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Assessing proportionality assumption
in the adjacent category logistic regression model
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Ordinal logistic regression models are classified as ei-
ther proportional odds models, continuation ratio models
or adjacent category models. The common model assump-
tion of these models is that the log odds do not depend
on the outcome category. This assumption is also known as
the “proportionality” or “parallel logits” assumption. Non-
proportional and partial proportional models are proposed
for the proportional odds and continuation ratio model. The
non-proportional and the partial proportional versions of the
adjacent category model are also feasible. Prior to fitting
any of the ordinal logistic regression models, it is impor-
tant to check whether the assumption of proportionality is
satisfied by each independent variable. In the proportional
odds model, the proportional odds assumption is checked
by Brant’s Wald test statistic, and the standard Wald test
statistic can be used in the continuation ratio model. How-
ever there is no valid approach to test whether the propor-
tionality assumption is satisfied by each independent vari-
able in the adjacent category model. The aim of the study
is to determine the variables in the adjacent category model
that violate the proportionality assumption. For this pur-
pose, a Wald test is proposed for testing the proportionality
assumption in the adjacent category model. The validity
of the proposed test is examined under H0 with a Monte
Carlo simulation study. Moreover, the proposed method is
compared with the likelihood ratio test in terms of type I
error rate and power under different scenarios.

AMS 2000 subject classifications: Primary 62J12,
62F05; secondary 62P10, 62P25.
Keywords and phrases: Ordinal logistic regression, Pro-
portionality assumption, Adjacent category model, Odds ra-
tio, Wald test, Likelihood ratio test.

1. INTRODUCTION

The logistic regression analysis is a useful way of describ-
ing the relationship between one or more independent vari-
ables and a categorical response variable. Logistic regression
models are categorized according to the type of categorical
response variable as follows: binary logistic regression model,
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multinomial logistic regression model, and ordinal logistic
regression models [1]. The binary logistic regression model
is used to model the binary response variable, whereas the
multinomial logistic regression is a simple extension of the
binary logistic regression model where the response variable
has more than two unordered categories.

Response variables can also be measured on an ordinal
scale such as extent of disease (none, some, severe), car-
diac risk levels (low, medium and high risk) and grade of
a tumour (grade I-II-III). Outcome data collected using an
ordinal scale are sometimes analyzed with a binary logis-
tic regression by creating dichotomies among the level of
the outcome variable [2, 3]. Although such approaches are
not incorrect, they often result in a loss of information due
to collapsing (or ignoring) some categories of the response,
typically resulting in a considerable loss of statistical power
[4]. Additionally, the multinomial logistic regression model
is often used for modelling multiple category ordinal out-
comes. This analysis, however, would not take into account
the ordinal nature of the outcome [1]. Therefore, ordinal lo-
gistic regression models are used to model the relationship
between independent variables and an ordinal response vari-
able when the response variable has a natural ordering.

A number of ordinal logistic regression models for ana-
lyzing ordinal outcome data have been proposed [5–14], and
the application of these methods are widely used, especially
in epidemiological and biomedical research [15–20].

Probably the most frequently used ordinal logistic regres-
sion model is the proportional odds model of McCullagh
because of the simplicity of its interpretation [6]. The con-
tinuation ratio model may be best suited in situations where
the individual categories of the response variable are of in-
trinsic interest and are not merely arbitrary groupings of an
underlying continuous variable [15]. Adjacent category mod-
els are often used due to their close connection to log-linear
models [9].

Although these ordinal logistic regression models have
different structures and strategies for constructing logits,
they share the same model assumption. The common model
assumption of these models is that the log odds do not
depend on the outcome category. This assumption is also
known as the “proportionality” or “parallel logits” assump-
tion [1]. Unfortunately, this basic and strict assumption fre-
quently does not hold [21].

When the assumption of parallel logits is rejected for any
of the ordinal logistic regression models, alternative models
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should be considered that do not impose the constraint of
parallel logits. For every ordinal logistic regression model,
there are two alternative models to use in cases of non-
proportional odds. Non-proportional (e.g., relaxing the pro-
portionality assumption for all of the variables in a model)
and partial proportional models (e.g., relaxing the propor-
tionality assumption only for some) are proposed for the
proportional odds model [14, 22, 23] and the continuation
ratio model [24, 25]. The non-proportional and the partial
proportional versions of the adjacent category model are also
feasible.

Prior to fitting any of ordinal logistic regression models,
it is important to check whether the assumption of propor-
tionality is satisfied by each independent variable. In the
proportional odds model, the proportional odds assumption
is checked by Brant’s Wald test statistic [26], and it is per-
formed using the standard Wald test statistic [1] in the con-
tinuation ratio model. However there is no valid approach to
test whether the proportionality assumption is satisfied by
each independent variable in the adjacent category model.

The aim of this study is to determine the variables in
the adjacent category model that violate the proportional-
ity assumption. For this purpose, a Wald test is proposed
for testing the proportionality assumption in the adjacent
category model. With use of the proposed test statistic, the
variables in the adjacent category model that do not obey
the proportionality assumption can be determined, and they
can be modelled as non-proportional in the partial propor-
tional adjacent category model.

Through Sections 2 and 3, the multinomial and ordinal
logistic regression models are presented. Methods used for
checking the proportional odds assumption are given in Sec-
tion 4. In Section 5, we adapt the Wald test of Brant in order
to test the proportionality assumption in the adjacent cat-
egory model. The validity of the proposed test is examined
under H0 with a Monte Carlo simulation study. The pro-
posed method is compared with the likelihood ratio test in
terms of type I error rate and power under different sce-
narios in Section 6, and the simulation results are given in
Section 7. Additionally, an example of the proposed test of
proportionality calculations in the adjacent category model
is given in Section 8. Finally in Section 9, we discuss our
findings.

2. THE MULTINOMIAL LOGISTIC
REGRESSION MODEL

The multinomial logistic regression model (MLRM) is a
simple extension of the binary logistic regression model in
which the response variable has more than two unordered
categories. This model can be fitted by simultaneously esti-
mating binary logistic regression models for all possible com-
parisons of the outcome category with a baseline category.
This is why MLRM is often called the “baseline category
logistic regression model”.

Let Y denote the outcome variable and k denote the out-
come variable category where k = 0, 1, . . . ,K. The prob-
ability that the outcome is equal to k, conditional on a
vector x of j covariates (j = 1, 2, . . . , J) is denoted by
P (Y = k|x) = φk(x). In the multinomial logistic regression
model, generally the first category of the outcome (k = 0)
is set to be the baseline, and the probability of the baseline,
conditional on x, is denoted by P (Y = 0|x) = φ0(x). Using
the multinomial logit link, the MLRM can be expressed in
terms of logit (log odds) as:
(1)

gk(x) = ln

[
P (Y = k|x)
P (Y = 0|x)

]
= β0k + x

′
βββk k = 1, 2, . . . ,K.

Additionally, the probabilities in Equation (1) are equal
to:

P (Y = 0|x) = 1

1 +
∑K

i=1 e
β0i+x′βββi

,(2)

P (Y = k|x) = eβ0k+x
′
βββk

1 +
∑K

i=1 e
β0i+x′βββi

,(3)

and

(4)

K∑
k=0

P (Y = k|x) = 1.

In Equation (1), β0k is the constant term, and βββk is the
regression coefficient vector in the kth logit. The benefit
of using MLRM is that it models the odds of each cat-
egory relative to a baseline category as a function of co-
variates. The parameter and the standard error estimates,
simultaneously satisfying K multinomial logits can be esti-
mated using the maximum likelihood estimation method.
Further details can be found in McCullagh and Nelder’s
book [11, p. 171–174].

MLRM is often used when the dependent variable is or-
dinal. If the dependent variable is ordinal and a model for
nominal variables is used, there is a loss of efficiency be-
cause this information (ordinality) is ignored [21]. In such
cases, one should consider using ordinal logistic regression
models instead. Additionally, before considering methods for
ordinal outcomes, it is important to note that the fact that
the variables can be ordered does not imply that the vari-
able should be analyzed as ordinal. A variable might be
ordered when considered for one purpose but can be un-
ordered when used for another purpose. McCullagh and
Nelder [11, p. 151] make this point with the example of
colours. While colours can be arranged according to the elec-
tromagnetic spectrum, this doesn’t imply that this ordering
is appropriate for all purposes. For example, when selecting
a car, a customer doesn’t prefer colours in an order that
moves around the colour wheel from red, to orange, to yel-
low, and so on.
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3. ORDINAL LOGISTIC REGRESSION
MODELS

When we move to an ordinal model, there are many alter-
native models. We must decide what outcomes to compare
and what the most reasonable model is for the logit. Ordi-
nal logistic regression models have basically three members,
the proportional odds model, continuation ratio model, and
adjacent category model. These models assume that the log
odds do not depend on the outcome category. Other mod-
els are derivations of them, relaxing the proportionality as-
sumption for some or for all of the independent variables in
a model.

3.1 The proportional odds model

Probably the most frequently used ordinal logistic regres-
sion model is the proportional odds model (POM) because
of the simplicity of its interpretation [6]. The POM uses cu-
mulative logits while building the model. The cumulative
logits are defined as

(5) logit[Y ≤ k|x] = ln

[
P (Y ≤ k|x)

1− P (Y ≤ k|x)

]
.

A model that simultaneously uses all cumulative logits
for all k = 0, 1, . . . ,K − 1 is called the POM and is given as
follows:

(6) ck(x) = ln

[
P (Y ≤ k|x)

1− P (Y ≤ k|x)

]
= τk − x

′
βββ.

The cumulative probability in Equation (6) is defined as

(7) P (Y ≤ k|x) = eτk−x
′
βββ

1 + eτk−x′βββ
,

and the actual category probability is defined as

P (Y = k|x) = P (Y ≤ k|x)− P (Y ≤ k − 1|x)

=
eτk−x

′
βββ

1 + eτk−x′βββ
− eτk−1−x

′
βββ

1 + eτk−1−x′βββ
.

(8)

Note that in POM, each logit has its own intercept (τk),
but the regression coefficient (βββ) does not depend on k, im-
plying that the model assumes that the relationship between
xi and Y is independent of k. McCullagh calls this assump-
tion “the proportional odds” or “the parallel regression” as-
sumption. The POM in Equation (6) has some attractive
features. Because the regression parameters are invariant to
the outcome category, the odds ratios are the same over the
K logits, and the common log odds ratio provides a single
estimate of the log odds ratio over the cut-off points. This es-
timate is not a weighted average of the cut-off point-specific
log odds ratios [27], but it is the optimum estimate obtained
using the maximum likelihood methods. In the POM, cu-
mulative logits are simultaneously modelled using the max-
imum likelihood estimation method.

Prior to fitting a POM, it is important to check whether
the assumption of proportionality is satisfied by each vari-
able in the model. Methods used for checking the propor-
tionality assumption are given in Section 4. In cases where
the proportional odds assumption is inadequate, alternative
strategies to improve the fit include (i) trying different link
functions such as probit or log-log, (ii) adding additional
terms such as interactions to the model, (iii) generalizing
the model by adding dispersion parameters [11], (iv) using
a multinomial logistic regression instead, and (v) permit-
ting separate effects for each logit for some or all of the
covariates in a model. Through Sections 3.2 and 3.3, non-
proportional and partial proportional odds models that allow
separate effects for each logit for all or some of the variables
are presented.

3.2 The non-proportional odds model

The non-proportional odds model (NPOM) relaxes the
assumption of proportional odds by allowing the effect of the
covariates to vary with the point where the categories of the
response variable are dichotomized. For k = 0, 1, . . . ,K − 1,
the NPOM is given as follows [22, 23]:

(9) cNP
k (x) = ln

[
P (Y ≤ k|x)

1− P (Y ≤ k|x)

]
= τk − x

′
βββk.

In NPOM, each logit has its own intercept (τk) and re-
gression coefficient (βββk). Thus, it relaxes the proportional
assumption for all covariates in the model. If only some of
the covariates violate this assumption, then a more parsi-
monious model should be considered.

3.3 The partial proportional odds model

Under the partial proportional odds model (PPOM) [14],
two sets of regression coefficients are estimated: one set
having proportional odds and the second set having non-
proportional odds. For k = 0, 1, . . . ,K − 1, this model has
the form:

(10) cPP
k (x) = ln

[
P (Y ≤ k|x)

1− P (Y ≤ k|x)

]
= τk − x

′
βββ −T

′
γγγk.

In Equation (10), x is a p × 1 vector of covariates that
maintain the proportional odds property, and T is a q × 1
vector of covariates that are non-proportional. If each co-
variate violates the proportionality, then the model in Equa-
tion (10) is equivalent to the NPOM in Equation (9). The
independent variables (and thus the corresponding regres-
sion coefficients) which meet or do not meet the proportion-
ality assumption in the PPOM, can be determined with the
Brant’s Wald test statistic given in Section 4.2.

3.4 The continuation ratio model

Feinberg [10] proposed an alternative model for the analy-
sis of ordinal categorical data. The continuation ratio model
(CRM) is based on the conditional probabilities of being in
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a category (Y = k) among all subjects who are in higher
categories (Y > k) and is given as:
(11)

rk(x) = ln

[
P (Y = k|x)
P (Y > k|x)

]
= θk−x

′
βββ k = 0, 1, . . . ,K−1.

The CRM is a simple decomposition of a multinomial dis-
tribution [28]. Using this property, multinomial likelihood
for the model can be decomposed into a series of condition-
ally independent binary logistic regressions [29] and a natu-
ral way of modelling the continuation ratio logits would be
to consider each ordinal response as a series of conditionally
independent binary responses, each of which may be mod-
elled via binary logistic regression. Each fit is based on a
binary outcome y∗k, defined as

(12) y∗k =

⎧⎪⎨⎪⎩
1 if Y = k

0 if Y > k

Missing else

for k = 0, 1, 2. Wolfe [29] developed a command for fitting
the continuation ratio model in STATA software. It is also
possible to define the CRM in terms of Y = k versus Y < k
for k = 1, 2, . . . ,K. Unfortunately, the results obtained from
these two parameterizations are not equivalent. In other
words, unlike the POM, the CRM is neither preserved by
a reversal nor the collapsibility of categories [4].

The test of the proportional odds assumption in the CRM
is performed using the likelihood ratio or the Wald test
statistic. Details and an example can be found in Hosmer
and Lemeshow [1, p. 297]. In cases where the proportional
odds assumption does not hold for some or all of the covari-
ates in the CRM, then alternative models should be con-
sidered. Through Sections 3.5 and 3.6, alternative models
which accommodate this assumption are considered.

3.5 The non-proportional continuation ratio
model

The non-proportional continuation ratio model
(NPCRM) relaxes the assumption of proportional odds for
all covariates in the model as follows [1, 24]:
(13)

rNP
k (x) = ln

[
P (Y = k|x)
P (Y > k|x)

]
= θk−x

′
βk k = 0, 1, . . . ,K−1.

Additionally, the NPCRM can be fit via K ordinary bi-
nary logistic regression models. Details and an example can
be found in Hosmer and Lemeshow [1, p. 296].

3.6 The partial proportional continuation
ratio model

If only some of the covariates violate the proportionality
assumption in the CRM, then a more parsimonious model
than the NPCRM should be considered. Under the partial
proportional continuation ratio model (PPCRM) [25], two

sets of regression coefficients are estimated: one set has pro-
portional odds and the other set has non-proportional odds.
For k = 0, 1, . . . ,K − 1, this model has the form:

(14) rPP
k (x) = ln

[
P (Y = k|x)
P (Y > k|x)

]
= θk − x

′
β −T

′
γk.

Cole and Ananth [25] demonstrate a new method for fit-
ting the PPCRM using a “person-threshold” data set. A sep-
arate binary logistic regression modelling approach is also
valid because the PPCRM possesses the property of condi-
tional independence.

3.7 The adjacent category model

The adjacent category model (ACM) proceeds by forming
K logits for all pairs of adjacent categories [9]. In this model,
each response is compared to the next lower response. For
k = 1, 2, . . . ,K, the ACM model is

(15) ak(x) = ln

[
P (Y = k|x)

P (Y = k − 1|x)

]
= αk + x

′
β.

This model also assumes that the assumption of propor-
tionality is satisfied by each variable in the model. The like-
lihood ratio test can be used to check the proportionality
assumption in the adjacent category model in a global sense,
but there is no valid approach to test if this assumption is
satisfied individually.

The ACM is a constrained version of the MLRM. Thus,
model parameters and standard error estimates can be di-
rectly obtained from the MLRM. The MLRM can be ex-
pressed in terms of the ACM as follows [1, 9]:

ln

[
P (Y = k|x)
P (Y = 0|x)

]
= ln

[
P (Y = 1|x)
P (Y = 0|x)

]
+ ln

[
P (Y = 2|x)
P (Y = 1|x)

]
+

. . .+ ln

[
P (Y = k|x)

P (Y = k − 1|x)

]
= a1(x) + a2(x) + . . .+ ak(x)

= (α1 + x
′
β) + (α2 + x

′
β)+

. . .+ (αk + x
′
β)

= (α1 + α2 + . . .+ αk) + kx
′
β.

(16)

Thus, we see that the model in Equation (16) is a version
of the MLRM in Equation (1) with intercept β0k = (α1 +
α2+ . . .+αk) and regression coefficient βk = kβ. In order to
obtain the ACM estimates of αk’s and β’s from the MLRM,
we fit a MLRM using the two constraints given below:

(17) β0k =

k∑
i=1

αi and βk = kβ.

This approach for fitting ACM via MLRM is explained
for STATA software [30], and a real data example can be
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found in Hosmer and Lemeshow’s book [1, p. 294]. Note
that with this formalization, ACM gives rise to an ordinal
interpretation in terms of adjacent odds where the MLRM
does not.

The ACM became popular because of connections with
the ordinal log-linear models [9]. The corresponding ordinal
log-linear model for the adjacent category logit model is
the linear-by-linear association model. For two-way tables,
let the assigned row scores and column scores of ordinal
variables be u1 < u2 < . . . < uI and v1 < v2 < . . . < vI ,
respectively. Then, the linear-by-linear association model is

(18) logμij = λ+ λX
i + λY

j + βuivj ,

with constraints such as λX
I = λY

J = 0. The term βuivj
in Equation (18) represents the deviation of logμij from
independence. The deviation is linear in the Y scores at a
fixed level of X and linear in the X scores at a fixed level of
Y . Because of this property, this model is called the linear-
by-linear association model.

A logit formulation of the linear-by-linear association
model treats Y as a response and X as explanatory. Using
logits for adjacent response categories,

(19) log
μi,j+1

μi,j
= (λY

j+1 − λY
j ) + β(υj+1 − υj)ui,

and for unit spaced υj , the linear-by-linear association
model simplifies to the ACM as

(20) log
πj+1|i
πj|i

= αj + βui,

where αj = λY
j+1 − λY

j . In the linear-by-linear association
model, local odds ratios for adjacent rows and columns have
a common value eβ .

Additionally, using the connection between the ACM and
the linear-by-linear association model, the parameter esti-
mates in the ACM can be obtained from the Poisson log-
likelihood. The log-likelihood in the linear-by-linear associ-
ation model is

L(μ) = nλ+
∑
i

ni+λ
X
i +

∑
j

n+jλ
Y
j + β

∑
i

∑
j

uiυjnij

−
∑
i

∑
j

exp(λ+ λX
i + λY

j + βuiυj).

(21)

Differentiating L(μ) with respect to (λX
i , λY

j , β) and using
iterative methods such as Newton-Raphson method yields
the maximum likelihood fit.

3.8 The non-proportional adjacent category
model

Like the proportional odds model and the continuation
ratio model, the adjacent category logistic regression model

assumes that the assumption of proportionality is satisfied
by each variable in the model. The non-proportional adja-
cent category model (NPACM) relaxes the assumption of
proportional odds for all variables in the model and is given
as follows [31]:
(22)

aNP
k (x)= ln

[
P (Y = k|x)

P (Y = k − 1|x)

]
=αk +x

′
βk k=1, 2, . . . ,K.

The NPACM is also a constrained version of the MLRM.
Thus, model parameters and standard error estimates can
be directly obtained from the MLRM as follows:

ln

[
P (Y = k|x)
P (Y = 0|x)

]
= ln

[
P (Y = 1|x)
P (Y = 0|x)

]
+ ln

[
P (Y = 2|x)
P (Y = 1|x)

]
+

. . . + ln

[
P (Y = k|x)

P (Y = k − 1|x)

]
= a1(x) + a2(x) + . . .+ ak(x)

= (α1 + x
′
β1) + . . .+ (αk + x

′
βk)

= (α1 + . . . +αk)+x
′
(β1 +β2 + . . . +βk).

(23)

Thus, we see that the model in Equation (22) is a version
of the MLRM in Equation (1) with intercept β0k = (α1 +
α2 + . . . + αk) and regression coefficient βk = (β1 + β2 +
. . .+ βk). In order to obtain the NPACM estimates of αk’s
and βk’s from the MLRM, we fit a MLRM using the two
constraints given below:

(24) β0k =

k∑
i=1

αi and βk =

k∑
i=1

βi.

Because the two constraints given in Equation (24)
are additive rather than multiplicative, the NPACM and
MLRM models have equal log-likelihoods. For this reason,
the NPACM can be seen as an MLRM with a different
parametrization (i.e., using adjacent logits rather than base-
line logits).

3.9 The partial proportional adjacent
category model

When some of the independent variables in the ACM do
not meet the proportionality assumption, a need for a more
parsimonious model than the NPACM naturally arises. Fol-
lowing the idea that was done before for the POM and the
CRM, a partial proportional model for the ACM can be con-
structed. For k = 1, 2, . . . ,K the partial proportional adja-
cent category model (PPACM) is

(25) aPP
k (x) = ln

[
P (Y = k|x)

P (Y = k − 1|x)

]
= αk + x

′
β +T

′
γk.

Under the PPACM in Equation (25), two sets of regres-
sion coefficients should be estimated: one set (denoted by β)
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meets the proportional odds assumption, and a second set
(denoted by γk) violates the proportional odds assumption.

At this point, the independent variables (and thus the
corresponding coefficients) that meet or do not meet the pro-
portionality assumption in the PPACM can be determined
with the proposed Wald test statistic given in Section 5.

In order to estimate the β and γk’s in the PPACM, we
can utilize the relationships between the adjacent category
model, the non-proportional adjacent category model, and
the multinomial logistic regression model which are given in
Sections 3.7 and 3.8.

Fitting (with the maximum likelihood estimation
method) a multinomial logistic regression model using the
two constraints given in Equation (24) gives the param-
eter estimates for a fully non-proportional adjacent cate-
gory model (NPACM). On the other hand, fitting a multi-
nomial logistic regression model using the two constraints
given in Equation (17) gives the parameter estimates of a
fully proportional adjacent category model (ACM). Then,
fitting a multinomial logistic regression model using con-
straints given in Equation (17) for only some of the param-
eters in the model while leaving the rest of them without
any constraints will give the parameter estimates of a par-
tial version of the adjacent category model (PPACM). Yee
[33] recently published the R codes (VGAM) for fitting the
partial proportional adjacent category model.

4. METHODS USED FOR CHECKING THE
PROPORTIONAL ODDS ASSUMPTION

4.1 The likelihood ratio test

Let ordinal dependent variable Y take values of k =
1, 2, . . . ,K (note that, this display is different from that
given as k = 0, 1, . . . ,K previously), and the proportional
odds model has j independent variables (j = 1, 2, . . . , J).
When the proportional odds assumption holds, the regres-
sion coefficients corresponding to the jth independent vari-
able (βjk) are equal to each other. This hypothesis can be
formulated as follows [21]:

(26) H0 : β1j = β2j = . . . = β(K−1)j j = 1, 2, . . . , J.

As the proportional odds model is nested within the non-
proportional odds model, the likelihood ratio (LR) test,
which evaluates differences in deviances, provides an om-
nibus test of proportionality. Under H0, the LR test statis-
tic is distributed as chi-square with degrees of freedom equal
to the difference in the number of parameters between the
nested models (which is J(K − 2)) [25]. The LR test is a
very useful tool, and it can be used to check the proportion-
ality assumption in the continuation and adjacent category
models in a global sense.

Another method, an approximate likelihood ratio test
[32], is also an omnibus test of proportionality that tests
whether the coefficients for all variables are simultaneously

equal. However, it compares the log-likelihood of the pro-
portional odds model to the log-likelihood obtained from
pooling K − 1 binary logistic regression models, adjusting
for the correlation between K − 1 binary logistic regression
models. This approach is an approximation to the LR test
because the log-likelihood obtained from pooling K − 1 bi-
nary logistic regression models is only an approximation to
the likelihood of the non-proportional odds model.

4.2 Brant’s Wald test

The LR test is an omnibus test that does not show
whether the proportionality assumption is violated for all
independent variables or only for some. Brant [26] proposed
a Wald test that tests the proportionality assumption for
each variable individually and together in the proportional
odds model. The approach is based on viewing the model in
Equation (9) as a combination of K − 1 correlated binary
logistic regression regressions with outcomes defined by

(27) zk =

{
1 if Y > k

0 if Y ≤ k.

Brant [26] proved that under the null hypothesis, the sep-

arate maximum likelihood estimates β̂∗
k = (β̂

′

1β̂
′

2 . . . β̂
′

K−1)
′

have a distribution that is asymptotically multivariate nor-
mal. Thus, the Wald test statistic, which is based on
the correlated separate fits, provides an assessment of
the proportionality assumption in the proportional odds
model.

It is an important task to check the proportionality as-
sumption in any ordinal logistic regression model. Bender
and Grouven [2] showed that use of the POM can lead to
invalid results if the main model assumption is violated, and
they make a point for POM as follows:

“With increasing use of the POM, the misuse of it will
also increase, especially due to application of this method
to data with non-proportional odds. Unfortunately, the
results of logistic regression models are poorly presented
in medical research papers. Hence, an invalid application
of the POM is seldom detectable for readers of medical
journals.”

Therefore, applying a proportionality test before proceed-
ing with any of the ordinal logistic regression models is cru-
cial. However, the existing methods for testing proportion-
ality assumptions are restricted. An LR test is applicable
for all of the ordinal logistic models, but it is only a way
of testing proportionality in a global sense, and the Brant’s
test of Wald must be generalized for other ordinal logistic
regression models such as the adjacent category model.

5. AN ADAPTATION OF BRANT’S WALD
TEST FOR THE ADJACENT CATEGORY

MODEL

Brant showed that the separate binary logistic regression
estimates of β̂k’s are asymptotically unbiased and follow a
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multivariate normal distribution [26]. Following the idea of
Brant, we adapted a test for checking the proportionality
assumption in the adjacent category model as follows:

1. The ACM uses adjacent category logits, so the first step
of the proposed test statistic is to estimate β̂k’s and
V ar(β̂k)’s from the K − 1 binary logistic regressions
with outcomes defined by

(28) zk =

⎧⎪⎨⎪⎩
1 if Y = k

0 if Y = k − 1

Missing else.

2. Estimate the probability that zik = 1 given xi by using
the below formula:

(29) π̂k(xi) =
eτ̂k+x

′
β̂k

1 + eτ̂k+x′ β̂k

.

Note that in this step, the probabilities (π̂k(xi)) that
correspond to the missing categories of zk’s should re-
main as missing because there will not be any posi-
tive outcome probability that corresponds to the miss-
ing outcome category in the binary logistic regression
model.

3. Estimate the covariance between β̂k and β̂l (k ≤ l).
Define:

(30) wikl = π̂l(xi)− π̂k(xi)π̂l(xi)

and let Wikl be a N∗ ×N∗ diagonal matrix whose ith
element is wikl, and N∗ is the number of cases when
we exclude the missing cases listwise. Let X be the
N∗ × (J + 1) matrix with 1’s in the first column and
the independent variables in the remaining columns.
Estimate the V̂ ar(β̂k, β̂l) by deleting the first row and
column of

(31) (X ′WkkX)−1(X ′WklX)(X ′WllX)−1.

4. Combine all estimates. Define β̂∗
k = (β̂

′

1β̂
′

2 . . . β̂
′

K−1)
′

and
(32)

V̂ ar(β̂∗
k) =

⎛⎜⎝ V̂ ar(β̂1) . . . V̂ ar(β̂1, β̂K−1)
...

. . .
...

V̂ ar(β̂K−1, β̂1) . . . V̂ ar(β̂1)

⎞⎟⎠ .

The diagonal elements V̂ ar(β̂k) are the covariance ma-
trices from each binary regression. The off-diagonal el-
ements were defined at step 3.

5. Construct the Wald test of H0 : β1 = β2 = . . . =
β(K−1). This hypothesis corresponds to H0 : Dβ∗ = 0

Table 1. Frequencies in a R× C table

Independent Outcome Variable Y
Variable X 1 2 . . . C

1 n11 n12 . . . n1C

2 n21 n22 . . . n2C

...
...

...
...

...
R nR1 nR2 . . . nRC

where

(33) D =

⎛⎜⎜⎜⎝
I −I 0 . . . 0
I 0 −I . . . 0
...

...
...

. . .
...

I 0 0 . . . −I

⎞⎟⎟⎟⎠ .

I is a (J + 1) × (J + 1) identity matrix, and 0 is a
(J + 1)× (J + 1) matrix of 0’s. The Wald test statistic

(34) W = (Dβ̂∗)
′
[DV̂ ar(β̂∗)D

′
]−1(Dβ̂∗)

distributes as chi-square with J(K − 2) degrees of free-
dom.

6. Construct tests for individual variables. The hypothesis
H0 : β1j = β2j = . . . = β(K−1)j can be tested by select-

ing only those rows and columns of D, β̂∗ and V̂ ar(β̂∗)
that correspond to the coefficients being tested. The re-
sulting test statistic has K − 2 degrees of freedom. For
the overall and individual tests, if the Wald test statis-
tic is big enough, the proportionality assumption can
be rejected.

6. MONTE CARLO SIMULATION

In Section 6.1, the distributional properties of the pro-
posed test in Equation (34) are studied under H0 by using a
Monte Carlo simulation. The appropriateness of chi-square
approximation is examined using some graphical methods
such as Q-Q plots, probability distribution and cumulative
distribution plots. Then, type I error rates of the proposed
test and LR test are compared under the same scenarios. In
Section 6.2, another Monte Carlo simulation study is con-
ducted to compare the proposed test and LR test in terms
of power under alternative hypotheses.

6.1 Simulation of the adapted test statistic
under H0

Suppose that the ordinal dependent variable has C levels
(j = 1, 2, . . . , C) and the independent variable has R levels
(i = 1, 2, . . . , R), and let the frequencies in the R× C table
be given as Table 1.

In the R×C table, the null hypothesis of proportionality
or in other words, the common odds ratio across the adjacent
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categories, can be expressed as

(35) H0 :
nij · n(i+1)(j+1)

ni(j+1) · n(i+1)j
= OR

for i = 1, 2, . . . , R and j = 1, 2, . . . , C. To generate frequen-
cies from the multinomial distribution under Equation (35),
one must calculate the probabilities of the adjacent cate-
gories that gives the same odds ratio across every category.
This calculation is simple for a 2 × 3 table; however, for
an R × C table, it can be tedious. Therefore, upon gener-
ating frequencies in an R × C table under H0, we use the
connection between the adjacent category model and the
linear-by-linear model that is given in Section 3.7.

Data for the first simulation study is generated under the
following linear-by-linear model:

(36) log μij = λ+ λX
i + λY

j + βuivj ,

where λ is the general effect parameter, and λX
i and λY

j

are the main effects for variables X and Y, with constraints
λX
I = λY

J = 0. Under the linear-by-linear model, we guaran-
teed that the generated frequencies in the R × C table will
satisfy Equation (35) and the common adjacent odds ratio
as exp(β) = OR.

In large samples, the parameters (λ, λX
i and λY

j ) in
the linear-by-linear model are approximately normally dis-
tributed [9], and the formal significance testing of the pa-
rameters can be performed using a Wald test statistic.
Therefore, we used the normal distribution for generating
the parameters of the linear-by-linear model. Mean values
of β were taken as β = 0, 0.182, 0.262 to obtain the common
odds ratio values of OR = 1, 1.2, 1.3. We did not consider
using any OR values greater than 1.3, because when we gen-
erate cell frequencies under H0, for let’s say OR = 1.5 in the
4×5 table, six cells (6/20 = 30% of the cells) have expected
value less than five in the table, even if N = 1,000. Addition-
ally when we increase the OR, for example when OR = 2,
fourteen cells (14/20 = 70% of the cells) have expected value
less than five, which may lead us to invalid results for the
simulation study.

The sample size was taken as N = 300, 500, 1, 000, and
we applied the ad hoc adjustment procedure of adding 0.50
to each cell if the generated R × C table contained cells
with 0 frequencies. Mean, standard deviation of the linear-
by-linear model parameters, common adjacent odds ratios,
R and C values, and sample sizes that were used in the first
simulation study are given in Table 2.

R×C tables were generated 1,000 times from the given R,
C, β, λ, λX

i and λY
j combination, and in each run, the pro-

posed Wald test statistic, which is given in Equation (34),
was computed. We also computed the proportionality tests
for the individual variables in the model. The appropriate-
ness of the chi-square approximation of the omnibus and the
individual test statistics were investigated using graphical

methods such as the probability density function, cumula-
tive distribution function and Q-Q plots. We also calculated
the likelihood ratio test statistics using the log-likelihood of
the non-proportional adjacent category model (LNPACM )
and the adjacent category model (LACM ), and we compared
the proposed test statistic with the likelihood ratio test re-
sults. We obtained the estimated type I error rates for the
proposed Wald and the LR tests as the percentage of times
the test rejects the null hypothesis when the null hypothesis
is true.

6.2 Power comparison of the adapted test
statistic and the LR test

Data for the second simulation study is generated under
the following log-linear model:

(37) logμij = λ+ λX
i + λY

j + βijuivj ,

where λ is the general effect parameter, and λX
i and λY

j

are the main effects for variables X and Y, with constraints
λX
I = λY

J = 0. For i = 1, 2, . . . , R and j = 1, 2, . . . , C, βij ’s
denote different log-adjacent odds ratios across categories.
The values of βij are generated stochastically from the nor-
mal distribution with different mean and standard devia-
tion. In order to control the degree of non-proportionality
of the log- adjacent odds ratios, we used their standard de-
viations, such that when the standard deviation of βij is in-
creased, the degree of non-proportionality increases. Mean,
standard deviation of the linear-by-linear model parameters,
log- adjacent odds ratios (βij), R and C values, and sample
sizes that were used in the second simulation study are given
in Table 3.

R×C tables were generated from the given R, C, βij , λ,
λX
i and λY

j combinations. βij ’s are generated under the nor-
mal distribution with parameters N(0, 0.02), N(0.182, 0.03),
and N(0.262, 0.04) for small effect sizes, and N(0, 0.2),
N(0.182, 0.3), and N(0.262, 0.4) for greater effect sizes. In
each run, the proposed Wald and the likelihood ratio test
statistics were calculated. We obtained the estimated power
of tests as the percentage of times the test rejects the null
hypothesis when the null hypothesis is false. The simulation
codes were developed in R (Version 3.0.2) and the results
are summarized in the next section.

7. RESULTS OF THE SIMULATION STUDY

The results of the first simulation study are given in Ta-
ble 4.

In Table 4, the mean values of the omnibus LR and the
proposed test statistics that were computed from 1,000 ran-
dom samples are given in columns 3 and 4. The proposed
Wald test statistic and the LR test statistic should be dis-
tributed as chi-square with a mean of J(K − 2) (note that,
for a R × C table, the number of independent variables is
J = R− 1 and K = C) degrees of freedom. As seen in these
columns, the mean values of the omnibus version of the pro-
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Table 2. Mean, standard deviation of the linear-by-linear model parameters, common adjacent odds ratios, R× C values, and
sample size combinations that are used under H0

Scenario Distribution of the parameters Common Total
Number λ λX

i λY
j Adjacent OR R× C Sample Size

1 N(1,1) N(0,1) N(0,1) OR = 1 3× 4 300
2 N(1,1) N(0,1) N(0,1) OR = 1 3× 4 500
3 N(1,1) N(0,1) N(0,1) OR = 1 4× 5 300
4 N(1,1) N(0,1) N(0,1) OR = 1 4× 5 500

5 N(1,1) N(0,1) N(0,1) OR = 1.2 3× 4 500
6 N(1,1) N(0,1) N(0,1) OR = 1.2 3× 4 1000
7 N(1,1) N(0,1) N(0,1) OR = 1.2 4× 5 500
8 N(1,1) N(0,1) N(0,1) OR = 1.2 4× 5 1000

9 N(1,1) N(0,1) N(0,1) OR = 1.3 3× 4 500
10 N(1,1) N(0,1) N(0,1) OR = 1.3 3× 4 1000
11 N(1,1) N(0,1) N(0,1) OR = 1.3 4× 5 500
12 N(1,1) N(0,1) N(0,1) OR = 1.3 4× 5 1000

13 N(1,1) N(1,0.5) N(1,0.5) OR = 1 3× 4 300
14 N(1,1) N(1,0.5) N(1,0.5) OR = 1 3× 4 500
15 N(1,1) N(1,0.5) N(1,0.5) OR = 1 4× 5 300
16 N(1,1) N(1,0.5) N(1,0.5) OR = 1 4× 5 500

17 N(1,1) N(1,0.5) N(1,0.5) OR = 1.2 3× 4 500
18 N(1,1) N(1,0.5) N(1,0.5) OR = 1.2 3× 4 1000
19 N(1,1) N(1,0.5) N(1,0.5) OR = 1.2 4× 5 500
20 N(1,1) N(1,0.5) N(1,0.5) OR = 1.2 4× 5 1000

21 N(1,1) N(1,0.5) N(1,0.5) OR = 1.3 3× 4 500
22 N(1,1) N(1,0.5) N(1,0.5) OR = 1.3 3× 4 1000
23 N(1,1) N(1,0.5) N(1,0.5) OR = 1.3 4× 5 500
24 N(1,1) N(1,0.5) N(1,0.5) OR = 1.3 4× 5 1000

25 N(1,1) N(1,1) N(1,1) OR = 1 3× 4 300
26 N(1,1) N(1,1) N(1,1) OR = 1 3× 4 500
27 N(1,1) N(1,1) N(1,1) OR = 1 4× 5 300
28 N(1,1) N(1,1) N(1,1) OR = 1 4× 5 500

29 N(1,1) N(1,1) N(1,1) OR = 1.2 3× 4 500
30 N(1,1) N(1,1) N(1,1) OR = 1.2 3× 4 1000
31 N(1,1) N(1,1) N(1,1) OR = 1.2 4× 5 500
32 N(1,1) N(1,1) N(1,1) OR = 1.2 4× 5 1000

33 N(1,1) N(1,1) N(1,1) OR = 1.3 3× 4 500
34 N(1,1) N(1,1) N(1,1) OR = 1.3 3× 4 1000
35 N(1,1) N(1,1) N(1,1) OR = 1.3 4× 5 500
36 N(1,1) N(1,1) N(1,1) OR = 1.3 4× 5 1000

posed test statistic are approximately J(K − 2). Again, the
mean values of the omnibus version of the proposed test
statistic are smaller than the likelihood ratio test statistics.

The fifth and sixth columns of Table 4 give the percentage
of rejections of the proposed test statistic and the LR test
statistic under the χ2

J(K−2) distribution. As seen in these
columns, type I error rates of both test statistics are around
the 0.05 level, while the proposed test tends to be more
conservative than the likelihood ratio test statistic.

The appropriateness of the chi-square approximation of
the omnibus version of the proposed test statistic was in-
vestigated using pdf, cdf and Q-Q plots. All of the graphs
are not given here to save space; only the graphical results
related to scenario number 18 and 20 are given in Figure 1
and Figure 2, respectively.

In Figure 1, the solid lines represent the χ2
4 distribution

(note that for the 18th scenario the degrees of freedom is
equal to 4) and the dotted lines represent the omnibus ver-
sion of the proposed Wald test statistic (in Figure 1 part (a))
and LR test statistic values (in Figure 1 part (b)) which are
calculated from 1,000 replications. As seen from that figure,
the solid and dotted lines overlap. Also in the Q-Q plot,
the values of the omnibus version of the proposed Wald test
statistic lie on the 45◦ line.

In Figure 2, the solid lines represent the χ2
9 distribution

(note that for the 20th scenario the degrees of freedom is
equal to 9) and the dotted lines represent the omnibus ver-
sion of the proposed Wald test statistic (in Figure 2 part (a))
and LR test statistic values (in Figure 2 part (b)) which are
calculated from 1,000 replications. As seen from that fig-
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Table 3. Mean, standard deviation of the linear-by-linear model parameters, log- adjacent odds ratios, R× C values, and
sample size combinations that are used under the alternative hypothesis

Scenario Distribution of the parameters Total
Number λ λX

i λY
j βij R× C Sample Size

1 N(1,1) N(0,1) N(0,1) N(0,0.02) 3× 4 300
2 N(1,1) N(0,1) N(0,1) N(0,0.2) 3× 4 300
3 N(1,1) N(0,1) N(0,1) N(0,0.02) 3× 4 500
4 N(1,1) N(0,1) N(0,1) N(0,0.2) 3× 4 500
5 N(1,1) N(0,1) N(0,1) N(0,0.02) 4× 5 300
6 N(1,1) N(0,1) N(0,1) N(0,0.2) 4× 5 300
7 N(1,1) N(0,1) N(0,1) N(0,0.02) 4× 5 500
8 N(1,1) N(0,1) N(0,1) N(0,0.2) 4× 5 500

9 N(1,1) N(0,1) N(0,1) N(0.182, 0.03) 3× 4 500
10 N(1,1) N(0,1) N(0,1) N(0.182, 0.3) 3× 4 500
11 N(1,1) N(0,1) N(0,1) N(0.182, 0.03) 3× 4 1000
12 N(1,1) N(0,1) N(0,1) N(0.182, 0.3) 3× 4 1000
13 N(1,1) N(0,1) N(0,1) N(0.182, 0.03) 4× 5 500
14 N(1,1) N(0,1) N(0,1) N(0.182, 0.3) 4× 5 500
15 N(1,1) N(0,1) N(0,1) N(0.182, 0.03) 4× 5 1000
16 N(1,1) N(0,1) N(0,1) N(0.182, 0.3) 4× 5 1000

17 N(1,1) N(0,1) N(0,1) N(0.262, 0.04) 3× 4 500
18 N(1,1) N(0,1) N(0,1) N(0.262, 0.4) 3× 4 500
19 N(1,1) N(0,1) N(0,1) N(0.262, 0.04) 3× 4 1000
20 N(1,1) N(0,1) N(0,1) N(0.262, 0.4) 3× 4 1000
21 N(1,1) N(0,1) N(0,1) N(0.262, 0.04) 4× 5 500
22 N(1,1) N(0,1) N(0,1) N(0.262, 0.4) 4× 5 500
23 N(1,1) N(0,1) N(0,1) N(0.262, 0.04) 4× 5 1000
24 N(1,1) N(0,1) N(0,1) N(0.262, 0.4) 4× 5 1000

25 N(1,1) N(1,0.5) N(1,0.5) N(0,0.02) 3× 4 300
26 N(1,1) N(1,0.5) N(1,0.5) N(0,0.2) 3× 4 300
27 N(1,1) N(1,0.5) N(1,0.5) N(0,0.02) 3× 4 500
28 N(1,1) N(1,0.5) N(1,0.5) N(0,0.2) 3× 4 500
29 N(1,1) N(1,0.5) N(1,0.5) N(0,0.02) 4× 5 300
30 N(1,1) N(1,0.5) N(1,0.5) N(0,0.2) 4× 5 300
31 N(1,1) N(1,0.5) N(1,0.5) N(0,0.02) 4× 5 500
32 N(1,1) N(1,0.5) N(1,0.5) N(0,0.2) 4× 5 500

33 N(1,1) N(1,0.5) N(1,0.5) N(0.182, 0.03) 3× 4 500
34 N(1,1) N(1,0.5) N(1,0.5) N(0.182, 0.3) 3× 4 500
35 N(1,1) N(1,0.5) N(1,0.5) N(0.182, 0.03) 3× 4 1000
36 N(1,1) N(1,0.5) N(1,0.5) N(0.182, 0.3) 3× 4 1000
37 N(1,1) N(1,0.5) N(1,0.5) N(0.182, 0.03) 4× 5 500
38 N(1,1) N(1,0.5) N(1,0.5) N(0.182, 0.3) 4× 5 500
39 N(1,1) N(1,0.5) N(1,0.5) N(0.182, 0.03) 4× 5 1000
40 N(1,1) N(1,0.5) N(1,0.5) N(0.182, 0.3) 4× 5 1000

41 N(1,1) N(1,0.5) N(1,0.5) N(0.262, 0.04) 3× 4 500
42 N(1,1) N(1,0.5) N(1,0.5) N(0.262, 0.4) 3× 4 500
43 N(1,1) N(1,0.5) N(1,0.5) N(0.262, 0.04) 3× 4 1000
44 N(1,1) N(1,0.5) N(1,0.5) N(0.262, 0.4) 3× 4 1000
45 N(1,1) N(1,0.5) N(1,0.5) N(0.262, 0.04) 4× 5 500
46 N(1,1) N(1,0.5) N(1,0.5) N(0.262, 0.4) 4× 5 500
47 N(1,1) N(1,0.5) N(1,0.5) N(0.262, 0.04) 4× 5 1000
48 N(1,1) N(1,0.5) N(1,0.5) N(0.262, 0.4) 4× 5 1000

ure, the solid and dotted lines overlap. In the Q-Q plot, the
values of the omnibus version of the proposed Wald test
statistic also lie on the 45◦ line.

Therefore, after examining the results, we concluded that

the omnibus version of the proposed Wald test statistic has
a chi-square distribution under the H0 for the R×C table.

In Table 4, the mean values of the individual version of
the proposed test statistic that were computed from 1,000
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Table 3. (Continued)

Scenario Distribution of the parameters Total
Number λ λX

i λY
j βij R× C Sample Size

49 N(1,1) N(1,1) N(1,1) N(0,0.02) 3× 4 300
50 N(1,1) N(1,1) N(1,1) N(0,0.2) 3× 4 300
51 N(1,1) N(1,1) N(1,1) N(0,0.02) 3× 4 500
52 N(1,1) N(1,1) N(1,1) N(0,0.2) 3× 4 500
53 N(1,1) N(1,1) N(1,1) N(0,0.02) 4× 5 300
54 N(1,1) N(1,1) N(1,1) N(0,0.2) 4× 5 300
55 N(1,1) N(1,1) N(1,1) N(0,0.02) 4× 5 500
56 N(1,1) N(1,1) N(1,1) N(0,0.2) 4× 5 500

57 N(1,1) N(1,1) N(1,1) N(0.182, 0.03) 3× 4 500
58 N(1,1) N(1,1) N(1,1) N(0.182, 0.3) 3× 4 500
59 N(1,1) N(1,1) N(1,1) N(0.182, 0.03) 3× 4 1000
60 N(1,1) N(1,1) N(1,1) N(0.182, 0.3) 3× 4 1000
61 N(1,1) N(1,1) N(1,1) N(0.182, 0.03) 4× 5 500
62 N(1,1) N(1,1) N(1,1) N(0.182, 0.3) 4× 5 500
63 N(1,1) N(1,1) N(1,1) N(0.182, 0.03) 4× 5 1000
64 N(1,1) N(1,1) N(1,1) N(0.182, 0.3) 4× 5 1000

65 N(1,1) N(1,1) N(1,1) N(0.262, 0.04) 3× 4 500
66 N(1,1) N(1,1) N(1,1) N(0.262, 0.4) 3× 4 500
67 N(1,1) N(1,1) N(1,1) N(0.262, 0.04) 3× 4 1000
68 N(1,1) N(1,1) N(1,1) N(0.262, 0.4) 3× 4 1000
69 N(1,1) N(1,1) N(1,1) N(0.262, 0.04) 4× 5 500
70 N(1,1) N(1,1) N(1,1) N(0.262, 0.4) 4× 5 500
71 N(1,1) N(1,1) N(1,1) N(0.262, 0.04) 4× 5 1000
72 N(1,1) N(1,1) N(1,1) N(0.262, 0.4) 4× 5 1000

random samples are given through columns 7–9. The Wald
test statistic for the individual parameters should be dis-
tributed as chi-square with a mean of K − 2. As seen in
these columns, the mean values of the individual test statis-
tic are approximately K − 2 for small degrees of freedom
(i.e., for a 3× 4 table), whereas they are smaller than K− 2
in larger tables (i.e., for a 4× 5 table).

Through columns 10–12, the percentage of rejections of
proposed individual test statistics under the χ2

K−2 distribu-
tion are given. As seen in these columns, when the number
of degrees of freedom is small (i.e., for a 3 × 4 table), type
I error rates of the proposed test statistic are around the
0.05 level. However, the type I error rates of the individual
test statistic are very conservative in the situations where
the number of degrees of freedom is large (i.e., for a 4 × 5
table).

The appropriateness of the chi-square approximation of
the individual version of the proposed test statistic was in-
vestigated using pdf, cdf and Q-Q plots. All of the graphs
are not given here to save space; only the graphical results
related to scenario number 18 and 20 are given in Figure 3
and Figure 4, respectively.

In Figure 3, the solid lines represent the χ2
2 distribution

and the dotted lines represent the individual version of the
proposed Wald test statistic which are calculated from 1,000
replications. Note that for the 18th scenario, there are two
individual tests (i.e., for variables X1 and X2, respectively)

and the degrees of freedom is equal to 2 for the individual
Wald tests. As seen from that figure, for both variables, the
solid and dotted lines overlap, and in the Q-Q plots, the
values of the individual version of the proposed Wald test
statistic lie on the 45◦ line.

In Figure 4, the solid lines represent the χ2
3 distribution

and the dotted lines represent the individual version of the
proposed Wald test statistic which are calculated from 1,000
replications. Note that for the 20th scenario, there are three
individual tests (i.e., for variables X1, X2 and X3, respec-
tively) and the degrees of freedom is equal to 3 for the in-
dividual Wald tests. As seen from that figure, for the indi-
vidual tests, the solid and dotted lines do not overlap. Also
in the Q-Q plots, the values of the individual version of the
proposedWald test statistic do not lie on the 45◦ line. There-
fore, we can say that the chi-square approximation is labile
when the number of independent variables (so the degrees
of freedom) increases.

After examining the probability density function, cumu-
lative distribution function and Q-Q plots of the individual
version of the proposed test statistic, we concluded that un-
der H0, the chi-square approximation is feasible for the indi-
vidual version of the proposed Wald test statistic, provided
that the number of degrees of freedom is not so large for the
R× C table.

The results of the second simulation study are given in
Table 5.
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Table 4. Results of the first simulation study

Scenario Mean Values of Omn. Type I error of Omn. Mean Values of Type I error of
Number R× C LR test Prop. test LR test Prop. test Prop. test (Ind.) Prop. test (Ind.)

1 3× 4 3.968 3.863 0.043 0.035 1.904 1.954 0.039 0.051
2 3× 4 3.986 3.929 0.056 0.049 2.005 1.909 0.064 0.037
3 4× 5 9.270 8.725 0.059 0.031 1.944 1.961 1.942 0.017 0.014 0.007
4 4× 5 9.101 8.796 0.047 0.037 1.959 1.975 1.993 0.013 0.020 0.017
5 3× 4 4.083 4.004 0.054 0.042 1.948 1.965 0.044 0.041
6 3× 4 4.068 4.032 0.057 0.055 1.999 2.035 0.045 0.059
7 4× 5 9.195 8.634 0.052 0.031 1.920 1.902 1.886 0.014 0.009 0.009
8 4× 5 9.291 9.044 0.073 0.057 2.044 2.057 1.947 0.020 0.022 0.016
9 3× 4 4.045 3.935 0.063 0.050 1.943 1.966 0.046 0.041
10 3× 4 4.170 4.116 0.058 0.055 2.043 2.054 0.052 0.054
11 4× 5 8.568 7.820 0.032 0.012 1.651 1.656 1.658 0.007 0.003 0.010
12 4× 5 9.226 8.636 0.059 0.036 1.943 1.887 1.907 0.012 0.005 0.014
13 3× 4 3.921 3.730 0.042 0.031 1.975 1.788 0.048 0.027
14 3× 4 4.113 3.964 0.052 0.045 2.049 1.932 0.053 0.042
15 4× 5 9.044 8.424 0.053 0.032 1.973 1.940 2.026 0.017 0.007 0.018
16 4× 5 8.958 8.568 0.044 0.030 1.959 1.876 1.946 0.017 0.015 0.018
17 3× 4 3.953 3.891 0.042 0.037 1.879 1.995 0.035 0.047
18 3× 4 4.066 4.028 0.051 0.044 2.074 2.044 0.060 0.056
19 4× 5 8.875 8.543 0.041 0.026 1.974 1.891 1.815 0.015 0.012 0.010
20 4× 5 8.999 8.837 0.050 0.041 1.991 2.000 1.985 0.019 0.020 0.015
21 3× 4 4.051 3.965 0.060 0.049 1.936 2.018 0.039 0.052
22 3× 4 3.944 3.906 0.045 0.038 1.957 1.924 0.049 0.042
23 4× 5 8.980 8.403 0.051 0.032 1.801 1.840 1.828 0.006 0.005 0.010
24 4× 5 9.094 8.790 0.046 0.032 2.017 1.911 1.962 0.016 0.017 0.014
25 3× 4 3.894 3.677 0.048 0.036 1.890 1.782 0.032 0.035
26 3× 4 4.106 3.940 0.049 0.037 2.083 1.929 0.069 0.037
27 4× 5 8.828 8.080 0.036 0.015 1.908 1.753 1.896 0.013 0.005 0.014
28 4× 5 9.065 8.562 0.054 0.032 1.932 1.905 1.924 0.018 0.011 0.017
29 3× 4 4.156 4.059 0.061 0.055 2.095 2.010 0.058 0.052
30 3× 4 4.026 3.983 0.051 0.049 2.003 1.976 0.057 0.047
31 4× 5 9.447 9.052 0.059 0.042 2.020 2.007 1.989 0.012 0.012 0.019
32 4× 5 9.046 8.850 0.049 0.040 1.966 1.938 2.056 0.014 0.019 0.024
33 3× 4 4.215 4.113 0.063 0.058 2.110 2.090 0.055 0.057
34 3× 4 4.039 3.994 0.053 0.049 2.067 1.938 0.053 0.049
35 4× 5 9.264 8.680 0.058 0.033 2.015 1.898 1.857 0.010 0.007 0.012
36 4× 5 8.993 8.701 0.046 0.031 2.012 2.010 1.932 0.020 0.017 0.009

LR test: The Likelihood Ratio Test Statistic
Prop. test: The Proposed Wald Test Statistic
Omn.: Omnibus
Ind.: Individual

In Table 5, the mean values of the LR and the proposed
test statistics that were computed from 1,000 random sam-
ples under the alternative hypotheses are given in columns 5
and 6. As seen in these columns, the mean values of the pro-
posed Wald test statistic are always smaller than the likeli-
hood ratio test statistics. The seventh and eighth columns of
Table 5 give the percentage of times the tests reject the null
hypothesis when the null hypothesis is false. An increase in
sample size has a positive effect on the power of both tests.
Moreover, when the degree of non-proportionality (i.e., the
standard deviation of βij) is increased, the powers of the
proposed test and LR test increase. As expected, power of
the proposed test is always smaller than or equal to the like-

lihood ratio test and tests become equivalent as the sample
size increases (e.g., n = 1,000).

8. AN EXAMPLE

The “Attitudes Toward Working Mothers General Sur-
vey” (from the Long’s book [21, p. 125]) data are used to
illustrate the methods used for this study. This data con-
tains information from the 2,293 respondents on the atti-
tudes toward working mothers. The survey is conducted in
1977 and 1989, and the respondents are asked to evaluate
the following statement: “A working mother can establish
just as warm and secure relationship with her children as
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Figure 1. The pdf, cdf, and Q-Q plots of the (a) omnibus version of the proposed test statistic vs. χ2
J(K−2) distribution and

(b) LR test vs. χ2
J(K−2) distribution for the scenario number 18.

a mother who does not work”. Responses are coded in the
variable WARM as: 1 = Strongly Disagree (SD); 2 = Dis-
agree (D); 3 = Agree (A); and 4 = Strongly Agree (SA). The
goal of this study was to determine whether the survey year
(YR89), sex of the respondent (MALE), race of the respon-
dent (WHITE), age of the respondent (AGE) and education
year of the respondent (EDU) are associated with the atti-
tudes toward working mothers. The data code sheet is given
in Table 6.

Suppose that we want to determine the effects of the
survey year (YR89), sex of the respondent (MALE), race
of the respondent (WHITE), age of the respondent (AGE)
and education year of the respondent (EDU) on the atti-
tudes toward working mothers (WARM) using the adjacent
category model. Before proceeding with any modelling, we
must check the proportionality assumption using the pro-
posed method given in Section 5. Table 7 gives the results
of the LR test and the proposed test of proportionality for
this data.

According to both LR and the omnibus version of the
proposed test results, at least one factor in the ACM does
not satisfy the proportionality assumption (p < 0.001 and
p < 0.001, respectively). When we examine the individual
Wald test statistics of these factors, we observe that the sur-
vey year (YR89), sex of the respondent (MALE), and age of

the respondent (AGE) violate the proportionality assump-
tion. Therefore, we must construct a partial proportional
adjacent category model for this data.

In order to determine the parameter estimations in the
PPACM, we utilize the relationships between the adja-
cent category model, the non-proportional adjacent cate-
gory model, and the multinomial logistic regression model,
which are given in Sections 3.7 and 3.8. Because the adjacent
category model and the non-proportional adjacent category
model is a constrained version of the multinomial logistic
regression model (See Equations (16) and (23)), we start by
fitting a multinomial logistic regression in order to get the
NPACM, ACM and PPACM results.

Table 8 gives the results of the multinomial logistic re-
gression model for the attitudes toward working mothers
data. The non-proportional adjacent category model is the
constrained version of the MLRM.

Table 9 gives the parameter and standard error estimates
of the non-proportional adjacent category model, which is
directly obtained from the MLRM using the constraints in
Equation (24). As seen in Tables 8 and 9, these models have
equal log-likelihoods.

In the non-proportional adjacent category model, the first
logit estimation results of the coefficients should be the same
as the multinomial logistic regression results. From Equation
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Figure 2. The pdf, cdf, and Q-Q plots of the (a) omnibus version of the proposed test statistic vs. χ2
J(K−2) distribution and

(b) LR test vs. χ2
J(K−2) distribution for the scenario number 20.

(24), the second logit estimates of the NPACM results are
found by taking the difference of the logit 2 of the MLRM
results from the logit 1, and the third logit results are found
by taking the difference of logit 3 of the MLRM results from
the logit 2. For example in Table 9, the coefficient estimate
of the WHITE in the third logit can be found as −0.8283−
(−0.5321) = −0.2962.

The adjacent category model is also a constrained ver-
sion of the multinomial logistic regression model. In order
to get the parameter estimates in the adjacent category
model, first we fit a constrained multinomial logistic regres-
sion model (using MLE methods) with constraint βk = kβ,
which is given in Equation (17). Table 10 gives the maximum
likelihood estimation results for the constrained multinomial
logistic regression model.

Note that in Table 10, since we applied the constraint
βk = kβ, the coefficient estimates in the second logit are
twice the coefficient estimates in the first logit, and the coef-
ficient estimates in the third logit are treble of the coefficient
estimates in the third logit. For example, the coefficient es-
timate for the race of the respondent (WHITE) in the third
logit will be equal to 3 × −0.2307 = −0.6922. Because the
adjacent category model possesses the property that the in-
dependent variables have equal effects on the outcome across
the adjacent categories, the effects of the independent vari-

ables do not vary across logits and they are equal to the co-
efficients which are given in the first logit of Table 10. Such
as the coefficient estimate of survey year (YR89) and the co-
efficient estimate of education year of the respondent (EDU)
for the adjacent category model will be equal to 0.3463 and
0.0508, respectively.

After fitting the multinomial logistic regression with con-
straint βk = kβ, and getting the regression coefficient esti-
mates, now we can get the intercept terms for the adjacent
category model using the property β0k =

∑k
i=1 αi. For ex-

ample, the intercept term for the first logit of adjacent cate-
gory model (which is 1.2817) will be equal to the intercept of
the first logit of the constrained multinomial logistic regres-
sion model in Table 11. The second intercept term of the
adjacent category model is found by taking the difference
of intercept of the second logit and the first logit, which is
1.6779 − 1.2817 = 0.3962. Similarly, the intercept term for
the third logit will be 1.0325 − 1.6779 = −0.6454. There-
fore, we get the parameter and standard error estimates of
the adjacent category model as given in Table 11.

We have found that the survey year (YR89), sex of the
respondent (MALE), and age of the respondent (AGE) vi-
olate the proportionality assumption. Thus, when we ap-
ply the constraints in Equation (17) for the race (WHITE)
and education year of the respondent while not apply-
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Figure 3. The pdf, cdf, and Q-Q plots of the individual version of the proposed test statistic vs. χ2
K−2 distribution for the

scenario number 18.

Figure 4. The pdf, cdf, and Q-Q plots of the individual version of the proposed test statistic vs. χ2
K−2 distribution for the

scenario number 20.
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Table 5. Results of the second simulation study

Scenario Distribution of Mean values of Power of
Number βij R× C Sample Size LR test Prop. test LR test Prop. test

1 N(0,0.02) 3× 4 300 4.097 3.864 0.048 0.027
2 N(0,0.2) 3× 4 300 7.035 6.131 0.244 0.195
3 N(0,0.02) 3× 4 500 4.194 4.059 0.058 0.043
4 N(0,0.2) 3× 4 500 11.465 10.161 0.596 0.509
5 N(0,0.02) 4× 5 300 9.818 9.045 0.082 0.045
6 N(0,0.2) 4× 5 300 112.220 69.883 1.000 0.997
7 N(0,0.02) 4× 5 500 11.754 10.977 0.177 0.126
8 N(0,0.2) 4× 5 500 190.540 110.612 1.000 0.993

9 N(0.182, 0.03) 3× 4 500 4.826 4.420 0.102 0.068
10 N(0.182, 0.3) 3× 4 500 17.483 15.510 0.864 0.815
11 N(0.182, 0.03) 3× 4 1000 5.767 5.500 0.155 0.139
12 N(0.182, 0.3) 3× 4 1000 37.347 32.206 1.000 1.000
13 N(0.182, 0.03) 4× 5 500 24.985 22.930 0.813 0.770
14 N(0.182, 0.3) 4× 5 500 379.030 135.420 1.000 0.999
15 N(0.182, 0.03) 4× 5 1000 42.883 40.203 0.992 0.990
16 N(0.182, 0.3) 4× 5 1000 765.160 254.500 1.000 1.000

17 N(0.262, 0.04) 3× 4 500 4.774 4.455 0.081 0.061
18 N(0.262, 0.4) 3× 4 500 22.905 20.194 0.958 0.946
19 N(0.262, 0.04) 3× 4 1000 5.136 4.974 0.109 0.095
20 N(0.262, 0.4) 3× 4 1000 46.093 40.133 1.000 1.000
21 N(0.262, 0.04) 4× 5 500 37.893 33.171 0.984 0.979
22 N(0.262, 0.4) 4× 5 500 271.280 89.328 1.000 1.000
23 N(0.262, 0.04) 4× 5 1000 69.052 61.049 1.000 1.000
24 N(0.262, 0.4) 4× 5 1000 517.440 148.932 1.000 1.000

25 N(0,0.02) 3× 4 300 4.242 3.960 0.058 0.038
26 N(0,0.2) 3× 4 300 6.636 6.031 0.219 0.147
27 N(0,0.02) 3× 4 500 4.219 3.997 0.057 0.045
28 N(0,0.2) 3× 4 500 9.858 8.575 0.472 0.383
29 N(0,0.02) 4× 5 300 9.777 8.934 0.078 0.034
30 N(0,0.2) 4× 5 300 134.180 58.572 1.000 0.877
31 N(0,0.02) 4× 5 500 11.155 10.265 0.115 0.073
32 N(0,0.2) 4× 5 500 222.290 104.758 1.000 0.983

33 N(0.182, 0.03) 3× 4 500 4.4279 4.2523 0.071 0.059
34 N(0.182, 0.3) 3× 4 500 16.402 14.283 0.831 0.778
35 N(0.182, 0.03) 3× 4 1000 4.6166 4.5136 0.078 0.067
36 N(0.182, 0.3) 3× 4 1000 32.541 28.518 0.998 0.995
37 N(0.182, 0.03) 4× 5 500 23.464 22.091 0.767 0.724
38 N(0.182, 0.3) 4× 5 500 237.310 109.440 1.000 1.000
39 N(0.182, 0.03) 4× 5 1000 38.271 36.821 0.986 0.985
40 N(0.182, 0.3) 4× 5 1000 479.750 210.370 1.000 1.000

41 N(0.262, 0.04) 3× 4 500 4.751 4.517 0.083 0.066
42 N(0.262, 0.4) 3× 4 500 21.174 17.801 0.945 0.922
43 N(0.262, 0.04) 3× 4 1000 5.163 5.020 0.123 0.102
44 N(0.262, 0.4) 3× 4 1000 43.437 36.722 1.000 0.999
45 N(0.262, 0.04) 4× 5 500 38.547 35.969 0.988 0.987
46 N(0.262, 0.4) 4× 5 500 145.360 64.942 1.000 0.999
47 N(0.262, 0.04) 4× 5 1000 69.353 65.660 1.000 1.000
48 N(0.262, 0.4) 4× 5 1000 261.680 101.837 1.000 1.000

ing any constraints to the rest of the variables (YR89,
MALE, AGE), we get the parameter estimates of partial
version of the adjacent category model. The partial pro-
portional adjacent category model results are given in Ta-
ble 12.

From Table 12 we can see that the race and education
year of the respondents have the same effect across the
adjacent logits. White respondents tend to agree more by
exp(−0.2304) = 0.7942 times (which means they do not
agree) when compared to the non-white respondents, while
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Table 5. (Continued)

Scenario Distribution of Mean values of Power of
Number βij R× C Sample Size LR test Prop. test LR test Prop. test

49 N(0,0.02) 3× 4 300 3.694 3.378 0.033 0.019
50 N(0,0.2) 3× 4 300 4.567 4.070 0.078 0.039
51 N(0,0.02) 3× 4 500 3.970 3.665 0.040 0.027
52 N(0,0.2) 3× 4 500 6.112 5.380 0.172 0.103
53 N(0,0.02) 4× 5 300 8.227 7.676 0.031 0.021
54 N(0,0.2) 4× 5 300 82.892 17.738 1.000 0.574
55 N(0,0.02) 4× 5 500 9.498 8.888 0.072 0.047
56 N(0,0.2) 4× 5 500 131.635 23.729 1.000 0.917

57 N(0.182, 0.03) 3× 4 500 4.291 3.990 0.058 0.041
58 N(0.182, 0.3) 3× 4 500 9.696 8.687 0.444 0.371
59 N(0.182, 0.03) 3× 4 1000 4.595 4.408 0.088 0.071
60 N(0.182, 0.3) 3× 4 1000 18.213 16.163 0.886 0.841
61 N(0.182, 0.03) 4× 5 500 19.711 18.394 0.584 0.538
62 N(0.182, 0.3) 4× 5 500 365.570 158.990 1.000 0.997
63 N(0.182, 0.03) 4× 5 1000 33.708 31.942 0.962 0.955
64 N(0.182, 0.3) 4× 5 1000 741.760 315.250 1.000 1.000

65 N(0.262, 0.04) 3× 4 500 4.676 4.306 0.098 0.061
66 N(0.262, 0.4) 3× 4 500 13.387 11.371 0.705 0.603
67 N(0.262, 0.04) 3× 4 1000 4.580 4.352 0.083 0.062
68 N(0.262, 0.4) 3× 4 1000 25.454 21.705 0.979 0.969
69 N(0.262, 0.04) 4× 5 500 36.565 34.045 0.975 0.971
70 N(0.262, 0.4) 4× 5 500 294.180 97.420 1.000 1.000
71 N(0.262, 0.04) 4× 5 1000 67.694 63.719 1.000 1.000
72 N(0.262, 0.4) 4× 5 1000 586.850 175.330 1.000 1.000

LR test: The Likelihood Ratio Test Statistic
Prop. test: The Proposed Wald Test Statistic

Table 6. Data code sheet for the variables in the attitudes toward working mothers general survey data

Variable Description Codes/Values Name

1 Response to: “A working mother 1: Strongly Disagree (SD) WARM
can establish just as warm 2: Disagree (D)
and secure relationship with 3: Agree (A)
her children as a mother 4: Strongly Agree (SA)
who does not work”

2 Survey Year 1: 1989 YR89

0: 1977†

3 Sex of the respondent 1: Male MALE

0: Female†

4 Race of the respondent 1: White WHITE

0: Non-white†

5 Age of the respondent Age in years AGE
6 Education year of the respondent Education in years EDU

† Reference category

with an increase of 1 year in education, respondents tend

to agree more with odds of exp(0.0518) = 1.05. The sur-

vey year, sex of the respondents and age of respondents

have different effects across the logits. The coefficients of the

variables can be interpreted individually; for example, when

compared to females, males tend to agree exp(0.0786) =

1.08 times for the first logit, exp(−0.4424) = 0.64 times

in the second logit, and exp(−0.8776) = 0.41 times for the

third logit. In other words, the degree of agreement with the
statement decreases for males.

9. DISCUSSION AND FUTURE WORK

Prior to fitting any of ordinal logistic regression models,
it is important to check whether the assumption of propor-
tionality is satisfied by each independent variable. In the
proportional odds model, the proportional odds assumption
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Table 7. Results of the LR test and the proposed test of
proportionality for the attitudes toward working mothers data

Test Statistic df p value

Likelihood ratio test 47.969 10 p < 0.001
Proposed Wald test (Omnibus) 46.930 10 p < 0.001
Proposed Wald test for YR89 10.811 2 0.0045
Proposed Wald test for MALE 24.689 2 p < 0.001
Proposed Wald test for WHITE 1.188 2 0.5522
Proposed Wald test for AGE 8.708 2 0.0129
Proposed Wald test for EDU 0.953 2 0.6211

Table 8. Estimation results of the multinomial logistic
regression model

Variable Coefficient Std. Error z value p value

Logit 1: Disagree

Intercept 0.4230 0.4287 0.99 0.324
YR89 0.7348 0.1656 4.44 p < 0.001
MALE 0.0829 0.1403 0.59 0.554
WHITE -0.4456 0.2464 -1.81 0.071
AGE -0.0037 0.0043 -0.86 0.393
EDU 0.0703 0.0230 3.05 0.002

Logit 2: Agree

Intercept 1.0891 0.4311 2.53 0.012
YR89 1.0980 0.1637 6.71 p < 0.001
MALE -0.3623 0.1406 -2.58 0.010
WHITE -0.5321 0.2456 -2.17 0.030
AGE -0.0246 0.0044 -5.61 p < 0.001
EDU 0.1192 0.0236 5.06 p < 0.001

Logit 3: Strongly Agree

Intercept 0.6679 0.4929 1.36 0.175
YR89 1.1622 0.1811 6.42 p < 0.001
MALE -1.2308 0.1673 -7.36 p < 0.001
WHITE -0.8283 0.2633 -3.15 0.002
AGE -0.0311 0.0051 -6.08 p < 0.001
EDU 0.1590 0.0279 5.71 p < 0.001

WARM = Strongly Disagree is the baseline outcome
Log-likelihood = -2825.204

is checked by the Brant’s Wald test statistic [26], and it is
performed by the standard Wald test statistic [1] for the
continuation ratio model. In the adjacent category logistic
regression model, the test of proportionality assumption can
be performed with the LR test. However, the LR test is an
omnibus test that does not show whether the proportional-
ity assumption is violated for all independent variables or
only for some. Therefore, before using the ACM, one needs
a valid method to test the proportionality assumption both
in an omnibus and individual manner.

Following the idea of Brant [26], we adapted a Wald test
that can test the proportionality assumption both in an
omnibus and individual manner for checking the propor-
tionality assumption in the ACM. The distribution of the
proposed test statistic is examined under the null and alter-
native hypotheses with a Monte Carlo simulation study. We

Table 9. Estimation results of the non-proportional adjacent
category model

Variable Coefficient Std. Error z value p value

Logit 1: Disagree

Intercept 0.4230 0.4287 0.99 0.324
YR89 0.7348 0.1656 4.44 p < 0.001
MALE 0.0829 0.1403 0.59 0.554
WHITE -0.4456 0.2464 -1.81 0.071
AGE -0.0037 0.0043 -0.85 0.393
EDU 0.0703 0.0230 3.05 0.002

Logit 2: Agree

Intercept 0.6662 0.3116 2.14 0.033
YR89 0.3632 0.1067 3.40 p < 0.001
MALE -0.4453 0.1041 -4.28 p < 0.001
WHITE -0.0865 0.1616 -0.54 0.593
AGE -0.0209 0.0033 -6.43 p < 0.001
EDU 0.0489 0.0175 2.79 0.005

Logit 3: Strongly Agree

Intercept -0.4212 0.3732 -1.13 0.259
YR89 0.0642 0.1229 0.52 0.601
MALE -0.8684 0.1312 -6.62 p < 0.001
WHITE -0.2962 0.1707 -1.73 0.083
AGE -0.0065 0.0040 -1.61 0.108
EDU 0.0398 0.0220 1.81 0.070

Log-likelihood = -2825.204

Table 10. Estimation results of the constrained multinomial
logistic regression model with constraint βk = kβ

Variable Coefficient Std. Error z value p value

Logit 1: Disagree

Intercept 1.2817 0.1619 7.91 p < 0.001
YR89 0.3463 0.0506 6.84 p < 0.001
MALE -0.4354 0.0493 -8.82 p < 0.001
WHITE -0.2307 0.0752 -3.07 0.002
AGE -0.0127 0.0015 -8.25 p < 0.001
EDU 0.0508 0.0083 6.15 p < 0.001

Logit 2: Agree

Intercept 1.6779 0.2976 5.64 p < 0.001
YR89 0.6926 0.1012 6.84 p < 0.001
MALE -0.8708 0.0988 -8.82 p < 0.001
WHITE -0.4615 0.1503 -3.07 0.002
AGE -0.0253 0.0031 -8.25 p < 0.001
EDU 0.1016 0.0165 6.15 p < 0.001

Logit 3: Strongly Agree

Intercept 1.0325 0.4374 2.36 0.018
YR89 1.0388 0.1519 6.84 p < 0.001
MALE -1.3063 0.1481 -8.82 p < 0.001
WHITE -0.6922 0.2255 -3.07 0.002
AGE -0.0379 0.0046 -8.25 p < 0.001
EDU 0.1524 0.0248 6.15 p < 0.001

Log-likelihood = -2849.189

examined the appropriateness of chi-square approximation
of the proposed test statistic using some graphical methods,
and we showed that the proposed test statistic is asymptot-
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Table 11. Estimation results of the adjacent category model

Variable Coefficient Std. Error z value p value

Intercept (Logit 1) 1.2817 0.1619 7.9144 p < 0.001
Intercept (Logit 2) 0.3962 0.1526 2.5965 0.009
Intercept (Logit 3) -0.6454 0.1545 -4.1765 p < 0.001
YR89 0.3463 0.0506 6.8420 p < 0.001
MALE -0.4354 0.0494 -8.8203 p < 0.001
WHITE -0.2307 0.0752 -3.0699 0.002
AGE -0.0127 0.0015 -8.2488 p < 0.001
EDU 0.0508 0.0083 6.1529 p < 0.001

Log-likelihood = -2849.189

Table 12. Estimation results of the partial-proportional adjacent category model

Variable Coefficient Std. Error z value p value

Intercept (Logit 1) 0.4964 0.2672 1.8580 0.063
Intercept (Logit 2) 0.7454 0.2090 3.5663 p < 0.001
Intercept (Logit 3) -0.6412 0.2242 -2.8597 0.004
WHITE -0.2304 0.0751 -3.0661 0.002
EDU 0.0518 0.0084 6.1804 p < 0.001

Logit 1: Disagree

YR89 0.7545 0.1639 4.6025 p < 0.001
MALE 0.0786 0.1400 0.5618 0.574
AGE -0.0050 0.0041 -1.2104 0.226

Logit 2: Agree

YR89 0.3585 0.1057 3.3909 0.001
MALE -0.4424 0.1040 -4.2532 p < 0.001
AGE -0.0206 0.0032 -6.5237 p < 0.001

Logit 3: Strongly Agree

YR89 0.0551 0.1216 0.4529 0.651
MALE -0.8776 0.1308 -6.7114 p < 0.001
AGE -0.0061 0.0039 -1.5421 0.123

Log-likelihood = -2826.187

ically distributed as a chi-square distribution under the null
hypothesis.

The likelihood ratio test statistic evaluates the difference
in deviances, and it provides an omnibus test of propor-
tionality in the adjacent category model. Therefore, we also
compared the results of the omnibus version of the proposed
test statistic with the LR test results. According to the sim-
ulation results, we observed that type I error rates of the
proposed Wald and LR tests are around the desired 0.05
level, while the proposed test statistic has lower type I error
rates than the LR test. Type I error rates of these two tests
become equivalent as the sample size increases. In terms of
power, we observed that the power of the proposed test is al-
ways smaller than or equal to the LR test and tests become
equivalent as the sample size increases. These findings were
consistent with the asymptotic theory, such that under gen-
eral conditions, the Wald and LR tests are asymptotically
equal in distribution, both under the null hypothesis and
under the local alternatives [34].

Brant [26] points out that if the degrees of freedom is
large, then the Wald test becomes conservative and suffers

from the power for the proportional odds model. We also ob-
served that the omnibus and the individual versions of the
proposed test statistics tend to be conservative. This conser-
vatism increases especially when the number of parameters
tested (i.e., degrees of freedom) increases and when the sam-
ple size is small. Consequently, the LR test has higher power
than the proposed Wald test, due to the conservatism of the
latter method especially in those settings.

The proposed test statistic is an effective way to test the
proportionality assumption in the adjacent category model,
and it is superior to the likelihood ratio test statistic because
it allows both an overall and individual test of proportion-
ality in the ACM. With use of the proposed test statistic,
the variables in the ACM that do not obey the proportion-
ality assumption can be determined, and they can be mod-
elled as non-proportional in the partial proportional adja-
cent category model. Therefore, in this study, we suggest
using the proposed test statistic for testing the proportion-
ality assumption in the ACM. The test statistic suggested
here has the advantage of requiring only the software for
fitting binary logistic regression model plus some basic ma-
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trix manipulations. We also provide the R routine for the
proposed test statistic upon request.

The partial proportional adjacent category model is supe-
rior to the adjacent category model for situations where the
assumption of proportionality is not fulfilled for some vari-
ables in the model. Additionally, this model is more parsi-
monious than the non-proportional adjacent category model
when some variables violate the proportionality assumption.
The parameter estimates and the standard errors in the par-
tial proportional model are feasible, and they can be ob-
tained by fitting a constrained version of the multinomial
logistic regression model using the standard maximum like-
lihood estimation method. The maximum likelihood estima-
tion in the partial proportional adjacent category model can
be determined using the VGAM package in R software [33].

The simulation study scenarios are restricted for R × C
tables. We simulated the distribution of the proposed test
statistic under the null and alternative hypotheses with 36
and 72 scenarios, respectively. During data generation, we
did not consider including any continuous independent vari-
ables in the ACM. Thus, the distributional results that are
derived from the simulation study are restricted to only cat-
egorical independent variables. Possible violations in the chi-
square approximation may occur when we add some contin-
uous independent variables in the ACM. Another study to
determine the effect of continuous independent variables on
the null distribution of the proposed test statistic will be
conducted as possible future work.
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