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The goal of this article is to select important vari-
ables that can distinguish one class of data from another.
A marginal variable selection method ranks the marginal ef-
fects for classification of individual variables, and is a useful
and efficient approach for variable selection. Our focus here
is to consider the bivariate effect, in addition to the marginal
effect. In particular, we are interested in those pairs of vari-
ables that can lead to accurate classification predictions
when they are viewed jointly. To accomplish this, we propose
a permutation test called Significance test of Joint Effect
(SigJEff). In the absence of joint effect in the data, SigJEff
is similar or equivalent to many marginal methods. How-
ever, when joint effects exist, our method can significantly
boost the performance of variable selection. Such joint ef-
fects can help to provide additional, and sometimes domi-
nating, advantage for classification. We illustrate and vali-
date our approach using both simulated example and a real
glioblastoma multiforme data set, which provide promising
results.

AMS 2000 subject classifications: Primary 62H30;
secondary 62P10.
Keywords and phrases: Classification, Marginal screen-
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1. INTRODUCTION

In many real data applications, such as bioinformatics
and medical image analysis, there are thousands to hundreds
of thousands variables available for modeling (i.e., X ∈ R

d,
where d ≈ 103 to 105). It is often, however, that only a small
number of them truly influence the response variable Y . The
aim of variable selection is to identify these variables which
strongly influence the response variable and thus have great
predictive power. Variable selection plays a fundamental role
in high-dimensional statistical inference. In this article, our
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focus is on variable selection for the binary classification
problem where the response variable Y ∈ {+1,−1}.

Our emphasis in this paper is on genetic applications,
where each gene is a variable. However, the lessons are
broadly applicable. Classification based on gene expression
data has been shown useful in cancer research (Golub et al.,
1999). Marginal, i.e., gene-by-gene, methods assess each
individual gene separately. Such methods help to identify
genes that are important marginally, and eliminate genes
that are almost useless in the marginal sense. There is a
large amount of literature in this direction. An incomplete
list includes methods based on the classical two-sample t-
statistic which can be seen in most statistical textbooks,
e.g., Peck and Devore (2011); the Empirical Bayes approach
(Efron et al., 2001); the Significance Analysis of Microarray
(SAM; Tusher, Tibshirani and Chu, 2001); a mixture model
approach (Pan, Lin and Le, 2003), among others. There are
other methods based on some improved marginal statistics,
such as Baldi and Long (2001), Zuber and Strimmer (2009),
Wu (2005a,b), etc. Pan (2002) has compared several of these
methods and concluded that the statistics involved are sim-
ilar, although they may adopt different assumptions. Re-
cently, Fan and Lv (2008) provides some theoretical justifi-
cation for marginal screening in a regression setting. In this
article, we take SAM (Tusher, Tibshirani and Chu, 2001) as
a representative example of the marginal methods. In SAM,
a significance test is implemented for each variable individ-
ually and a list of statistics (denoted as ti) for these tests
is obtained. A threshold is then calculated for an overall er-
ror control so that all the variables with |ti| greater than the
threshold are claimed as being significant. Marginal methods
are often efficient in computation, and useful in various real
application cases. However, important joint effects among
variables may be missed by these marginal procedures.

In practice, it can be reasonable to assume that many
genes interact with each other, and they work together to
drive the variation in a particular phenotype. For the general
application of classification, it is possible to have two vari-
ables with weak marginal effects that work together to yield
a strong joint effect for classification. In this case, marginal
screening methods can be insufficient since these Alone-
Nonsignificant-Together-Significant (ANTS) variables may
not be selected due to their weak marginal signals, even
though the joint effects can be substantial. For this reason,
an approach which incorporates the joint effect information
can potentially select more useful variables.
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Figure 1. Left panel: 2D scatter plot of the data from the AR(1) simulation example (see the setting in Section 4.1) based on
variable #22 and variable #23. Two-sample t-tests are conducted for both variables and both tests yield insignificant p-values,
annotated in the axis labels. See also the middle panel, where the density estimations for both classes are plotted for each
variable (the top subplot and the bottom subplot). The two classes demonstrate no significant difference on either variable.
However, when these two variables are viewed together, a pattern can be seen that the Class ‘1’ samples are around the

southwest corner of the scatter plot while the Class ‘0’ samples are at the northeast. Such a pattern is not visible when we
consider each individual variable only. Right panel: The variable indices of the first 50 variables that are selected by SigJEff (on
the right) and by SAM (on the left) respectively. This shows the different ranks of variables by the two methods. A variable
that is selected by both methods is annotated by a purple line segment connecting its positions in both lists. The pair of

variables #22 and #23 are not selected by SAM, but selected by SigJEff due to their joint effect.

In practice, due to the constrained research budget, re-
searchers may not be able to look into all the potentially
important variables. The common practice is to provide a
sorted list of variables, from the most important to the
least, for researchers to choose according to their budget.
Marginal methods rank variables based on their marginal
effects. Thus, those ANTS variables may receive a lower pri-
ority and it is more likely to be missed. We propose to rank
the variables based on a new criterion on the joint effect,
instead of the marginal effect of a variable. Because of the
use of this new criterion, ANTS variables in general would
receive a better rank than that by a marginal method. The
right panel in Figure 1 shows the rankings of variables from
a simulated dataset (details in Section 4.1), given by SAM
and our proposed procedure, Significance test of Joint Ef-
fects (SigJEff). We can clearly see the common places and
differences between these two rankings: some most impor-
tant variables are selected by both methods with the highest
priorities, while some less SAM-important variables can re-
ceive better ranks when SigJEff is used. In the left panel,
we examine some typical variables, variables #22 and #23
(contained in the shadow box in the right panel), by draw-
ing the scatter plot of the data set based on them. From
the left panel, we can see that the two variables are truly
ANTS variables, namely, alone nonsignificant but together
significant. In particular, two-sample t-tests are conducted
for both variables and both tests yield insignificant p-values.
This can be also seen from the middle panel, where the den-

sity estimations for both classes are plotted for each vari-
able. The two classes demonstrate no significant difference
on either variable. However, when these two variables are
viewed together, a pattern can be seen that the Class ‘1’
samples are around the southwest corner of the scatter plot
while the Class ‘0’ samples are at the northeast. Such a pat-
tern is not visible when we consider each individual variable
only. More details of this example will be analyzed in Sec-
tion 4.1.

In this article, we conduct the significance analysis for
pairwise variable selection in classification. Here the term
pairwise refers to pairs of variables, instead of pairs of ob-
servations or pairs of classes. Our proposed method Sig-
JEff is based on a permutation approach that assesses
the joint effect of a variable pair. Specifically, we want
to assess whether there is a statistically significant dif-
ference between two classes based on these two variables
only.

The rest of the article is organized as follows. In Section 2,
we introduce the SigJEff procedure. Section 3 is devoted to
the computation of our method. Section 4 presents the nu-
merical properties of our method, including three different
simulation settings. A real data application study is con-
ducted in Section 5. In addition to the marginal method
SAM, we also compare our approaches with those from
Least Absolute Shrinkage and Selection Operator (LASSO;
Tibshirani, 1996). Concluding remarks are provided in Sec-
tion 6.
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2. METHODOLOGY

The proposed SigJEff procedure is a permutation pro-
cedure to assess joint effects between pairs of variables. In
high dimensional problems, permutating all pairs of vari-
ables would be computationally costly. Moreover, the result-
ing statistics of the pairs can be highly correlated, which
makes it difficult to control false discoveries. To overcome
these difficulties, in this paper, we first partition the d vari-
ables to �d/2� disjoint pairs, where �t� is the largest integer
less than or equal to t. Once the partition is done, we will
conduct a permutation test for each given pair in the par-
tition. Lastly, a p-value is calculated for each pair, and a
sorted list of pairs of variables will be given.

2.1 Variable partition

Let δ = μ̂1 − μ̂2 be the sample mean difference between

the two classes and Σ̂ the within-class sample covariance
matrix. In general, for a variable set S ⊂ {1, . . . , d}, a vec-
tor α ∈ R

d and a matrix A ∈ R
d×d, let αS and AS,S denote

the subvector of α and the principal submatrix of A corre-
sponding to S respectively.

Let Md×d = (m(i,j)) be a symmetric matrix whose off-
diagonal (i, j)th entry is the Mahalanobis distance between
the two classes based on variables i and j, i.e.

mi,j =

⎧⎪⎪⎨
⎪⎪⎩
δ′(i,j)

(
Σ̂(i,j),(i,j)

)−1

δ(i,j), i < j,

0, i = j,

mj,i, i > j.

Without loss of generality, we assume that the dimension
d is an even number. To this end we conduct a partition of
the d variables into (d/2) pairs as follows. We first capture
the pair of variables (i, j) with the greatest mi,j . Then, we
delete the ith and jth rows and ith and jth columns from
the M matrix. Among all the remaining d− 2 variables, we
then find the pair (i, j) with the greatest mi,j in the remain-
ing M matrix. This procedure continues until all the pairs,
thus all the variables, are captured. Note that to carry out
this partition, d(d− 1)/2 Mahalanobis distances need to be
calculated. However, this is the only time in the whole pro-
cedure for us to calculate all the distances for all d(d− 1)/2
pairs of variables. The practice of partitioning the variables
serves to reduce the computational cost for the permutation
stage of our analysis later.

2.2 Pair selection by permutation

Once we have identified the �d/2� pairs of variables, for
each pair, we conduct a permutation test by randomly rela-
beling the class labels Y . Let P = {(i, j)} be the partition
we obtain in Section 2.1. For the pth permutation, for each
(i, j) ∈ P , the Mahalanobis distance mp

i,j is calculated for
the permuted data. Note that here we do not conduct a
variable partition for the permuted data, nor do we calcu-
late the Mahalanobis distances for all pairs. Instead, only

the Mahalanobis distances for the pairs in the given parti-
tion P are calculated. In practice we choose the number of
permutations P = 1,000.

A p-value will then be calculated. We allow three versions
of the p-value in our implementation.

• The empirical p-value is defined as

p(i,j) =
1

P

P∑
p=1

1{mp
i,j>mi,j}.

This is the simplest version and is often used in practice.
One potential drawback is that one may have ties due
to the discrete nature of this p-value.

• The Gaussian fit p-value is calculated as

p(i,j) = 1− Φ−1
[{
mi,j − ave(mp

i,j)
}
/std(mp

i,j)
]
,

where Φ−1 is the inverse of the cumulative distribution
function of the standard normal distribution, ave(·) is
the sample average and std(·) is the sample standard
deviation.

• The robust Gaussian fit p-value is calculated as

p(i,j) = 1− Φ−1
[{
mi,j −median(mp

i,j)
}
/mad(mp

i,j)
]
,

where median(·) is the sample median and mad(·) is
the median absolute deviations, which are the robust
counterparts of sample average and sample standard
deviation.

If the number of permutations P is large and if the ef-
fect is not very strong, these three versions of p-value will
produce similar rankings for the pairs. However, when the
joint effect in the data for certain pairs is very strong while
P is not large enough, then it is possible that the statis-
tic calculated from the original data is greater than all its
P counterparts from the permuted data, in which case the
empirical p-value is calculated as zero. In such cases, we sug-
gest the use of either Gaussian fit version above to obtain
some approximated and interpretable assessment of the true
p-value.

Lastly, we sort the p-values in an ascending order, set
a threshold for the p-values, and claim significance for all
the pairs of variables with p-values less than or equal to the
threshold.

2.3 Algorithm

We summarize the algorithm as follows.
SigJEff Algorithm:

1. Partition:

(a) Calculate mi,j = δ′(i,j)(Σ̂(i,j),(i,j))
−1δ(i,j) for all

1 ≤ i < j ≤ d.

(b) Let P = ∅.
(c) For s = 1 to �d/2�,
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i. Let P ← P ∪ {(i∗, j∗)}, where (i∗, j∗) =
argmin

(i,j)

mi,j .

ii. Let mi∗,j′ ← 0, mj∗,j′ ← 0, mi′,i∗ ← 0 and
mi′,j∗ ← 0 for all i′ and j′.

2. Permutation:

(a) For p = 1 to P ,

i. Permute the class labels.

ii. Re-calculate δp(i,j) and Σ̂p
(i,j),(i,j).

iii. Calculate mp
i,j = δp′(i,j)(Σ̂

p
(i,j),(i,j))

−1δp(i,j) for

each (i, j) ∈ P .

(b) Calculate the p-value p(i,j) for each (i, j) ∈ P .

(c) Sort the list of pairs according to p(i,j) in an in-
creasing order.

3. Selection: Choose the top t pairs which controls the
false discovery rate (FDR) or according to the budget
of the researcher.

3. COMPUTATIONAL ISSUES

The SigJEff method considers effects beyond marginal
effects. In the SigJEff framework, there are two main parts
which can be computational intensive. One part is to com-
pute the statistics corresponding to all d(d−1)/2 pairs dur-
ing the partition stage. The other is the time for permuta-
tion. To compare all the d(d − 1)/2 pairs of variables with
their permuted counterparts, the corresponding computa-
tional cost could be (d − 1)/2 times of that of the more
efficient marginal methods. For SigJEff, we significantly re-
duce the computational cost for the permutation stage, by
permuting and calculating only the statistics for the (re-
duced) �d/2� pairs of variables. Hence at the permutation
stage, the computational cost is at the same order as the
marginal method.

At the partition stage, we would have to calculate all
d(d − 1)/2 pairs in order to achieve a partition of the vari-
ables. However, when d is very large, say greater than thou-
sands, this could still cost a lot of time and memory. In this
case, we propose to adopt a reasonable assumption to avoid
computing all pairs.

Assumption 1. Within any nonempty subset of the whole
d variables that has size d∗ ≤ d, the pair with the highest
Mahalanobis distance between classes, is constituted by two
variables whose absolute two-sample t values are ranked at
the top d0 among the d∗ variables.

Assumption 1 above implies that for any collection of
variables, the best pair within this collection should be
searched among the best d0 variables in the sense of marginal
effects. Note that the assumption holds for all nonempty
subset of the d variables, instead of only the case where
d∗ = d. When d0 = 2, then the best pair is also the two best
variables with the highest marginal effects, which means

that the ranking of the joint effect coincides with that of
the marginal effect. This is opposite to what motivates this
article and not what we want to assume. However, when d0
is reasonably large (say hundreds), it allows the joint effect
to give a different ranking of variables from the marginal
effect ranking. On the other hand, when d0 � d, there is
a huge save in computation since we do not need to search
the best pair by calculating all pairs; instead, we can focus
on a subset where the best pair is more likely to appear.

Making use of Assumption 1, we propose a faster compu-
tational strategy, where we calculate pairs incrementally. In
particular, to find a best pair among the remaining variables
each time, we focus on a small group of d0 variables. Such
strategy can be summarized as follows.
Fast computational strategy for partition:

1. Sort variables in a descending order based on the ab-
solute two-sample t values, and save them as a waiting
list W .

2. Active setA ← {pairs of the top d0 variables from W};
Output list S ← ∅; The top d0 variables are deleted
from W .

3. Calculate statistics for all d0(d0 − 1)/2 pairs in A.
4. Promote the best pair in A to the end of list S. Delete

any pair from A whose component variable is any one
of the variables in the best pair that is just promoted.

5. Move the next two variables fromW toA. Calculate the
new pairs created by the addition and save the pairwise
results in A.

6. Repeat 4–5 until no variable is left in W and all the
pairs in A have been promoted to S.

Figure 2 shows a toy example with d = 10 and d0 = 4.
The subset size d∗ in Assumption 1 takes value 10, 8, 6 and
4 in the four steps that we show here. Before the analy-
sis is started, all the variables are sorted according to the
marginal effect. In step 1, our algorithm starts with the top
4 variables (i.e. 6 pairs corresponding to the black cells in
the figure). At step 2, pair {1, 3} (shown as diamonds) are
found to be the best pair and variables 1 and 3 are promoted
to the output list. Any pair that contains either variable 1
or variable 3 will no longer be considered (gray cells in the
figure). Variables 5 and 6 substitute variables 1 and 3. More-
over, 5 new pairs ({5, 6} , {5, 2} , {5, 3} , {6, 2} , {6, 3}) joins
{2, 4}, the pair that was not grayed out. At step 2, we still
compare only 6 pairs. The procedure is repeated until each
variable has been considered. In the end, we have calculated
for only 21(= 6+5+5+5) pairs. If we do not use Assump-
tion 1 and this fast strategy, we will have to calculate for
45(= 10 choose 2) pairs. Lastly, the first six variables in the
output list of the algorithm are (1,3,2,4,5,8), which is dif-
ferent from the ranking by t test, i.e. (1,2,3,4,5,6). They do
not appear to be substantially different in this very small toy
example. However, an instance with d = 5,000 and d0 = 200
can have two apparently very different rankings between
our method and a marginal method. Despite the differences,
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Figure 2. A toy example where d = 10 and d0 = 4 showing
advantage of the new strategy. In each step, only 6 (4 choose

2) pairs are considered. Overall, only 21 pairs have been
calculated, compared to 45 pairs without Assumption 1.

these two rankings would have some close underlying con-
nection, due to Assumption 1.

In the algorithm above, the waiting list W is of length d,
which is inevitable, even for a marginal method. But the ac-
tive set A is only of length d0(d0−1)/2 and the output list S
is only of length �d/2�. This algorithm fully utilizes the ad-
vantage created by Assumption 1. The main computational
cost is on the memory management: index, search, save and
deletion. The advantage is that at any time we only need
memory of size O(d+ d20) and the number of pairs we need
to calculate is d0(d0−1)/2+{1+2(d0−2)}×�(d−d0)/2� =
O(d0×d), compared to O(d2) pairs to calculate without the
strategy. The computational saving comes from: (1) focus-
ing on a small group in each iteration and (2) deleting those
variables which are promoted at the early stage.

In the simulation study (Section 4) we have tried the
regular SigJEff for smaller dimensions (d = 500) and the
fast SigJEff discussed in this section for higher dimensions
(d = 5,000). For the real data application, we use the fast
SigJEff algorithm. We have chosen d0 = 200 for a reasonable
computational time. The larger d0 is, the less restriction
Assumption 1 imposes on our algorithm.

4. SIMULATIONS

We consider three different simulation settings, where the
covariance structures follow AR(1) process, Block-diagonal
covariance and Independence (diagonal) covariance matri-
ces. The details of the settings are given in Section 4.1. The
methods of comparison and the measures of performance are
explained in Section 4.2. The results are fully elaborated in
Section 4.3.

4.1 Settings

Example 1. [AR(1) Process] This example includes d
variables and 100 observations (50 from each class), where
d = 500 and 5,000 respectively. For each observation (sam-
ple), we generate a d-long stationary AR(1) process with
marginal standard deviation 1 as the d variables. The first
order AR coefficient (equivalently, the correlation between
two adjacent variables) equals −0.8. We then add mean
differences to the first 50 variables, so that the squared
marginal mean differences between the two classes linearly
decrease to zero from variable 1 to variable 50. That is,
we add c(

√
50,

√
49, . . . ,

√
1)T to the first 50 dimensions of

each observation from the first class. The constant c > 0
is chosen to make the Mahalanobis distance between the
two population means (a notion of the signal level) to
be 2.5.

Example 2. [Block Diagonal Covariance] The dimen-
sions and sample sizes for this example are the same as
Example 1. Define a 10 × 10 symmetric matrix Σ0 =
[σij ]i,j=1,...,10, where σii = 1 and σij = 0, except that
4 randomly selected off-diagonal entries in the upper tri-
angular part of Σ0 are assigned to be −0.8. The lower
triangular part is updated accordingly due to symmetry.
Then we add δ = |min(λmin(Σ0), 0)| + 0.05 to the diag-
onal entries of Σ0 to make it invertible where λmin(Σ0)
is the smallest eigenvalue of Σ0, and then rescale each
entry of Σ0 by dividing them by (1 + δ). Let Σ be a
d × d identity matrix, except that the first 5 diagonal
blocks, each of which is 10 × 10, all equal to Σ0, i.e.,
Σ = Block-Diag{Σ0,Σ0,Σ0,Σ0,Σ0, Id−50}. Then the data
vectors from each class are generated according to multi-

variate normal distributions x±,i
iid∼ MVNd(μ±,Σ), where

μ+ = c(
√
50,

√
49, . . . ,

√
1, 0, 0, . . . , 0)T , μ− = 0 and the

constant c > 0 is chosen to make the Mahalanobis distance
between the two population means equal 2.5.

Example 3. [Independent Covariance] This example is
the same as Example 2 except that the covariance matrix
is Id. Note that in this setting, there is only marginal effect
and no joint effect is included.

4.2 Methods and measures of performance

First, we compare the number of true non-null variables
that are selected among the selected variables from SigJ-
Eff, SAM, and LASSO over 100 runs of simulation. The
more true non-null variables, the better the variable selec-
tion result is as the fewer true variables is missed. Second,
we compare the average false discover proportion (FDP) of
the variable selection results from the three variable selec-
tion procedures, over different numbers of variables selected.
FDP is defined as the proportion of the true null variables
among all the selected variables. We would like to have small
FDPs.

Besides the previous measures, we also compare the mis-
classification rates using the selected variable sets. We ap-
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Figure 3. AR(1) Process example: The number of true non-null as function of the number of variables selected, the false
discover proportion (FDP) as function of the number of variables selected and the misclassification rate for test data as

function of FDP, from SigJEff, SAM and LASSO. The top row is for the low dimensional setting and the bottom row is for the
high dimensional setting. The results show that SigJEff selects more true non-null variables than SAM and LASSO, gives

better variable selection quality (lower FDP), and when given the same FDP, the submodels chosen by SigJEff can give better
classification performance. It also shows that the SigJEff method enjoys greater advantage when the dimension increases.

ply two standard classifiers, Support Vector Machine (SVM;
Cortes and Vapnik, 1995; Vapnik, 1999) and Linear Dis-
criminant Analysis (LDA; Fisher, 1936) to test data sets
based on the selected variable selection sets using SigJEff
and SAM. The test data sets are generated in the same
way as the training data sets and of 10 times larger. For
LASSO, as it can be used as a binary classification method,
its misclassification error rates is reported directly. Cross
validations are used for the parameter tuning in SVM. We
use the SVM implementation by R/e1071 and the default
setting therein for tuning. We use glmnet to train LASSO
after relabeling the response variables y ← n/n1 for y = +1
and y ← −n/n2 for y = −1, where n1 and n2 are the sample
sizes of the two classes. We use the empirical version of Sig-
JEff p-value in simulations, as in our simulation settings the
effect is not strong and therefore using the empirical p-value
is sufficient.

4.3 Simulation results

4.3.1 AR(1) process

In Figure 3, we plot the numbers of true non-null among
the variables that are selected as functions of the total num-
ber of variables selected (left panel), the FDPs as functions
of the number of variables selected (middle panel) and the
misclassification rates for test data set as functions of FDP,
from SigJEff, SAM and LASSO (right panel). The top row
is for the low dimensional example (d = 500) and the bot-
tom row is for the high dimensional example (d = 5,000).
The results in the low dimensional example show that SigJ-
Eff selects more true non-null variables than SAM uniformly
and than LASSO when the number of variables selected is
fewer than 16. Similarly, SigJEff gives better variable selec-
tion quality (lower FDP) than SAM over the broad, and
than LASSO for smaller submodel sizes. However, note that
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Figure 4. Block Diagonal example: The number of true non-null as function of the number of variables selected, the false
discover proportion (FDP) as function of the number of variables selected and the misclassification rate for test data as

function of FDP, from SigJEff, SAM and LASSO. The top row is for the low dimensional setting and the bottom row is for the
high dimensional setting. The results show that SigJEff selects more true non-null variables than SAM and LASSO, gives

better variable selection quality (lower FDP), and when given the same FDP. The submodels chosen by SigJEff can give better
classification performance when FDP is relatively small. The margins between SigJEff and the other two methods are not as
large as those seen in the previous example. As the dimensions increase, the advantage of SigJEff over its competitors does

not seem to be increased.

LASSO gives better FDP only when the submodel size is
large, in which case the FDP value is relatively high (about
40%). For the high dimensional example, the advantage of
SigJEff is even larger and it is better than SAM and LASSO
uniformly for the experiments we studied.

Lastly, given the same FDP, the submodels chosen by
SigJEff can give the best classification performance. In par-
ticular, as we can see in the right panel, the misclassifica-
tion rates from the SVM classifier are depicted using solid
curves and those from the LDA classifier are depicted us-
ing the dashed curves. The LASSO misclassification rates
are shown using the blue longdashed curve. We can see that
the SigJEff-SVM classifier (i.e., SigJEff variable selection
followed by SVM classifier) is better than the SAM-SVM
classifier uniformly over different FDPs; the SigJEff-LDA

classifier is better than the SAM-LDA classifier uniformly
over different FDPs. All four classifiers above are better than
LASSO in terms of misclassification rate. Again, the advan-
tage of SigJEff in the high dimensional example is more
obvious than that in the low dimensional example.

4.3.2 Block diagonal covariance

Similar results can be seen in Figure 4, though the mar-
gins between SigJEff and the other two methods become
smaller than those in the last example (at least in the low
dimensional example).

The numbers of true non-null chosen by all three meth-
ods are fairly close, with SigJEff leading slightly when the
submodel sizes are small (the advantage is visually separa-
ble as in the high dimensional example in the bottom row).
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Figure 5. Independent example: The number of true non-null as function of the number of variables selected, the false
discover proportion (FDP) as function of the number of variables selected and the misclassification rate for test data as

function of FDP, from SigJEff, SAM and LASSO. The top row is for the low dimensional setting and the bottom row is for the
high dimensional setting. The results show that the variable selection and classification performance for SigJEff and SAM are

almost identical. The variable selection performance of LASSO is just a little worse than them.

The LASSO submodels are similar to SAM for smaller sub-

model sizes and are similar to the SigJEff submodels when

the submodel sizes increase. The gain of FDP seems to be

more substantial. In the middle panel, SAM and LASSO

are very close in FDP, while SigJEff submodels enjoy smaller

FDPs. Lastly, the submodels chosen by SigJEff can give bet-

ter classification performance when FDP is relatively small.

When FDP is as large as 75% to 90%, the classification

performances from different variable selection methods and

classifers are mixing. Note that when the variable selection

quality is so low, one may not care about the classification

performance as much. For small FDP, the SigJEff method

is clearly better than SAM, which is better than LASSO.

Note that the best classification performance of LASSO is

attained when the FDP is about 80%. Overall, the best clas-

sification performance is attained by the two SigJEff related

classifiers.

4.3.3 Independent covariance

The Independent covariance example is meant to be an
example where SigJEff and SAM should perform similarly
because there is no true additional joint effects besides
marginal effects due to the independence setting. The sim-
ulation results validate the conjecture. In Figure 5, we can
see that the variable selection quality of SAM and SigJEff
are almost identical, while the LASSO variable selection is
worse by a very narrow margin.

In terms of classification, again, SigJEff and SAM per-
form almost identically. The performance of LASSO is not
as good, which is probably due to the fact that LASSO is
not tailored for classification.

The results from this example suggest that, in prac-
tice, even if there was no joint effect, using SigJEff would
not give results that are worse than using marginal meth-
ods.
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4.4 Remarks

In the left and middle panels of each figure, we use error
bars to depict the standard error of the estimated mean
number of true non-null and mean FDP.

In the right panel, for better visualization and presenta-
tion, nonparametric smoothing is applied to fit the condi-
tional mean of the ‘misclassification rate’ as a function of
‘FDP’. See geom smooth function in the R/ggplot2 package
for details. The standard error is shown as the shadow using
the default setting of the smoothing function.

The purpose of this set of simulation study is to under-
stand the performance of SigJEff, SAM and LASSO over
a broad range of submodel sizes (i.e., the number of vari-
ables selected varies). In the simulations, we do not apply a
threshold to choose the best submodel size, because

1. The choice of the submodel size depends on the budget
and the capacity of the researcher;

2. Studying the performance for a particular choice of the
submodel size would only give us a comparison from one
single aspect, while what we have done here is to try to
look at the whole picture and to understand the meth-
ods under investigation for different submodel sizes.

We would like to point out that although one can apply
SVM or LDA to the variable set selected by LASSO and
evaluate the classification performance, our focus is to first
select variables and then apply classification procedures,
such as SVM or LDA.

Lastly, the simulation study was run in parallel in a clus-
ter of about 300 computers whose average speed is 18,800
MIPS and average memory is 1.78 GB. In the high dimen-
sional examples, the average CPU time for each run of the
SAM procedure is 0.215, 0.214 and 0.165 seconds respec-
tively for the three settings, compared to 251.23, 205.59
and 157.46 seconds for the SigJEff procedure. Although the
computational time for SigJEff is much longer than that for
SAM, it is quite efficient overall. Furthermore, we believe
that there is still room for improvement such as through
parallelization.

5. REAL DATA APPLICATION

Recurrent genomic abnormalities were catalogued by the
Cancer Genome Atlas Research Network in the glioblastoma
multiforme (GBM) data sets. Verhaak et al. (2010) classi-
fied GBM into four subtypes: Proneural, Neural, Classical
and Mesenchymal. We focus on the Proneural subtype in
this article. It is found that point mutations in the gene
IDH1 appeared in the Proneural data set. For the purpose
of classification, we define two classes based on the status of
IDH1, being with and without mutations. The sample size
is 37 (with 11 mutations, and 26 no-mutation). This data
set has 11,338 genes.

The sample size of the data is really small, compared to
the dimensions. Moreover, it turns out that the signal in

this data set is so strong that hundreds of genes are sig-
nificant. In order to conduct our study and compare the
performance of SigJEff and SAM as means of significance
analysis, we first screen the variables from the bottom by
deleting all those variables whose marginal overall standard
deviations are less than or equal to 0.5. Here the threshold
0.5 is an ad hoc choice. However, it helps to throw away
non-informative variables. Note that this is an unsupervised
screening which does not employ any class information. Af-
ter the pre-screening step, the data set remains with 4,280
dimensions.

We apply SigJEff and SAM to the dimension-reduced
data set. In SigJEff, we use the robust Gaussian fit version
of the p-value because we expect to have some genes with
very strong effect. As shown in Figure 6, we first estimate
the false discover rate (FDR) of SigJEff and SAM for differ-
ent submodel sizes and compare the cross validation error
of SVM based on the submodels given by the SigJEff and
the SAM procedures. The estimated SigJEff FDR is always
zero. Note this can be due to the different ways of FDR
estimation. Here, we are not claiming that the SigJEff can
control FDR better than SAM, although this seems to be a
reasonable conjecture from the simulations in the previous
section. A more informative (and reliable) conclusion can
be drawn from the classification performance shown in the
right panel of Figure 6. SigJEff dominates SAM in terms of
SVM classification over different submodel sizes.

The good performance of SigJEff in this real data ap-
plication motivates us to carefully check the genes that are
selected by each method. In the left panel of Figure 7, we
list, from top to bottom, the gene indices of the first 50 genes
that are selected by SigJEff (on the right) and by SAM (on
the left) respectively. Common genes selected by both meth-
ods are connected by a purple line segment. This plot shows
the different rankings of variables selected by SigJEff and
SAM. The most important SAM genes, #3224 and #599,
are viewed important by SigJEff as well. However, there are
some SigJEff-important genes that are not recognized by
SAM, for example, #1516, #1006, and so on. We now take
a deeper look at the gene pair, #3169 and #2828. The latter
is not SAM-important at all, while the former is among the
50 most SAM-important genes, but barely makes the top 30
list. When they are paired together, they are more impor-
tant and obtain a better rank by SigJEff. In the right panel
of Figure 7, we show the scatter plot of the data based on
these two variables. The two-sample t-test p-value of gene
#3169 is 0.003, which explains why it makes the top 50 list
of SAM-important genes. Note that gene #2828 only has
0.828 t-test p-value, which is the reason that SAM does not
select it. However, when these two variables join together,
it appears from the scatter plot that the Class ‘1’ samples
are around the southeast corner of the plot while the Class
‘0’ samples are at the northwest. It is the joint effect like
this that drives the improvement of the classification per-
formance when we use SigJEff to select variables.
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Figure 6. The estimated false discovery rate and the 10-fold cross validation error (by SVM) based on variable sets selected by
SigJEff and SAM respectively. The estimated SigJEff FDR is always zero. Note this can be due to the different ways of FDR
estimation. More informative (and reliable) is the classification performance shown in the right panel. SigJEff dominates SAM

in terms of classification when the SVM classifier is used.

Figure 7. Left panel: The gene indices of the first 50 genes for the real data set in Section 5 that are selected by SigJEff (on
the right) and by SAM (on the left) respectively. Shows the different ranks of variables by the two methods. Right panel: the
scatter plot of the samples from the two classes based on gene #3169 and gene #2828. The latter is not SAM important at
all (large t test p-value), while the former is among the top 50 most SAM-important, but barely makes the top 30. When

viewing these two variables together, a pattern can be seen that the Class ‘1’ samples are around the southeast corner of the
plot while the Class ‘0’ samples are at the northwest. Such a pattern is not visible for each individual variable.

Remark: In Figure 6, we have estimated the FDR of the
variable selection set of SigJEff. Our FDR estimation follows
the standard procedure and is parallel to the method em-
ployed by SAM. The details can be found in the appendix.

6. DISCUSSION

In this article, we propose a simple and useful procedure
to perform pairwise variable selection via assessing joint ef-
fects useful for classification. We use a permutation proce-

dure to select pairs of variables. Although this procedure
is not as fast as the marginal methods such as SAM or
Sure Independent Screening (Fan and Lv, 2008), it is rel-
atively efficient and more importantly, it can help to un-
derstand different aspects of the data which the marginal
methods do not cover. Our numerical study shows that one
may not lose much by using pairwise variable selection even
when there is no true joint effect, because variables that
are marginally significant are usually pairwise significant as
well.
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For ultra-dimensional data, there are a few strategies that
may be taken to speed up the computing. First, one may
keep those variables that are extremely strong first and leave
them out of the SigJEff procedure, since these variables will
likely be picked up by SigJEff anyway. SigJEff would work
better for those variables in the gray zone where variables
are moderately strong, but not strong enough to be called
by a marginal method. One can also delete those variables
that seem to be non-informative, such as those with very
small variation. In this article, we have also considered an
assumption which regulates the SigJEff partition step, and
can help to speed up significantly on computation and mem-
ory.

Our method may be extended to more than two vari-
ables, by assessing the Mahalanobis distances between the
two classes on more than two variables. The corresponding
computation cost will be higher and furthermore, the pro-
cedure and the corresponding interpretation becomes much
more involved. Thus it does sound appealing, we have not
extend our research toward that end yet.

Although our focus is on classification, SigJEff can be ex-
tended to accommodate the regression setting. In that case,
one needs to define a proper criterion for the variable parti-
tion and a statistic which measures the correlation between
the variable set and the response variable. Further investi-
gation is needed.

It is worth noting that selecting the pairwise joint effect
for classification is not the same as selecting the interaction
effect. For the latter, see Bien, Taylor and Tibshirani (2012)
and the references therein. In particular, in the context of
classification, selecting interaction focuses on the nonlin-
earity of the discrimination function and the classification
boundary. On the other hand, our SigJEff test implicitly as-
sumes a linear boundary due to the use of the Mahalanobis
distance as the statistic, although one could apply nonlinear
classification methods to the resulting variables selected by
SigJEff.

Note that since we rank d/2 disjoint pairs, correlation is
not a big issue for the FDR procedure. However, even with
the simplification, correlation between pairs may still exist.
Thus, a better multiple comparison adjustment procedure
such as Fan, Han and Gu (2012) can be helpful.

Finally, we would like to point out that there is a large
body of literature in recent years on the use of sparsity
for variable selection, such as LASSO, SCAD (Fan and Li,
2001), DS (Candes and Tao, 2007) etc. Our proposed SigJ-
Eff is not intended to replace such sparse penalized meth-
ods, instead, we suggest to use SigJEff for prescreening and
then apply one of these variable selection methods post the
SigJEff procedure, much in the same spirit as SIS-SCAD,
SIS-DS, etc. as proposed in Fan and Lv (2008). We expect
a combination of SigJEff screening with sparse penalized
methods after screening can lead to accurate prediction and
selection.

The software of SigJEff can be found on the correspond-
ing author’s website: http://www.math.binghamton.edu/
qiao.

APPENDIX

Estimation procedure of FDR for SigJEff.

1. For each cutoff value c > 0, compute the total num-
ber of significant pairs from the original data, i.e.,
# {mi,j > c : (i, j) ∈ P}, and the median number of
pairs called significant, by computing the median num-
ber of mp

i,j values among each of the P sets of �d/2�
pairs of variables, that fall above c. Similarly for the
90th percentile of pairs called significant.

2. Estimate π0, the proportion of true null pairs in the
data set as follows:

(a) Compute q50, the median of all the permuted
statistics, mp

i,j . Note that there are P ×�d/2� such
values.

(b) Compute π̂0 = # {mi,j < q50} /(0.5�d/2�), where
mi,j is the statistic from the original data set and
there are �d/2� such values.

(c) Truncate π̂0 at 1: π̂0 ← min(π̂0, 1).

3. The median and 90th percentile of the number of pairs
called significant from Step 1 are multiplied by π̂0 to
obtain estimations of the median and 90th percentile
of the number of falsely called pairs.

4. The SigJEff FDR is computed as [the median (or 90th
percentile) of the number of falsely called pairs] divided
by [the number of pairs called significant in the original
data].
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