negative random variables, independent of X =
(X1, . . . , Xd) and satisfying certain moment conditions if
necessary. Under the assumption that X is in the maximum
domain of attraction of a multivariate extreme value distri-
bution, we establish the asymptotic behaviors of randomly
weighted sums: there exist limiting constants qFθ , q

W
θ and qGθ

such that for large t, P(
∑d

i=1 ΘiXi > t) ∼ E qFΘ · P(X1 > t),

P(
∑d

i=1 Θi(ωF −Xi) < 1/t) ∼ E qWΘ ·P(X1 > ωF −1/t), and

for
∑d

i=1 Θi = 1 and t approaching to ωF , P(
∑d

i=1 ΘiXi >
t) ∼ E qGΘ · P(X1 > t) according to F belonging to the max-
imum domains of attraction of the Fréchet, Weibull and
Gumbel distributions, respectively. Moreover, some basic
properties of the proportionality factor E qFΘ are presented.
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1. INTRODUCTION

In modern insurance mathematics and finance one of the
main issues is to model and compute the aggregation effects
of different risks. Consider dependent risks (random vari-
ables) X1, . . . , Xd with a common distribution function F ,
and let ωF be the right endpoint of the support of F . A way
to describe the dependence structure of risks is the copula
approach. Under the assumption that X = (X1, . . . , Xd)
has an Archimedean survival copula with generator ψ which
is regularly varying at zero with index −α < 0, Wüthrich
(2003) and Alink et al. (2004) presented the tail behaviors
of the following three types:

• If F belongs to the maximum domain of attraction
(MDA) of the Fréchet distribution Φβ for some β > 0,
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then

(1) lim
u→∞

1

F (u)
P

(
d∑

i=1

Xi > u

)
= qFd (α, β);

• If F belongs to the MDA of the Weibull distribution
Ψβ for some β > 0, then
(2)

lim
u→∞

1

F (ωF − 1/u)
P

(
d∑

i=1

Xi > dωF − 1

u

)
= qWd (α, β);

• If F belongs to the MDA of the Gumbel distribution Λ,
then

(3) lim
u↑ωF

1

F (u)
P

(
d∑

i=1

Xi > du

)
= qGd (α).

Here, the positive constants qFd (α, β), q
W
d (α, β) and qGd (α)

quantify the diversification effect between those risks. From
(1) to (3), we see that the probability of a large aggregate

risk
∑d

i=1 Xi scales like the probability of a large individual
risk X1, times a proportionality factor. Properties (mono-
tonicity and boundary values) of these proportionality fac-
tors were investigated by Embrechts et al. (2009) and Chen
et al. (2012). Alink et al. (2005) studied the asymptotic

behavior of expected shortfall of
∑d

i=1 Xi for the Fréchet
and Gumbel cases. Barbe et al. (2006) extended (1) from
the Archimedean dependence structure to the one with the
property of multivariate regular variation. Therefore, the
proportionality factor qFd (α, β) arises naturally in multivari-
ate extreme-value theory. As shown by these authors, the
asymptotic Value-at-Risk can be obtained from such analy-
sis of tail probabilities of the aggregate risks.

The form of the randomly weighted sum
∑d

i=1 ΘiXi is
usually encountered in many cases. For example, consider
a global macro-strategy investment portfolio consisting of d
assets over one period and Xi is regarded as a potential loss
of the asset i at the terminal time while the corresponding
discount factor over the period is Θi. The randomness of
the discount factors may result from the stochastic interest
rates or random return on investment. Then

∑d
i=1 ΘiXi is

the discounted losses from the portfolio.
In the present paper, we discuss the tail behaviors of ran-

domly weighted sums where X is in the MDA of a multi-
variate extreme value distribution G. More specifically, let
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Θ = (Θ1, . . . ,Θd) be a vector of non-negative random vari-
ables, independent of X and satisfying certain moment con-
ditions if necessary. Then there exist proportionality factors
qFθ (β), q

W
θ (β) and qGθ such that

• If F belongs to the MDA of the Fréchet distribution Φβ

for some β > 0, then

lim
t→∞

1

F (t)
P

(
d∑

i=1

ΘiXi > t

)
= E

[
qFΘ(β)

]
;

• If F belongs to the MDA of the Weibull distribution
Ψβ for some β > 0, then

lim
t→∞

1

F (ωF −1/t)
P

(
d∑

i=1

Θi(ωF −Xi)<
1

t

)
=E

[
qWΘ (β)

]
;

• If F belongs to the MDA of the Gumbel distribution Λ,
and if

∑d
i=1 Θi = 1, then

lim
t↑ωF

1

F (t)
P

(
d∑

i=1

ΘiXi > t

)
= E

[
qGΘ
]
.

Here, qFθ (β), q
W
θ (β) and qGθ are represented by the integral

with respect to the spectral measure of G. Moreover, some
properties of E [qFΘ(β)] are given. The main results in this
paper extend some known results in Alink et al. (2004) and
Barbe et al. (2006).

This paper is organized as follows. Section 2 recalls the
concept of multivariate regular variation and its basic prop-
erties. The main results on the asymptotic behavior for de-
pendent random variables in terms of randomly weighted
sums are given in Section 3. Section 4 is devoted to the study
of basic properties of E [qFΘ(β)]. Section 5 is an appendix.

Throughout, for any increasing function h, define its gen-
eralized inverse h← by h←(u) = inf{x : h(x) ≥ u}; and for
any decreasing function h, define its generalized inverse h←

by h←(u) = sup{x : h(x) ≥ u}.

2. MULTIVARIATE REGULAR VARIATION

An R
d-valued random vector X or its distribution is

said to be of multivariate regularly variation (MRV) if
there exists a nonzero Radon measure μ on the Borel σ-

field B(R
d\{0}) and a sequence of positive constants {an},

an → ∞ as n → ∞, such that

(4) nP

(
X

an
∈ ·
)

ν−→ μ(·), n → ∞.

Here
ν−→ refers to vague convergence on B(R

d\{0}). If
X takes values in [0,∞], the MRV in this special case
can be defined by restricting vague convergence in (4) on
B ([0,∞]\{0}). We write X ∈ MRVd(−β) since μ neces-
sarily satisfies μ(tB) = t−βμ(B) for some β > 0 and all

t > 0 and B ∈ B(R
d\{0}). μ is called the limit Radon mea-

sure of X. For more on MRV, we refer to Resnick (1987,
2007) and Lindskog (2004).

Lemma 2.1. (Basrak et al., 2002, Proposition A.1) As-
sume that X ∈ MRVd(−β) in the sense of (4) with β > 0,
and A is a random q × d matrix, independent of X. If
0 < E |A|γ < ∞ for some γ > β and an arbitrary matrix
norm | · |, then

(5) nP(a−1
n AX ∈ ·) ν−→ E

[
μ ◦A−1(·)

]
.

where, for any B ∈ B(R
q\{0}),

A−1(B) = {x ∈ R
d : Ax ∈ B}.

Let X ∈ MRVd(−β), β > 0, have a distribution function
K with the limit Radon measure μ. Then K is in the MDA
of G, where

G(x) = exp {−μ([−∞,x]c)} for x ∈ R
d.

Define

(6) Z =

(
1

K1(X1)
, . . . ,

1

Kd(Xd)

)
,

where K1, . . . ,Kd are the univariate margins of K. Then
tP(Z/t ∈ ·) ν−→ μ∗(·) on B ([0,∞]\{0}) as t → ∞, im-
plying Z ∈ MRVd(−1). Let G∗ be a multivariate extreme
value (MEV) distribution function with canonical exponent
measure μ∗, that is,

− logG∗(x) = μ∗([0,∞] \ [0,x])

for x ∈ [0,∞]. It is seen that the margins of G∗ are the stan-
dard Fréchet distribution. Now define the spectral measure
S‖·‖ on ℵ+ = {x ∈ R

d
+ : ‖x‖ = 1} by

S‖·‖(B) = μ∗

({
x ∈ R

d
+ : ‖x‖ ≥ 1,

x

‖x‖ ∈ B

})

for B ∈ B(ℵ+) and ‖ · ‖ is an arbitrary norm. The most
popular choice for the norm ‖ · ‖ is the sum-norm or �1-

norm, ‖x‖1 =
∑d

i=1 |xi| with 1 = (1, · · · , 1). Throughout,
the spectral measure S‖·‖1

is typically denoted by H on

Sd−1 = {ω ∈ R
d
+ : ‖ω‖1 = 1}.

Lemma 2.2. (Resnick, 1987, Proposition 5.15) Let X be
a d-dimensional random vector with distribution function
K, and let Z be as defined by (6). If K ∈ MDA(G), then
Z ∈ MRVd(−1).

3. MAIN RESULTS

In this section, main results are given according to the
cases that the marginal distributions of the underlying ran-
dom vector belong to the MDA of the Fréchet, Weibull and
Gumbel distributions, respectively.
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3.1 The Fréchet case

Theorem 3.1. Let X ∈ MRVd(−β) be a non-negative ran-
dom vector with a common univariate marginal distribution
F , where β > 0, and let Θ = (Θ1, · · · ,Θd) be another non-
negative random vector, independent of X. If E [Θγ

k ] < ∞
for some γ > β and each k, then

lim
t→∞

1

F (t)
P

(
d∑

i=1

ΘiXi > t

)

= E

⎡
⎣∫

Sd−1

(
d∑

i=1

Θiω
1/β
i

)β

H(dω)

⎤
⎦ ,

where H is the spectral measure corresponding to the distri-
bution function of X with respect to the �1-norm. In partic-
ular, for any θ = (θ1, . . . , θd) ∈ R

d
+,

lim
t→∞

1

F (t)
P

(
d∑

i=1

θiXi > t

)
(7)

=

∫
Sd−1

(
d∑

i=1

θiω
1/β
i

)β

H(dω).

Proof. First, X ∈ MRVd(−β) with a common univariate
marginal distribution F implies that

1

F (t)
P

(
X

t
∈ ·
)

ν−→ μ(·), t → ∞.

Then, applying Lemma 2.1 yields that

(8) lim
t→∞

P
(∑d

i=1 ΘiXi > t
)

F (t)
= E

[
μ
(
AΘ

)]
,

where Aθ = {x ∈ R
d
+ :

∑d
i=1 θixi > 1} for each θ. On the

other hand, note that

tP

(
Y

t
∈ ·
)

ν−→ μ∗(·), t → ∞,

where

Y =

(
1

F (X1)
, . . . ,

1

F (Xd)

)
.

Then, based on a similar argument to that in Section 2 of
Barbe et al. (2006), we have

(9) μ
(
Aθ

)
= μ∗

(
Aβ

θ

)
,

where Aβ
θ = {x ∈ R

d
+ :

∑d
i=1 θix

1/β
i > 1} for any θ ∈ R

d
+.

Therefore, by the spectral decomposition of μ∗, (8) and (9),
we get that

lim
t→∞

P
(∑d

i=1 ΘiXi > t
)

F (t)
= E

[
μ∗
(
Aβ

Θ

)]

= E

[∫
Ω∗

Θ

r−2drH(dω)

]

= E

⎡
⎣∫

Sd−1

(
d∑

i=1

Θiω
1/β
i

)β

H(dω)

⎤
⎦ ,

where

Ω∗
θ =

⎧⎨
⎩(r,ω) ∈ R+ × Sd−1 : r >

(
d∑

i=1

θiω
1/β
i

)−β
⎫⎬
⎭ .

This completes the proof.

We call a non-negative multivariate regularly varying ran-
dom vector asymptotically independent if the spectral mea-
sure S‖·‖ is concentrated on the points ej/‖ej‖, j = 1, · · · , d,
where ej denotes the jth unit vector in R

d, that is, the jth
coordinate of ej is one and all other coordinates are zero;
it is called asymptotically fully dependent if the spectral
measure S‖·‖ is concentrated on 1/‖1‖; see Resnick (2004).

Corollary 3.2. Under the conditions of Theorem 3.1, if X
is asymptotically independent, then

lim
t→∞

1

F (t)
P

(
d∑

i=1

ΘiXi > t

)
=

d∑
j=1

EΘβ
j ;

and if X is asymptotically fully dependent, then

lim
t→∞

1

F (t)
P

(
d∑

i=1

ΘiXi > t

)
= E

(
d∑

i=1

Θi

)β

.

Proof. For the asymptotic independence case, the spectral
measure H consists of point masses of size 1 at the points
ej ’s. Then

∫
Sd−1

(
d∑

i=1

Θiω
1/β
i

)β

H(dω) =
d∑

j=1

Θβ
jH(ej) =

d∑
j=1

Θβ
j .

For the asymptotic full dependence case, H collapses to
a single point mass of size d at the point 1/d. Then

∫
Sd−1

(
d∑

i=1

Θiω
1/β
i

)β

H(dω)

=

(∑d
i=1 Θi

)β
d

·H
(
1

d
1

)
=

(
d∑

i=1

Θi

)β

.

This completes the proof.

Corollary 3.3. Let X be a d-dimensional random vector
with a common univariate marginal distribution F and a
joint distribution function K ∈ MDA(G), where G is an
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MEV distribution with univariate margins being the Weibull
distribution Ψβ, β > 0. Let Θ = (Θ1, . . . ,Θd) be a non-
negative random vector, independent of X. If E [Θγ

k ] < ∞
for some γ > β and each k, then

lim
t→∞

1

F (ωF − 1/t)
P

(
d∑

i=1

Θi

ωF −Xi
> t

)

= E

⎡
⎣∫

Sd−1

(
d∑

i=1

Θiω
1/β
i

)β

H(dω)

⎤
⎦ ,

where H is the spectral measure of the distribution of
(1/F (X1), . . . , 1/F (Xd)) with respect to the �1-norm.

Proof. Define

Z =

(
1

ωF −X1
, . . . ,

1

ωF −Xd

)
.

Then Z ∈ MRVd(−β) since X and Z have the same copula
and F (ωF−1/·) ∈ RV−β (see Embrechts et al., 1997, p. 136).
Applying Theorem 3.1 to Z yields that

lim
t→∞

1

F (ωF − 1/t)
P

(
d∑

i=1

Θi

ωF −Xi
> t

)

= E

⎡
⎣∫

Sd−1

(
d∑

i=1

Θiω
1/β
i

)β

H(dω)

⎤
⎦ .

This completes the proof.

In Theorem 3.1, MRV of X implies that its components
belong to the MDA of the Fréchet distribution. Motivated
by this, we will consider the other two cases that X belongs
to the MDA of an MEV distribution with the univariate
margins being the Weibull and Gumbel distributions, re-
spectively.

3.2 The Weibull case

To prove the main result, we need the following lemma.

Lemma 3.4. (Pratt, 1960) Let Xn and Un be two sequences

of random variables. Assume |Xn| ≤ Un, a.s., Un
P−→ U ,

EUn → EU and U is integrable. If Xn
P−→ X, then

E |Xn −X| → 0

and, hence, EXn → EX.

Theorem 3.5. Let X be a d-dimensional random vector
with a common univariate marginal distribution F and a
joint distribution function K ∈ MDA(G), where G is an
MEV distribution with univariate margins being the Weibull
distribution Ψβ, β > 0. Let Θ = (Θ1, . . . ,Θd) be a non-
negative random vector, independent of X. If E [Θ−γ

k ] < ∞

for some γ > β and each k, then

lim
t→∞

1

F (ωF − 1/t)
P

(
d∑

i=1

Θi(ωF −Xi) <
1

t

)
(10)

= E

⎡
⎣∫

Sd−1

(
d∑

i=1

Θiω
−1/β
i

)−β

H(dω)

⎤
⎦ ,

where H is the spectral measure of of the distribution of
(1/F (X1), . . . , 1/F (Xd)) with respect to the �1-norm. In par-
ticular, for any θ ∈ R

d
+,

lim
t→∞

1

F (ωF − 1/t)
P

(
d∑

i=1

θi(ωF −Xi) <
1

t

)
(11)

=

∫
Sd−1

(
d∑

i=1

θiω
−1/β
i

)−β

H(dω).

Proof. First, we prove (11). A similar argument to that
in Section 2 of Barbe et al. (2006) is used here to prove
the desired result. Denote by g(x) = 1/P(ωF − Xi < x) =
1/F (ωF − x) and b(x) = g←(x). Define

Y =
(
g(ωF −X1), . . . , g(ωF −Xd)

)
=

(
1

F (X1)
, . . . ,

1

F (Xd)

)
.

Observe that X and Y have the same copula since the cop-
ula is invariant under increasing transformations of the mar-
gins. Also, (ωF − X1, . . . , ωF − Xd) and (b(Y1), . . . , b(Yd))
have the same distribution. Then

d∑
i=1

θi
(
ωF −Xi

)
< s ⇐⇒

d∑
i=1

θib
(
Yi

)
< s

or, equivalently,

(12)
Y

g(s)
∈ Ω(s) ≡

{
z ∈ R

d
+ :

d∑
i=1

θib(g(s)zi) < s

}
.

By Lemma 2.3(ii) in Lv et al. (2012),

F (ωF − 1/·) ∈ RV−β =⇒ g ∈ RV−β(0
+)

=⇒ b ∈ RV−1/β ,

implying that

lim
s→0

b(g(s)z)

s
= lim

s→0

b(g(s)z)

b(g(s))
= lim

t→∞

b(tz)

b(t)
= z−1/β ,

and

lim
s→0

Ω(s) = Ω =

{
z ∈ R

d
+ :

d∑
i=1

θiz
−1/β
i < 1

}
.
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By choosing the �1-norm and using a polar coordinate trans-

formation T , T (x) = (‖x‖, x
‖x‖ ) =: (r,ω), we have

T (Ω) = Ω∗=

⎧⎨
⎩(r,ω) ∈ R+×Sd−1 : r >

(
d∑

i=1

θiω
−1/β
i

)β
⎫⎬
⎭ .

From Lemma 2.2, it follows that Y ∈ MRVd(−1) and,

hence,

lim
t→∞

tP

(
Y

t
∈ Ω

)
= μ∗(Ω) =

∫
Ω∗

r−2drH(dω)

=

∫
Sd−1

(
d∑

i=1

θiω
−1/β
i

)−β

H(dω).

Therefore,

lim
t→∞

1

F (ωF − 1/t)
P

(
d∑

i=1

θi(ωF −Xi) <
1

t

)

= lim
t→∞

g(1/t)P

(
Y

g(1/t)
∈ Ω(1/t)

)

= lim
t→∞

tP

(
Y

t
∈ Ω

)

=

∫
Sd−1

(
d∑

i=1

θiω
−1/β
i

)−β

H(dω).

This proves (11).

Next, we turn to prove (10). Set Θmin = ∧d
i=1Θi, and

define

Ut =
1

F (ωF − 1/t)
P

(
d∑

i=1

Θi(ωF −Xi) <
1

t

∣∣∣∣∣Θ
)
,

U =

∫
Sd−1

(
d∑

i=1

Θiω
−1/β
i

)−β

H(dω),

Zt =
1

F (ωF − 1/t)
P

(
d∑

i=1

(ωF −Xi) <
1

tΘmin

∣∣∣∣∣Θ
)
,

and

cβ =

∫
Sd−1

(
d∑

i=1

ω
−1/β
i

)−β

H(dω).

From (11), it follows that Ut → U as t → ∞ and that

P

(
d∑

i=1

(ωF −Xi) <
1

·

)
∈ RV−β .

Hence,

Zt =

P

(
1∑d

i=1(ωF−Xi)
> tΘmin

∣∣∣∣Θ
)

P
(

1∑d
i=1(ωF−Xi)

> t
)

×
P
(

1∑d
i=1(ωF−Xi)

> t
)

F (ωF − 1/t)

→ cβ(Θmin)
−β , t → ∞.

Clearly, Ut ≤ Zt and E [(Θmin)
−γ ] ≤

∑d
i=1 E [Θ−γ

i ] < ∞.
Moreover, by Breiman’s theorem (Breiman, 1965), we have

lim
t→∞

EZt

= lim
t→∞

1

F (ωF−1/t)
P

(
(Θmin)

−1 1∑d
i=1(ωF −Xi)

> t

)

= lim
t→∞

E
[
(Θmin)

−β
] P

(
1∑d

i=1(ωF−Xi)
> t
)

F (ωF − 1/t)

= cβ E
[
(Θmin)

−β
]
.

Therefore, by Lemma 3.4, we conclude that EUt → EU as
t → ∞, which implies (10). This completes the proof.

3.3 The Gumbel case

Theorem 3.6. Let X be a d-dimensional random vector
with a common univariate marginal distribution F and a
joint distribution function K ∈ MDA(G), where G is an
MEV distribution with univariate margins being the Gum-
bel distribution Λ. Let Θ = (Θ1, . . . ,Θd) be a non-negative

random vector, independent of X, such that
∑d

i=1 Θi = 1.
Then
(13)

lim
t↑ωF

1

F (t)
P

(
d∑

i=1

ΘiXi > t

)
= E

[∫
Sd−1

d∏
i=1

ωi
ΘiH(dω)

]
.

where H is the spectral measure of of the distribution of
(1/F (X1), . . . , 1/F (Xd)) with respect to the �1-norm. In par-

ticular, for any θ ∈ R
d
+ such that

∑d
i=1 θi = 1,

(14) lim
t↑ωF

1

F (t)
P

(
d∑

i=1

θiXi > t

)
=

∫
Sd−1

d∏
i=1

ωi
θiH(dω).

Proof. We first prove (14) by using a similar argument to
that in the proof of Theorem 3.5. Denote by g(t) = 1/F (t)
and b(t) = g←(t). By Theorem 3.3.27 in Embrechts et al.
(1997), there exists some positive function a(t) such that

lim
t↑ωF

F (t)

F (t+ a(t)u)
= eu u ∈ R.
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Thus, by Lemma 1.1.1 in de Haan and Ferreira (2006), we
have

(15) lim
t↑ωF

b
(
g(t)y

)
− t

a(t)
= log y y > 0.

Define Y = (g(X1), . . . , g(Xd)), and observe that X and Y
have the same copula. Also, X and (b(Y1), . . . , b(Yd)) have
the same distribution. Then

d∑
i=1

θiXi > t ⇐⇒
d∑

i=1

θi(b(Yi)− t) > 0

or, equivalently,

Y

g(t)
∈ Ω(t) ≡

{
z ∈ R

d
+ :

d∑
i=1

θi(b(g(t)zi)− t)

a(t)
> 0

}
.

From (15), it follows that

lim
t↑ωF

Ω(t) = Ω =

{
z ∈ R

d
+ :

d∏
i=1

zθii > 1

}
.

Then

lim
t↑ωF

1

F (t)
P

(
d∑

i=1

θiXi > t

)

= lim
t↑ωF

g(t)P

(
Y

g(t)
∈ Ω(t)

)
= lim

t→∞
tP

(
Y

t
∈ Ω

)
.(16)

By choosing the �1-norm and using a polar coordinate trans-
formation T , we have

T (Ω) = Ω∗ =

{
(r,ω) ∈ R+ × Sd−1 : r >

d∏
i=1

ω−θi
i

}
.

From Lemma 2.2, it follows that Y ∈ MRVd(−1) and,
hence,

lim
t→∞

tP

(
Y

t
∈ Ω

)
= μ∗(Ω)

=

∫
Ω∗

r−2drH(dω) =

∫
Sd−1

d∏
i=1

ωi
θiH(dω).(17)

Therefore, (14) follows from (16) and (17).

To prove (13), note that

1

F (t)
P

(
d∑

i=1

ΘiXi > t

∣∣∣∣Θ
)

≤ 1

F (t)
P

(
d⋃

i=1

{Xi > t}
∣∣∣∣Θ
)

≤ 1

F (t)

d∑
i=1

P(Xi > t) = d.

Then, applying the dominated convergence theorem and
(14) yields that

lim
t↑ωF

1

F (t)
P

(
d∑

i=1

ΘiXi > t

)

= E

[
lim
t↑ωF

1

F (t)
P

(
d∑

i=1

ΘiXi > t

∣∣∣∣∣Θ
)]

= E

[∫
Sd−1

d∏
i=1

ωΘi
i H(dω)

]
.

This completes the proof of the theorem.

4. BASIC PROPERTIES OF A LIMITING
CONSTANT

The main result in Section 3 states that the probability
of a large loss of

∑d
i=1 ΘiXi scales like the probability of a

large individual loss of X1, times the proportionality factor.
In terms of Value-at-Risk, the approximation of large quan-
tiles of the distribution of

∑d
i=1 ΘiXi is allowed through

those of the individual claim of Xi. So the study of these
proportionality factors is of obvious interest. In this section,
denote by qFθ (β) the right-hand side of (7), and we will give
some basic properties of E

[
qFΘ(β)].

Proposition 4.1. Under the conditions of Theorem 3.1, we
have

E
[
qFΘ(β)

]
≤ E

(
d∑

i=1

Θi

)β

, β ≥ 1;

E
[
qFΘ(β)

]
≥ E

(
d∑

i=1

Θi

)β

, 0 < β < 1.

Proof. Since H(Sd−1) = d, H is a finite measure on
B(Sd−1). Then, applying Minkowski’s inequality for β ≥ 1,
we have

[
qFΘ(β)

]1/β ≤
d∑

i=1

(∫
Sd−1

(
Θiω

1/β
i

)β
H(dω)

)1/β

=

d∑
i=1

Θi,

where the last equation follows from the fact that∫
Sd−1

ωj H(dω) = 1, j = 1, · · · , d;

see, e.g., Beirlant et al. (2004, p. 260). For 0 < β < 1, the
above inequality is reversed. The desired results follow.

Proposition 4.2. Under the conditions of Theorem 3.1, we
have

lim
β→∞

E

[
qFΘ(β)(∑d
i=1 Θi

)β
]
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= E

⎛
⎝∫

Sd−1

(
d∏

i=1

ωΘi
i

)1/
∑d

i=1 Θi

H(dω)

⎞
⎠

and

lim
β→0

qFθ (β) =

∫
Sd−1

max(ω1, . . . , ωd)H(dω).

Proof. First, denote

λθ(β) =

(
d∑

i=1

θiω
1/β
i

)β

.

Then qFθ (β) =
∫
Sd−1

λθ(β)H(dω). It is shown in the ap-

pendix that

(18) lim
β→0

λθ(β) = max(ω1, · · · , ωd),

and

(19) lim
β→∞

λθ(β)(∑d
i=1 θi

)β =

⎛
⎝ d∏

j=1

ω
θj
j

⎞
⎠

1/
∑d

i=1 θi

.

Since 0 ≤ ωj ≤ 1 for j = 1, . . . , d, we have

(20)
λθ(β)(∑d
i=1 θi

)β ≤ 1.

Then, for β ≥ 1, by (19) and (20), applying the dominated
convergence theorem twice yields that

lim
β→∞

qFΘ(β)(∑d
i=1 Θi

)β =

∫
Sd−1

lim
β→∞

λΘ(β)(∑d
i=1 Θi

)β H(dω)

=

∫
Sd−1

(
d∏

i=1

ωΘi
i

)1/
∑d

i=1 Θi

H(dω),

and

lim
β→∞

E

(
qFΘ(β)(∑d
i=1 Θi

)β
)

= E

(
lim
β→∞

qFΘ(β)(∑d
i=1 Θi

)β
)

= E

⎛
⎝∫

Sd−1

(
d∏

i=1

ωΘi
i

)1/
∑d

i=1 Θi

H(dω)

⎞
⎠ .

Next, by (18) and (20), applying the dominated conver-
gence theorem yields that

lim
β→0

qF(β,Θ) = lim
β→0

∫
Sd−1

λΘ(β)(∑d
i=1 Θi

)β H(dω)

=

∫
Sd−1

lim
β→0

λΘ(β)(∑d
i=1 Θi

)β H(dω)

=

∫
Sd−1

lim
β→0

λΘ(β)H(dω)

=

∫
Sd−1

max(ω1, . . . , ωd)H(dω)

This completes the proof.
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APPENDIX A

Proof of Eq. (18): Denote ωi0 = max(ω1, . . . , ωd). Then,

lim
β→0

log λθ(β)

= lim
β→0

β log

(
ω
1/β
i0

d∑
i=1

θi

(
ωi

ωi0

)1/β
)

= logωi0 + lim
β→0

β log

⎛
⎝θi0

⎛
⎝1 +

∑
i �=i0

θi
θi0

(
ωi

ωi0

)1/β
⎞
⎠
⎞
⎠

= logωi0 ,

implying (18).

Proof of Eq. (19): For θ > 0,

lim
β→∞

log

⎛
⎜⎝ λθ(β)(∑d

i=1 θi

)β
⎞
⎟⎠

= lim
β→∞

β log

⎛
⎝1 +

1∑d
i=1 θi

d∑
j=1

θj(ω
1/β
j − 1)

⎞
⎠ .

Note that

lim
β→∞

β
(
ω
1/β
j − 1

)
= logωj

and

lim
t→∞

t log
(
1 + ct/t

)
= c whenever ct → c.

Then

lim
β→∞

log

⎛
⎜⎝ λθ(β)(∑d

i=1 θi

)β
⎞
⎟⎠ =

1∑d
i=1 θi

d∑
j=1

θj logωj ,

implying (19).
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