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Pricing synthetic CDO with MGB2 distribution

Qiurong Cui and Yong Ma
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In this paper we apply MGB2 distribution to price syn-
thetic CDO. MGB2 distribution has flexible dependence
structure and it is suitable to model extreme risk. The mono-
tonicity of the spread of equity tranche with respect to some
parameter is shown. We compare our model with the one-
factor Gaussian, Clayton and double t models. Although our
proposed MGB2 model is not flexible enough to produce the
implied compound correlation smile, it is much more flexi-
ble to produce the patterns of base correlation curve than
the others. Besides, concerning base correlation, MGB2 and
double t model match the market data better than the Gaus-
sian and Clayton copula models.
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1. INTRODUCTION

When we come to the pricing of the credit derivative on
a portfolio of reference entities, the critical point is how
to model the default correlation or default dependence of
the different reference names. Among all kinds of the pric-
ing methodologies, factor model is one of the most popular.
The factor model approach for modeling correlated defaults
assumes that conditional on the common factors, the de-
faults are independent,which helps simplify the calculation
of the loss distribution. A modeler is then left to choose the
number of the factors and specify the distributions of them
so that the model can fit the market prices well. For more
details about factor model for multi-name credit derivatives
pricing, we refer the readers to [9, 10].

The most well-known factor model is one-factor Gaussian
model, in which there is only one common factor and one
idiosyncratic factor for each entity and all the factors inde-
pendently follow Gaussian distributions. It is initially pro-
posed by [11] for the pricing of multi-name credit derivations
and since then it has been the industry standard and bench-
mark. However, as has been extensively indicated (see, for
example, [3, 6, 14]), the one-factor Gaussian model fails to
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simultaneously fit the market prices of the different tranches
of a synthetic CDO which leads to the implied correlation
smile. In order to fit the market data better, many other fac-
tor models based on different distributions or copulas have
recently been proposed. [1, 4] extended one-factor Gaussian
model by replacing the constant correlation with stochas-
tic correlation. [7] argued if the common factors have heavy
tails, there will be a greater possibility of default clustering
which may explain the phenomenon of correlation smile, so
it extended one-factor Gaussian model simply by replacing
the Gaussian distributions with t-distributions. It also sug-
gested double t-distribution copula with 4 degrees of free-
dom to fit the market price. However, since t-distribution
is not stable under convolution, the distributions of default
risk factors do not have analytic or semi-analytic formu-
las, thus the computation will be time-consuming by Monte
Carlo method, as suggested by [8] where the normal inverse
Gaussian (NIG) distribution is introduced to price synthetic
CDO. [5] compared some popular CDO pricing models and
suggested the best criteria to assess a model’s ability for
pricing CDO is the difference in implied correlation. Nev-
ertheless, the existence of implied correlation is not guar-
anteed, see [15]. To overcome it, [13] proposed a substitute
of implied correlation, the base correlation. In general, an
eligible factor model for the pricing of multi-name credit
derivatives is on all accounts obliged to be flexible in mod-
eling dependence structure, efficient in large-scale computa-
tion and capable of producing implied correlation smile or
proper base correlation trend curve.

In this paper, we apply MGB2 distribution to price
CDOs. MGB2 introduced recently by [16] is a scale mix-
ture of generalized gamma distributions with inverse gen-
eralized gamma weights. It can produce heavy tails, skew-
ness and flexible dependence structures. In particular, it is
appropriate to model extreme events like default cluster-
ing and extreme risks in catastrophic insurance. As shown
later, the proposed factor model based on MGB2 distribu-
tion possesses the properties an eligible multi-name credit
derivations pricing model should have.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces one-factor model and MGB2 distribution,
which is then applied to modeling the joint distribution of
default times. Section 3 presents how to price the synthetic
CDOs and shows that the spread of equity tranche with re-
spect to some parameter is monotonic. Section 4 calibrates
the proposed model with market data, and then evaluates
the applicability and flexibility of our model. Section 5 con-
cludes.
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2. ONE-FACTOR MODEL AND MGB2
DISTRIBUTION

2.1 One-factor model

Consider a portfolio consisting of n credit-risky assets.
The default times of the obligors are denoted by (τ1, . . . , τn)
with marginal distribution functions Fi’s. The one-factor
model can be written as

(1) Xi = ρiM +
√

1− ρ2iZi, i = 1, . . . , n,

where M and Zi’s have independent zero-mean unit-
variance distributions. Conditional on M , the Xi’s are inde-
pendent and the conditional cumulative distribution func-
tion (c.d.f.) of Xi is

P (Xi ≤ xi|M) = P

(
Zi ≤

xi − ρiM√
1− ρ2i

|M
)
.

In Gaussian model M and Zi’s follow independent Gaussian
distributions, and in double t model they follow independent
normalized t distributions. One-factor portfolio credit risk
model means that the default times are given by

(2) τi = F−1
i

(
FXi(Xi)

)
, i = 1, . . . , n,

where FXi is the distribution function of Xi. Hence τi’s and
Xi’s have the same copula structure. It follows from (1) and
(2) that

P (τi ≤ ti|M) = P

(
Zi ≤

F−1
Xi

(Fi(ti))− ρiM√
1− ρ2i

|M
)
,

which indicates the default times are correlated by the com-
mon factor M and they are independent conditioning on M .
That is why factor model is also called conditional indepen-
dence model. Note that in practice Fi(ti) is calibrated to
CDS market quotes for single names, then they can give the
corresponding xi by xi = F−1

Xi
(Fi(ti)).

Another one-factor structure can be formulated as fol-
lows. Let V be a positive random variable and ψ(s) the
Laplace transform of V , i.e., ψ(s) = E[e−sV ]. Define the
latent variables Xi’s as

(3) Xi = ψ(− lnUi/V ), i = 1, . . . , n,

where U1, . . . , Un are independent uniform random variables
and independent from V . Then the default times are given
by

(4) τi = F−1
i (Xi), i = 1, . . . , n.

From (3) and (4), we have

(5) P (τi ≤ ti|V ) = exp
(
−V ψ−1

(
Fi(ti)

))
,

and default times are independent given V . The joint dis-
tribution function can be written as

F (t1, . . . , tn) = ψ

(
n∑

i=1

ψ−1
(
Fi(ti)

))
.

A typical example is the Clayton copula with ψ(s) =
(1 + s)−1/θ, θ > 0.

As can be seen later, our proposed model takes an ap-
proach closer to the latter one, but cannot be generated by
either of these one-factor structures.

2.2 MGB2 distribution

Let X = (X1, . . . , Xn)
T be a real n-dimensional random

vector on (0,∞]n such that given θ eachXi follows a general-
ized gamma distribution GG(ai, biθ

1/ai , pi) with probability
density function

fXi|θ(xi) =
ai

Γ(pi)xiθpi
(xi/bi)

aipie−(xi/bi)
ai/θ, xi > 0.

Moreover, if θ follows an inverse gamma distribution with
shape parameter q and unit scale, i.e., θ ∼ InvGa(q, 1),

fθ(θ) =
1

Γ(q)
θ−q−1e−1/θ,

then (X1, . . . , Xn) is said to follow multivariate GB2 distri-
bution (MGB2); see [16] for details. The marginal distribu-
tion is written as GB2(ai, bi, pi, q).

Notice that the generalized gamma distribution
GG(ai, biθ

1/ai , pi) with pi = 1 transforms to Weibull
distribution and Fréchet distribution with scale parameter
biθ

1/ai and shape parameter |ai| when ai > 0 and ai < 0
respectively. In particular, if in addition ai = 1, the
generalized gamma distribution GG(ai, biθ

1/ai , pi) becomes
the exponential distribution with mean biθ. Here θ can be
understood as the common component of the market, and
pi, ai, bi contain the idiosyncratic component of the Xi.

The conditional c.d.f. of Xi given θ is

P (Xi ≤ xi|θ) =
∫ xi

0

ai
Γ(pi)tθpi

(t/bi)
aipie−(t/bi)

ai/θdt(6)

= Gp

(
(xi/bi)

aiθ−1
)
,

where Gp(z) = 1
Γ(p)

∫ z

0
tp−1e−tdt, z > 0 and Γ(p) is the

gamma function. Recall the relation between a GB2 vari-
able and a standard beta variable: if X is a GB2(a, b, p, q),
then the transformed variable (X/b)a/[1+ (X/b)a] follows a
beta distribution B(p, q). Thus, the c.d.f. of Xi is given by

FXi(xi) = Bpi,q

(
xai

i /
(
xai

i + bai

i

))
where Bpi,q is the c.d.f of a standard beta variable with
parameters pi and q, i.e. Bpi,q(z) = 1

B(pi,q)

∫ z

0
tpi−1(1 −

t)q−1dt, 0 ≤ z ≤ 1.
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The joint conditional c.d.f. of X given θ is

FX|θ(x1, . . . , xn) =

n∏
i=1

Gpi

(
(xi/bi)

aiθ−1
)
.

Then the unconditional c.d.f. of X is

FX(x1, . . . , xn) = Eθ

[
FX|θ(x1, . . . , xn)

]
=

∫ ∞

0

n∏
i=1

Gpi

(
(xi/bi)

aiθ−1
)
fθ(θ)dθ.

Moreover, let Sn =
∑n

i=1 pi, then the probability density
function of X is

fX(x1, . . . , xn) =

∫ ∞

0

fθ(θ)

n∏
i=1

fXi|θ(xi|θ)dθ

=

(
n∏

i=1

ai

Γ(pi)xi

(
xi

bi

)aipi
)

1

Γ(q)

∫ ∞

0

θ−q−1−Sne

∑n
i=1(

xi
bi

)ai+1

θ dθ

=

(
n∏

i=1

ai

Γ(pi)xi

(
xi

bi

)aipi
)

1

Γ(q)

Γ(Sn + q)

(
∑n

i=1(xi/bi)ai + 1)Sn+q

=
Γ(Sn + q)

Γ(q)
∏n

i=1 Γ(pi)xi

∏n
i=1 ai(xi/bi)

aipi

[1 +
∑n

i=1(xi/bi)ai ]Sn+q
.

The n-dimensional MGB2 copula is defined by

CMGB2
p1,...,pn,q(u1, . . . , un) = FX

(
F−1
X1

(u1), . . . , F
−1
Xn

(un)
)

(7)

=

∫ ∞

0

n∏
i=1

Gpi

(
B−1

pi,q(ui)

(1−B−1
pi,q(ui))θ

)
θ−(q+1)e−1/θ

Γ(q)
dθ,

where (u1, . . . , un) ∈ [0, 1]n. As shown in [16], MGB2 copula
is very flexible in modeling tail dependence and it includes
some other copulas as its limit cases. To name a few, inde-
pendence copula, Fréchet-Hoeffding upper bound and Gaus-
sian copula can be approached by MGB2 copula. What is
more, bivariate MGB2 copula is lower-tail independent and
upper-tail dependent.

2.3 Joint distribution of default times

For pricing multi-name credit derivatives, we need to
model the joint distribution function of default times τi’s.
Under the framework of intensity model, it is often the case
that the distribution function of default time τi is assumed
to be pi(t) = P (τi ≤ t) = 1 − exp(−

∫ t

0
λi(s)ds), where

λi(t) is deterministic non-negative process and called in-
tensity process, then copulas are used to generate the joint
distribution; see [11]. [12] evaluated two extreme value dis-
tributions Weibull and Fréchet distributions for the time
to default and found the former fits the market data bet-
ter. There they used one-factor Gaussian and Clayton cop-
ulas to link the marginal distributions for pricing basket
default swaps. In this paper, we choose MGB2 distribution
as the joint distribution of default times. Our model can

be treated like this: each default time follows GB2 distribu-
tion, which is a mixture of generalized gamma distribution,
i.e., τi ∼ GB2(ai, bi, pi, q), and their dependence structure
is formed by MGB2 copula. Besides, because Weibull distri-
bution is a special case of generalized gamma distribution,
the proposed model is more general than that in [12], to a
large extent.

3. PRICING OF SYNTHETIC CDO

3.1 Distributions of number of default and
time of mth default

Throughout this paper, Q and Ẽ represent the risk-
neutral probability measure and the expectation under this
measure, respectively. The calculation of premium payment
leg involves the distribution of counting process N(t) de-
fined as N(t) =

∑n
i=1 1τi≤t, namely, N(t) is the number of

defaults at time t. Ni(t) = 1τi≤t is defined as the indicator
of default of name i. We now compute the probability of k
defaults at time t, i.e. Q(N(t) = k) for k = 0, . . . , n, using
the probability generating function.

The probability generating function of N(t) is

(8) ψN(t)(u) = Ẽ
[
uN(t)

]
=

n∑
k=0

Q
(
N(t) = k

)
uk.

On the other hand, Ni(t), i = 1, . . . , n, are conditionally
independent given θ. Write pi|θ(t) = Q(τi ≤ t|θ). We have

Ẽ
[
uN(t)

]
= Ẽ

[
Ẽ
[
uN(t)|θ

]]
= Ẽ

[
n∏

i=1

Ẽ
[
uNi(t)|θ

]]
(9)

=

∫
fθ(θ)

n∏
i=1

[
1− pi|θ(t) + pi|θ(t)u

]
dθ.

Note that the above procedure for MGB2 distribution is still
applicable for any other one-factor model, in which θ is re-
placed by the common factor. The probability mass function
of N(t) is given by matching the coefficient of the polyno-
mial terms of the same order in (8) and (9).

Similarly, the conditional distribution of N(t) given θ can
be obtained by matching the coefficients of the following two
polynomials:

(10) ψN(t)|θ(u) = Ẽ
[
uN(t)|θ

]
=

n∑
k=0

Q
(
N(t) = k|θ

)
uk,

(11)

Ẽ
[
uN(t)|θ

]
=

n∏
i=1

Ẽ
[
uNi(t)|θ

]
] =

n∏
i=1

[
1− pi|θ(t) + pi|θ(t)u

]
.

Therefore,

Q
(
N(t) = k|θ

)
=

∑
i1<···<ik

k∏
j=1

pij |θ(t)
∏

j /∈{i1,...,ik}

(
1− pj|θ(t)

)
,
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which in case of identical marginal distribution, i.e. pi|θ(t) =
pθ(t), simplifies to

Q
(
N(t) = k|θ

)
=

(
n
k

)
pkθ(t)

(
1− pθ(t)

)n−k
.

We consider the distribution of the mth order statistic τ (m)

of τi, i = 1, . . . , n. The conditional survival function of τ (m)

is
(12)

Q
(
τ (m) > t|θ

)
= Q

(
N(t) < m|θ

)
=

m−1∑
k=0

Q
(
N(t) = k|θ

)
.

To complete the calculation we introduce the default count-
ing processes N (−i)(t) that count the number of default ex-
cluding name i, i.e., N (−i)(t) =

∑
j �=i 1τj≤t. To obtain the

probability density function of τ (m), take derivative of (10)
and (11) with respect to t,

n∑
k=0

∂Q(N(t) = k|θ)
∂t

uk

=
n∑

i=1

(u− 1)
∂pi|θ(t)

∂t

∏
j �=i

[
1− pj|θ(t) + pj|θ(t)u

]

=

n∑
i=1

(u− 1)
∂pi|θ(t)

∂t

n−1∑
k=0

Q
(
N (−i)(t) = k|θ

)
uk

=
n∑

i=1

∂pi|θ(t)

∂t

{
−Q

(
N (−i)(t)= 0|θ

)
−

n−1∑
k=1

(
Q
(
N (−i)(t)= k|θ

)

−Q
(
N (−i)(t)= k− 1|θ

))
uk +Q

(
N (−i)(t)=n− 1|θ

)
un

}
.

Hence for k = 0, we have

−∂Q(N(t) = 0|θ)
∂t

=

n∑
i=1

∂pi|θ(t)

∂t
Q
(
N (−i)(t) = 0|θ

)
,

and for 1 ≤ k ≤ n,

− ∂Q(N(t) = k|θ)
∂t

=

n∑
i=1

∂pi|θ(t)

∂t

(
Q
(
N (−i)(t) = k|θ

)
−Q

(
N (−i)(t) = k − 1|θ

))

where Q(N (−i)(t) = n|θ) = 0 for any 1 ≤ i ≤ n. Thus the
conditional probability density function of τ (m) given θ is

fτ (m)|θ(t) = −∂Q(τ (m) > t|θ)
∂t

= −
m−1∑
k=0

∂Q(N(t) = k|θ)
∂t

(13)

=

n∑
i=1

∂pi|θ(t)

∂t
Q
(
N (−i)(t) = m− 1|θ

)
.

3.2 Pricing

In the following, fτ (m)|θ is utilized to simplify the compu-
tation of expected premium payment legs and default pay-
ment legs in place of stochastic integrals. Assume that the
underlying portfolio consists of n credit assets with unit to-
tal nominal. Let Ui be the nominal of underlying asset i,
then

∑n
i=1 Ui = 1. If the underlying portfolio is the traded

index Dow Jones CDX NA IG or Dow Jones iTraxxx Eu-
rope, n = 125 and the nominal is equally weighted, i.e.
Ui = 1

n , and the conditional marginal default distribution
are identical, i.e. pi|θ(t) = pθ(t) for all the i.

Let T be the maturity date. Premium payments are made
periodically at t1 = I, t2 = 2I, . . . , tJ = JI = T . Let Am

and Dm be the attachment point and detachment point for
tranche m, respectively. Let L(t) be the accumulated loss
up to time t, then the loss suffered by the holders of tranche
m, is

Lm(t) = min
{
L(t), Dm

}
−min

{
L(t), Am

}
(14)

= min
{(

L(t)−Am

)+
, Dm −Am

}
.

Because all the recovery rates δi are commonly assumed to
be δ := 40% for pricing CDX NA IG and iTraxx indexes in
the market, the portfolio loss is

(15) L(t) =

n∑
i=1

Ui(1− δi)1{τi≤t} =
1− δ

n
N(t).

Therefore for 0 ≤ t ≤ T ,

Lm(t) = min

{(
1− δ

n
N(t)−Am

)+

, Dm −Am

}
(16)

=

⎧⎪⎨
⎪⎩

0, N(t) ∈ [0, nAm

1−δ ];
1−δ
n N(t)−Am, N(t) ∈ (nAm

1−δ ,
nDm

1−δ ];

Dm −Am, N(t) ∈ (nDm

1−δ , n].

The outstanding nominal for tranche m at time t is

(17) Om(t) = Dm −Am − Lm(t).

Let {km−1 + 1, . . . , km} be the integers in interval
(nAm

1−δ ,
nDm

1−δ ]. Let sm be the annualized spread of tranche m.
For calculating the premium payment leg, we assume that
when the defaults happen between two premium payment
dates, the remaining nominal is used to assess the premiums,
then the expected premium payment leg is

Ẽ

[
J∑

j=1

IsmB(0, tj)Om(tj)

]
(18)

= Ẽ

[
J∑

j=1

IsmB(0, tj)
(
Dm −Am − Lm(tj)

)]
.
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Furthermore, Ẽ[Lm(tj)] can be written as

Ẽ
[
Lm(tj)

]
=

km−km−1∑
l=1

(
km−1 + l

n
(1− δ)−Am

)

Q
(
N(tj) = km−1 + l

)
+ (Dm −Am)Q

(
N(tj) > km

)
,

which yields

Ẽ
[
Dm −Am − Lm(tj)

]
= (Dm −Am)Q

(
N(tj) ≤ km−1

)
+

km−km−1∑
l=1

(
Dm − km−1 + l

n
(1− δ)

)
Q
(
N(tj) = km−1 + l

)
.

On the other hand, the default payment leg for tranche

m by (16) is

Ẽ

[∫ T

0

B(0, t)dLm(t)

]

=
∑

t∈[0,T ]

B(0, t)Ẽ
[
ΔLm(t)1N(t)∈(nAm

1−δ ,nDm
1−δ ]

]
,

where ΔLm(t) = Lm(t)− Lm(t−).

The jump of Lm(t) happens only at times when there’s

a default, i.e., τ (l) where l ∈ {km−1 + 1, . . . , km, km + 1}.
Therefore the discounted default payment till time t can be

written as

(
km−1 + 1

n
(1− δ)−Am

)
B
(
0, τ (km−1+1)

)
1
τ (km−1+1)≤t

+
1− δ

n

km−km−1∑
l=2

B
(
0, τ (km−1+l)

)
1
τ (km−1+l)≤t

+

(
Dm − km

n
(1− δ)

)
B
(
0, τ (km+1)

)
1τ (km+1)≤t.

The expected default payment leg for tranche m is

Ẽ

[∫ T

0

B(0, t)dLm(t)

]
=

(19)

(
km−1 + 1

n
(1− δ)−Am

)
Ẽ
[
B
(
0, τ (km−1+1)

)
1
τ (km−1+1)≤T

]

+
1− δ

n

km−km−1∑
l=2

Ẽ
[
B
(
0, τ (km−1+l)

)
1
τ (km−1+l)≤T

]

+

(
Dm − km

n
(1− δ)

)
Ẽ
[
B
(
0, τ (km+1)

)
1τ (km+1)≤T

]
,

where by (13)

Ẽ
[
B
(
0, τ (l)

)
1{τ (l)≤T}

]
= Ẽθ

[∫ T

0

B(0, t)fτ (l)|θ(t)dt

]

= Ẽθ

[
n∑

i=1

∫ T

0

B(0, t)Q
(
N (−i)(t) = l − 1|θ

)
dpi|θ(t)

]

Under the assumption of joint MGB2 distribution with iden-
tical marginal distributions, we have pi|θ(t) = pθ(t) =
Gp((t/b)

a/θ) and dpi|θ(t) = dpθ(t) = a
bθpΓ(p) (t/b)

ap−1 ×
e−(t/b)a/θdt. Furthermore, the expected discount factor of
the l-th default is

Ẽ
[
B
(
0, τ (l)

)
1{τ (l)∈[0,T ]}

]
= nẼθ

[∫ T

0

B(0, t)Q
(
N (−i)(t) = l − 1|θ

)
dpθ(t)

]

= n

(
n− 1
l − 1

)∫ ∞

0

∫ T

0

B(0, t)pl−1
θ (t)

(
1− pθ(t)

)n−l
fθ(θ)

× dpθ(t)dθ

The spread sm of tranchem is then obtained by equating the
expected premium payment leg (18) and default payment leg
(19) under risk neutral probability.

In particular, for the equity tranche, i.e., m = 1, we have
A1 = 0, k0 = 0. Hence

Is1

J∑
j=1

k1∑
l=0

B(0, tj)

(
D1 −

l

n
(1− δ)

)
Q
(
N(tj) = l

)
(20)

=
1− δ

n

k1∑
l=1

Ẽ
[
B
(
0, τ (l)

)
1τ (l)≤T

]

+

(
D1 −

k1
n
(1− δ)

)
Ẽ
[
B
(
0, τ (k1+1)

)
1τ (k1+1)≤T

]
,

where

Q
(
N(tj) = x

)
=

(
n
x

)∫ ∞

0

f(θ)pxθ (tj)
(
1− pθ(tj)

)n−x
dθ.

3.3 The monotonicity of equity tranche
price on parameter a

To accommodate the marginal distribution of MGB2 dis-
tribution with constant intensity defined in exponential dis-
tribution, we match the first order moment, i.e., the ex-
pected time of default. Under the assumption of identical
marginal distribution, we have

Ẽ(X1) =
bΓ(q − 1/a)Γ(p+ 1/a)

Γ(q)Γ(p)
= b · B(p+ 1/a, q − 1/a)

B(p, q)
.

Obviously, the expected default time is increasing on scale
parameter b. Due to the fact that beta function B(x, c− x)
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is decreasing on (0, c/2] and increasing on [c/2, c) and that
q ≥ 1/a, we conclude that if p < q, the expected default
time is decreasing on a ∈ (1/q, 2/(q − p)] and increasing on
a ∈ (2/(q − p),∞), and equal to b when a = 1/(q − p);
if p ≥ q, the the expected default time is decreasing on
a ∈ (1/q,∞).

For simplicity and uniqueness, we set b =
B(p,q)

λB(p+1/a,q−1/a) , where 1/λ is the expected de-

fault time in a exponential distribution. Thus for
i = 1, . . . , n,

(21) pθ(t) = Gp

((
tλB(p+ 1/a, q − 1/a)

B(p, q)

)a

/θ

)
.

In this paper, we are interested in CDO prices produced
by MGB2 distributions under various dependence struc-
tures. In consequence, we calibrate tranche prices with pa-
rameter a. To ensure the existence and uniqueness of the
calibration procedure, we now proceed with three lemmas
to show that the spread of equity tranche is a decreasing
function of a under the above set up.

Lemma 3.1. For fixed p and q, pθ(t) is a decreasing func-

tion of a, if we choose b = B(p,q)
λB(p+1/a,q−1/a) , where λ is the

intensity of defaults satisfying λT < 1.

Proof. Consider digamma function φ(x) = Γ′(x)
Γ(x) , the deriva-

tive of logarithm of gamma function ln(Γ(x)). Using the
derivative of beta function, we have

(22)
∂B(p+ 1

a , q −
1
a )

∂a
=

B(p+ 1
a , q −

1
a )

a2

[
φ

(
q−1

a

)
−φ

(
p+

1

a

)]
.

Note that the digamma function φ(x) is a nondecreasing

function on (0,∞). Thus, if q ≤ p, ∂B(p+1/a,q−1/a)
∂a < 0;

if q > p, ∂B(p+1/a,q−1/a)
∂a > 0 on a ∈ (2/(q − p),∞) and

∂B(p+1/a,q−1/a)
∂a ≤ 0 on a ∈ (1/q, 2/(q − p)].

Let κ = λt
B(p,q) . It follows from (22) that

∂(κB(p+ 1/a, q − 1/a))a

∂a
=

(
κB(p+ 1/a, q − 1/a)

)a
×

[
a

B(p+ 1/a, q − 1/a)

∂B(p+ 1/a, q − 1/a)

∂a

+ ln
(
κB(p+ 1/a, q − 1/a)

)]

=
(
κB(p+ 1/a, q − 1/a)

)a{1

a

[
φ

(
q − 1

a

)
− φ

(
p+

1

a

)]

+ ln

(
Γ(p+ 1/a)Γ(q − 1/a)

Γ(p)Γ(q)

)
+ ln(tλ)

}
.

Considering the fact that ln(Γ(x)) is strongly convex on
(0,∞), we have ln(Γ(p)) > ln(Γ(p + 1/a)) − φ(p + 1/a)/a

and ln(Γ(q)) > ln(Γ(q − 1/a)) + φ(q − 1/a)/a, which then
implies that

1

a

[
φ

(
q − 1

a

)
− φ

(
p+

1

a

)]
+ ln

(
Γ(p+ 1/a)Γ(q − 1/a)

Γ(p)Γ(q)

)

is negative. Together with the condition that λT < 1,

∂(κB(p+ 1/a, q − 1/a))a

∂a
< 0.

Besides, taking derivative of (21) we get

∂pθ(t)

∂a
=

1

θpΓ(p)

(
t

b

)(p−1)a

e−(t/b)a/θ ∂(κB(p+1/a, q− 1/a))a

∂a
.

The sign of ∂pθ(t)
∂a only depends on that of

∂(κB(p+1/a,q−1/a))a

∂a and is negative as a consequence.
We note that in general, the maturity is within expected

default time, i.e., λT < 1 is a trivial assumption.

Lemma 3.2. The expected premium payment leg of equity
tranche is an increasing function of a.

Proof. Taking derivative of Q(N(tj) = x) with respect to a
would end up with

dQ(N(tj) = x)

da
=

(
n
x

)∫ ∞

0

f(θ)pxθ (tj)
(
1− pθ(tj)

)n−x

(23)

×
[

x

pθ(tj)
− n− x

1− pθ(tj)

]
dpθ(tj)

da
dθ.

Obviously, Q(N(tj) = 0) is an increasing function of a, and
Q(N(tj) = n) is a decreasing function of a. For convenience,
let

A(t) = ln

(
Γ(p+ 1/a)Γ(q − 1/a)

Γ(p)Γ(q)

)

+
1

a

[
φ

(
q − 1

a

)
− φ

(
p+

1

a

)]
+ ln(tλ).

We connect dpθ(t)
dt with dpθ(t)

da by observing that

dpθ(t)

dt
=

a

bθpΓ(p)
(t/b)ap−1e−(t/b)a/θ,

and

dpθ(t)

da
=

1

θpΓ(p)

(
t

b

)ap−a

e
−1
θ ( t

b )
a

(
κB

(
p+

1

a
, q− 1

a

))a
A(t)

a

(24)

=
1

θpΓ(p)
(t/b)ape−(t/b)a/θA(t)

a

=
dpθ(t)

dt

tA(t)

a
.
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Replacing dpθ(t)
da in (23) with (24) gives

dQ(N(tj) = x)

da
=

(
n
x

)∫ ∞

0

f(θ)pxθ (tj)
(
1− pθ(tj)

)n−x

×
[

x

pθ(tj)
− n− x

1− pθ(tj)

]
dpθ(t)

dt
|t=tjdθ ·

tjA(tj)

a

=

∫ ∞

0

f(θ)
[
f
(
τ (x) = tj |θ

)
− f

(
τ (x+1) = tj |θ

)]
dθ · tjA(tj)

a

=
[
f
(
τ (x) = tj

)
− f

(
τ (x+1) = tj

)] tjA(tj)
a

.

From the proof of Lemma 3.1, A(tj) < 0. Let ε = D1 −
k1

n (1 − δ), then the derivative of the first premium of first
tranche with respect to parameter a is

k1∑
l=0

J∑
j=1

B(0, tj)

(
D1 −

l

n
(1− δ)

)
dQ(N(tj) = l)

da

=

J∑
j=1

k1∑
l=0

B(0, tj)

(
ε+

k1 − l

n
(1− δ)

)
dQ(N(tj) = l)

da

=

J∑
j=1

B(0, tj)
tjA(tj)

a

k1∑
l=0

(
ε+

l

n
(1− δ)

)
[
f
(
τ (k1−l) = tj

)
− f

(
τ (k1−l+1) = tj

)]
=

J∑
j=1

B(0, tj)
tjA(tj)

a

[
−εf

(
τ (k1+1) = tj

)

+
1− δ

n

k1∑
l=1

l
[
f
(
τ (k1−l) = tj

)
− f

(
τ (k1−l+1) = tj

)]]

=

J∑
j=1

B(0, tj)
tjA(tj)

a

[
−εf

(
τ (k1+1) = tj

)

− 1− δ

n

k1+1∑
l=1

f
(
τ (k1−l+1) = tj

)]
> 0.

Hence we complete the proof.

Lemma 3.3. The expected default payment leg of equity
tranche is a decreasing function of a.

Proof. Using integral by part, we have

Ẽ
[
B
(
0, τ (l)

)
1{τ (l)∈[0,T ]}

]
=

∫ T

0

e−rtdFτ (l)(t)

= −e−rt
(
1− Fτ (l)(t)

)
|T0 − r

∫ T

0

e−rt
(
1− Fτ (l)(t)

)
dt

= 1− e−rT
(
1− Fτ (l)(T )

)
− r

∫ T

0

e−rt
(
1− Fτ (l)(t)

)
dt

where Fτ (l)(t) can be written as 1−Fτ (l)(t) = Q(τ (l) > t) =

Q(N(t) < l) =
∑l−1

k=0 Q(N(t) = k). Substituting the above
forms into the default payment leg of equity tranche gives

1− δ

n

k1∑
l=1

Ẽ
[
B
(
0, τ (l)

)
1τ (l)≤T

]

+

(
D1 −

k1
n
(1− δ)

)
Ẽ
[
B
(
0, τ (k1+1)

)
1τ (k1+1)≤T

]

= D1 − e−rT
k1∑
k=0

(
D1 −

k

n
(1− δ)

)
Q
(
N(T ) = k

)

− r

∫ T

0

e−rt
k1∑
k=0

(
D1 −

k

n
(1− δ)

)
Q
(
N(t) = k

)
dt.

Using similar argument in Lemma 3.2, we conclude that the
default payment leg is a decreasing function of a.

Theorem 3.1. The annualized spread of equity tranche is
monotonically decreasing with respect to parameter a.

Proof. From (20), Lemma 3.2 and Lemma 3.3, the theorem
is easily derived.

Theorem 3.1 allows us to predetermine any type of de-
pendence structure by setting a pair of (p, q) and then using
the monotonicity of equity tranche price with a for calibra-
tion.

4. COMPARISON OF MARKET AND
MODEL CDO TRANCHE PREMIUMS

In this section, we will apply several known models to
the Dow Jones iTraxx Europe index based on 125 names,
using the data described in [5]. More specifically, the attach-
ment and detachment points corresponding to the standard
iTraxx CDO tranches are 3%, 6%, 9%, 12% and 22%. The 5
year credit spreads of the names lie between 9 bps and 120
bps with an average of 29 bps and a median of 26 bps. We
assume constant credit spreads with respect to maturity for
simplicity. The price of [0−3%] equity tranche is calibrated
according to the market quote.

4.1 Prices

We calibrate a wide range of MGB2 models with p, q rang-
ing from .005 to 10. Unlike the industry standard Gaus-
sian copula where prices are predetermined once the cor-
relation parameter is used for calibration, MGB2 distribu-
tion is more flexible with (p, q) available for creating var-
ious dependence structures. Due to the limited space, we
only include three sets of CDO prices under MGB2 dis-
tribution. Prices under MGB2 distribution with (p, q) =
(5.35, 10) resemble those under Gaussian copula. As p de-
creases, the MGB2 distribution is able to fit the tranches
[3−6%], [6−9%] better, although it tends to underestimate
the prices of [9−12%], [12−22%]. Better fits are possible as
we do not perform any optimization to match the market
quotes.

Figure 1 illustrates the monotonicity of the tranche prices
with respect to parameters (p, q) with either one fixed.
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Table 1. Prices of iTraxx CDO tranches computed from market and model quotes

Market Gaussian Clayton t(5,5) t(4,4) t(3,3)
MGB2 (p,q)

(5.35, 10) (4.7, 10) (4.2, 10)

[0−3%] 916 916 916 916 916 916 916 916 916
[3−6%] 101 161 167 99 84 63 164 138 119
[6−9%] 33 47 49 36 33 27 46 33 23
[9−12%] 16 15 17 20 20 18 15 9 5
[12−22%] 9 1.5 3 9 10 11 2 1 .5

Spearman’s rho .21 .07 .26 .26 .25 .33 .30 .28

Figure 1. Tranche prices under the MGB2 model with q fixed
(top) and p fixed (bottom).

The prices of non-equity tranches are increasing functions
of p when q is fixed, and decreasing functions of q when p is
fixed, and the rate of changes depend on tranches and (p, q).

We consider the non-parametric measure of dependence
spearman’s rho of MGB2 distribution, which can be ob-

Figure 2. Tranche prices under the industry standard one
factor Gaussian copula.

tained by

ρ(Cp,q) = 12

∫ 1

0

∫ 1

0

Bp+q,p

(
1−B−1

p,q(u)

1−B−1
p,q(u)B

−1
p,q(v)

)
vdudv−3.

The Spearman’s rho for p ranging from .2 to 5 and q = 2
in the top panel of Figure 1 lies between [.045, .710] and
increases as p increases; The Spearman’s rho for q ranging
from .2 to 5 and p = 2 in the bottom panel of Figure 1
lies between [.260, .946] and decreases with increasing q. Ta-
ble 1 reports the Spearman’s rho of models in consideration.
MGB2 copulas have the strongest dependence, followed by
double t copula, and Clayton copula has the weakest depen-
dence according to Spearman’s rho.

4.2 Implied correlation and base correlation

The implied correlation is a paradigm for implying credit
default dependencies but cannot be implied for some mar-
ket CDO tranches [15]. [2] investigated situations where im-
plied correlation smile can arise as a result of model mis-
specification in the industry standard one-factor Gaussian
copula and empirical features like fat tails in return distri-
butions, heterogeneous pair-wise correlation, heterogeneous
spreads and so on.

Figure 2 simulates the tranche prices under the industry
standard one-factor Gaussian copula with correlation vary-
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Figure 3. The dashed lines represent implied correlation for
increasing p’s for MGB2 model from the bottom up.

ing between 0 and 1. As stated in [4], the CDO tranche pre-
mium of equity or senior type are monotonic with respect
to the correlation parameter ρ in the one-factor Gaussian
copula. However, it is not the case for the tranches with
neither an attachment point equal to zero or a detachment
point equal to 100%. As illustrated in Figure 2, prices cor-
responding to other tranches show vaulted patterns with re-
spect to the correlation parameter. Among the consequences
are prices without a proper implied correlation or prices with
two possible values of correlation parameter, both of which
confronting the wide range of prices MGB2 distribution is
able to produce.

Figure 3 demonstrates some typical patterns of implied
correlation based on CDO prices when q is set to be 4.
The MGB2 copula approaches Gaussian copula with ρ =
c/(1 + c) when q → ∞ and p/q → c; it has tail depen-
dence index only related to (p, q); see [16]. We are able
to observe tranche prices resembling Gaussian copula for
different pairs of (p, q), which agrees with the consensus
that tail dependence is of little help in explaining model
quotes.

The drawbacks of implied correlation encourage another
widely used criteria for implying credit default dependen-
cies, the base correlation, introduced by [13]. Base corre-
lation is defined as the inputs required for a series of eq-
uity tranches that give the tranche values consistent with
quoted spreads, using the standardized large pool model.
Figure 4 demonstrates some typical patterns of base corre-
lation based on CDO prices coming from the MGB2 mod-
els. The MGB2 distribution is capable of producing a wide
variety of patterns in base correlation, among which some
match the base correlation of the market quote well. For

Figure 4. The dashed lines represent implied correlation for
increasing p’s from the top down.

instance, for (p, q) = (2.32, 4) and (3.11, 6), MGB2 model
fits very well. The implied base correlation for the model
quotes in Figure 4 are summarized in Table 2. Table 2
suggests MGB2 model has the same capacity as double t
model to match the market data in terms of base correla-
tion, and it is much better than the Gaussian and Clayton
model.

The tranche spreads corresponding to the two
MGB2 models in Table 2 are (916, 114, 21, 4, .3) and
(916, 124, 25, 6, 1). As we have commented earlier, the
MGB2 models tend to underestimate the prices of
[9−12%], [12−22%]. However, the implied base correlations
still show sufficient resemblance to those derived from
double t model. In fact, our simulation shows that the
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Table 2. Implied base correlation for iTraxx CDO tranches computed from market and model quotes

Market Gausssian Clayton t(5,5) t(4,4) t(3,3)
MGB2 (p,q)

(2.32, 4) (3.11, 6)

[0−3%] 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22
[3−6%] 0.30 0.22 0.22 0.31 0.32 0.35 0.29 0.27
[6−9%] 0.37 0.22 0.22 0.37 0.39 0.43 0.37 0.34
[9−12%] 0.43 0.22 0.21 0.42 0.44 0.49 0.45 0.41
[12−22%] 0.55 0.22 0.12 0.53 0.56 0.62 0.64 0.59

implied base correlation is especially sensitive to the price
of the [3−6%] tranche, but not so for less risky tranches.
This suggests that implied base correlation might not be a
sufficient measure for the rich credit dynamics.

5. CONCLUSION

We proposed MGB2 distribution to evaluate the prices
of synthetic CDO’s tranches. The essence of our model is
MGB2 copula, which marks Gaussian copula as a limit
case and has great flexibility in dependence structure. We
found that tail dependence index is not helpful to explain
the implied correlation smile, which is consistent with one
of the results in [5]. From the perspective of base correla-
tion, MGB2 model is so flexible that it can generate many
patterns of base correlation with varying parameters. Fur-
thermore, MGB2 model can match the market implied base
correlation as well as the double t model does, which the
Gaussian model and Clayton model cannot make.
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