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Canonical ensembles for potentially incompatible
dependency networks with applications to medical
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A directed graph is either acyclic or cyclic. This pa-
per focuses on the cyclic model, or dependency network,
which represents a collection of univariate conditional dis-
tributions. The conditional approach allows a high level of
flexibility in modeling because the dependency network is
based on the notion that it is computationally convenient
to estimate the local distribution of a variable given the
remaining variables in a data set. However, the collection
of conditional distributions individually estimated within
a dependency network is generally not coherent with any
joint distribution. The pseudo-Gibbs sampler (PGS) has of-
ten been used to estimate joint distributions for incompat-
ible conditional models. We propose a new method for de-
riving a joint distribution from a given set of potentially
incompatible univariate-conditional distributions such that
the discrepancies between the given conditional distribution
and those computed from the estimated joint distribution is
minimized. The method is based on an ensemble of distribu-
tions, each of which can be derived from the canonical pa-
rameters of a set of given conditional distributions. Through
simulation experiments and real data sets, we compare the
performance of the ensemble method, the PGS, and a linear
programming (LP)-based method. Our comparisons suggest
that the ensemble method outperforms both the PGS and
LP. The ensemble method is computationally efficient and
scalable, and it therefore has the potential to open a new
avenue for finding a nearly optimal solution for dependency
networks of high dimensions.

Keywords and phrases: Characterizing set of interac-
tions, Conditionally specified model, Dependency network,
Ensemble method.

1. INTRODUCTION

Conditional reasoning is commonly used by physicians.
An application of conditional reasoning is medical diagno-
sis in which the probability of a specific disease can be
stated conditionally on results from various clinical tests
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and assessed risk factors. The advent of new graphical mod-
eling tools facilitates the use of conditional reasoning in
probabilistic terms by physicians. In directed acyclic-graph
(DAG) modeling [25, 20], for example, symptoms and test
results are often presented as parental nodes that have di-
rect causal relationships with diseases, which are presented
as child nodes. Diagnostic systems based on DAGs can
become highly complex and computationally burdensome
when a large number of parental nodes are involved in sta-
tistical learning and inference. Learning the structure of
the DAG is also a challenging problem that is not com-
pletely solved [11]. Because DAG does not allow feedback
from child nodes Heckerman et al. [16] argued for the use
of dependence network (DN) in machine learning. Graphi-
cally a DN is represented by a directed cyclic-graph (DCG)
which is in essence a collection of conditionally specified
models (CSMs). Briefly, a DN can be built using a two-step
approach: (1) creating conditional models for each individ-
ual variable given the remaining variables, and (2) “gluing”
the conditional specified models together to form the joint
density. As an example, consider three variables (X,Y, Z).
In step (1), suppose three separate regression models—
say using backward variable selection—are built: p(X|Y, Z),
p(Y |Z), and p(Z|X). The DN can now be represented by
the graph in Figure 1. Unlike DAGs, DNs allow loops such
as X → Z → Y → X in Figure 1. An important advantage
of a DN over a DAG is its flexibility and the relative conve-
nience in specifying conditional models for the variables one
at a time. For step (2), pseudo-Gibbs sampling (PGS) has
been suggested for computing the joint density [16]. In the
above example, the PGS would iteratively sample from the
following distributions: the first, y1 from p(Y |Z = z0), x1

from p(X|z = z0, Y = y1), and then z1 from p(Z|X = x1).
The collection (x1, y1, z1) forms a Gibbs sample for the DN.
Some extensions and applications of DNs can be found in
[19, 7, 12, 9].

One problem for DN or directed cyclic-graphical model in
general is the possibility of incompatible conditional mod-
els. In the context within directed cyclic-graphs, Gelman
and Raghuanthan [15] stated that “in general, reasonable-
seeming conditional models will not be compatible with any
single joint distribution.” Heckerman et al. [16] argued that
for large samples in a DN, the extent of incompatibility is
negligible and can be ignored, and the PGS solution asymp-
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Figure 1. A Dependency network.

totically converges to a distribution that is consistent with
the conditionally specified distributions (see also [28]). How-
ever, it is not clear how the procedure would perform when
the sample size is small or moderate. There were alternative
methods in the literature for handling potentially incom-
patible conditional distributions. For example, Arnold et al.
[1, 2] proposed linear programming methods to find optimal
solutions for the joint distribution. Indeed, the problem of
making use of potentially incompatible CSMs has intrigued
researchers across many areas of studies, including imputa-
tion of missing values [23, 28] and spatial statistics [4]. For
a general review of CSMs, see [1, 2].

Several important questions seemed to pervade the dis-
cussion of potentially incompatible CSMs: (1) What are the
conditions for a set of CSMs to be compatible? (2) If the
CSMs are not compatible, then what is a reasonable so-
lution for computing the joint distribution? and, (3) what
price does one pay for using a “compromised” solution when
no exact solution exists?

In this paper, we focus on the last two issues and pro-
pose an ensemble-based method for solving the joint density
when the constituent CSMs of a DN are potentially incom-
patible. Ensemble methods are machine-learning approaches
that are well studied especially in supervised learning [6].
The idea underlying the ensemble method is when a large
number of weak classifiers are combined together, they can
outperform a single strong classifier. In ensemble-based su-
pervised learning, decisions from individual classifiers are
generally combined through a weighted voting scheme, and
the weight could be a function of some variance measure.
Here we propose an ensemble of estimated joint distributions
to reduce the risk of using a single estimate that might only
do well in one part of the distributional space but not neces-
sarily in other parts. Each estimated joint probability den-
sity function (pdf) within the ensemble is constructed by an
algorithm that requires averaging over “overlapping” inter-
action terms, or the canonical parameters, of the CSMs. One
of the important advantages of the proposed approach is its
high efficiency: the canonical parameters can be extracted
from the CSMs through simple arithmetic operations [17]
and the computation of the joint density requires simple
averaging procedures. Compared to other methods includ-
ing linear programming and PGS, the canonical-ensemble
method is easier to program as well as implement. More
important, as we shall see later, the performance of this
method, as measured by several divergence criteria, is supe-
rior to the other methods.

The remainder of the article is organized as follows. In §2
we present the necessary background to the approach. We
first present an example to illustrate several key concepts—
the canonical interaction terms, or the characterizing set of
interaction (CSOI), for a collection of CSMs; an estimate
of the joint distributions from the CSOI; and the ensemble
of the joint distributions. We also define several divergence
measures that are used as performance metrics for compar-
ing different approaches. Results from two simulation stud-
ies follow in §3. Section §4 features two real examples of DNs
to illustrate the canonical-ensemble approach—the first one
regarding the adverse reactions to drug treatment in cancer
patients of different genotypes, and the second regarding
symptom structure. Finally in §5 we provide a brief discus-
sion.

2. BACKGROUND FOR CANONICAL
ENSEMBLE

Perhaps the most efficient way to understand the sev-
eral key concepts underlying the canonical-ensemble (CE)
method is through a few simple examples. In this paper we
will focus on discrete distributions. The general theory of
the concepts including CSOI and the creation of candidate
ensembles in general is included in the Appendix.

Example 1a (Compatible conditionals). Consider the fol-
lowing conditional distributions that are derived from a
compatible joint distribution (x, y) in which both are dis-
crete variables and take values from the set {1, 2}:

(1) fx|y =

[
1
4

1
3

3
4

2
3

]
, fy|x =

[ 1
3

2
3

3
7

4
7

]
.

Thus, P (x = 2|y = 1) = 3/4.

Computation of the CSOI The CSOI is a generalized ver-
sion of the canonical interaction parameters of a single dis-
tribution (cite earlier work). For a bivariate binary distribu-
tion (x, y), x, y = 1, 2, the canonical interaction parameter
is the log odds log p(x = 1, y = 1) − log p(x = 1, y = 2),
log p(x = 2, y = 1) − log p(x = 2, y = 2), and the log odds
ratio log p(x = 1, y = 1) − log p(x = 1, y = 2) − log p(x =
2, y = 1) + log p(x = 2, y = 2). In general, the canonical
parameters can be formed by applying a difference opera-
tor to the log probability space. The CSOI of the collection
of conditional distributions generalizes this concept and ap-
plies the difference operator to multiple probability space
across conditional distributions.

To compute the CSOI for Example 1a, define a matrix
B that indicates the dominance structure within x, and the
matrix A that defines the ordered dominance relationship
for (x, y):

B =

[
1 1
0 1

]
, A = B ⊗B =

⎡⎢⎢⎣
1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

⎤⎥⎥⎦ ,
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where ⊗ is the Kronecker product [17]. The B matrix rep-
resents the ordering among the two values of x (since y has
two values also, so the ordering among its values is also B).
For bivariate values, the ordering among (xi, yj) is repre-
sented by B ⊗ B. If both x and y take values from the set
{1, 2}, then the incidence matrix A indicates that, for ex-
ample, the response (x = 2, y = 1) dominates the response
(x = 1, y = 1) (entry (1, 2) = 1), but does not dominate the
response (x = 1, y = 2) (entry (3, 2) = 0). In general, the
order in which the combination of variables is arranged fol-
lows the lexigraphical order in which the first index changes
fastest and the last index changes slowest (e.g., in a 2 × 2
case, it is 11,21,12,22). The CSOI can be computed by first
vectorizing the conditional distributions (in lexigraphical or-
der) and then left multiply the log of the resulting vectors
by A−1. For example, the CSOI for fx|y is given by

A−1 log(fx|y)

=

⎡⎢⎢⎣
1 −1 −1 1
0 1 0 −1
0 0 1 −1
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

−1.39
−0.29
−1.10
−0.41

⎤⎥⎥⎦ =

⎡⎢⎢⎣
−0.41
0.12

−0.69
−0.41

⎤⎥⎥⎦ .

Similarly, the CSOI for fy|x is given by (−0.41,−0.29,
0.15,−0.56).

The matrix A−1 indeed acts as difference operator ∇ =
(∇12,∇2,∇1,∇ϑ)

T such that

∇1 log p(x = 1|y = 1)

= log p(x = 1|y = 1)− log p(x = 2|y = 1),

∇2 log p(x = 1|y = 1)

= log p(x = 1|y = 1)− logP (x = 1|y = 2), and

∇12 = ∇1∇2 log p(x = 1|y = 1)

= ∇1[log p(x = 1|y = 1)− log p(x = 1|y = 2)]

= log p(x = 1|y = 1)− log p(x = 2|y = 1)

− log p(x = 1|y = 2) + log p(x = 2|y = 2),

and ∇ϑ is the identity operator. Thus, the value −0.41 in
either CSOI represents a log odds ratio across conditional
distributions. Ip and Wang [17] showed that ∇12 log fx|y =
∇12 log fy|x is a necessary and sufficient condition for the
two conditional distributions to be compatible, which is de-
fined as the existence of a joint distribution that is capable
of generating the given conditionals.

Recovery of the joint distribution Denote the CSOI for

x|y by (∇x|y
12 ,∇x|y

2 ,∇x|y
1 ,∇x|y

ϑ )T and similarly denote the

CSOI for y|x by (∇y|x
12 ,∇y|x

2 ,∇y|x
1 ,∇y|x

ϑ )T . To “recover”
the joint distribution, we follow these steps: (i) “Cross-

select” the interaction terms θ12 = (∇x|y
12 ,∇y|x

2 ,∇x|y
1 , 0) =

(−0.41,−0.29,−0.69, 0). The term derived from ∇.|.
ϑ is re-

placed by 0 in step (i), as there are only 3 degrees of
freedom in the joint distribution. (ii) Left multiply the
vector by A, which gives Aθ12 = (−1.39,−0.29,−0.69, 0).
(iii) Exponentiate the vector Aθ12, and we have exp(Aθ12) =

(0.25, 0.75, 0.5, 1). (iv) Normalize the exponentiated vector
to derive the vectorized joint pdf (0.1, 0.3, 0.2, 0.4), and
(v) unwind the vectorizing in lexigraphical order:

(2) fxy =

[
0.1 0.2
0.3 0.4

]
.

Formation of a canonical ensemble One method to create
an ensemble from the conditional distributions is to sys-
temically interchange rows and columns. For example, one
can create a variant of the given conditional distributions
in (1) by interchanging their rows and columns at the same
time:

fx|y =

[
1
3

3
4

2
3

1
4

]
, fy|x =

[ 4
7

3
7

2
3

1
3

]
.

For compatible conditional distributions,the interchang-
ing of rows and columns would not affect the recovering of
the joint pdf, as long as a reverse interchange also takes
place at the final step for computing fxy. In this example,
following the prescribed procedure,

fxy =

[
0.4 0.3
0.2 0.1

]
.

After reversing the interchanged rows and columns, we get
back the joint pdf in (2).

The key concept for forming an ensemble for incompat-
ible conditionals is that unlike compatible CSMs, the joint
pdf computed using CSOI would be different with the row
and/or column interchange. This creates an opportunity for
generating different candidate solutions to form the required
ensemble.

Example 1b (Incompatible conditionals). We follow
Arnold et al. [3] and consider the following incompatible
conditional distributions:

(3) fx|y =

[
1
4

1
3

3
4

2
3

]
, fy|x =

[ 1
3

2
3

1
10

9
10

]
.

The CSOIs (∇12,∇2,∇1,∇ϑ) for fx|y and fy|x are re-
spectively (−0.41, 0.12,−0.69, 0) and (1.50,−2.20,−0.30, 0).

Note that ∇x|y
12 �= ∇y|x

12 . We propose to use the mean
of ∇12 across fx|y and fy|x for computing the joint pdf.
Thus, the interaction terms for the joint distribution is
θ12 = ( 12 (−0.41 + 1.50),−2.20,−0.69, 0), and the resulting
joint distribution is given by:

f (1) =

[
0.06 0.29
0.07 0.59

]
.

Three candidate joint distributions can be obtained by
(1) interchanging the rows, (2) interchanging the columns,
and (3) interchanging both the rows and columns. Their
respective pdfs are given by:
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f (2) =

[
0.12 0.25
0.14 0.49

]
, f (3) =

[
0.03 0.14
0.08 0.75

]
, and

f (4) =

[
0.06 0.12
0.18 0.63

]
.

In order to create an ensemble estimate based on E =
{f (1), f (2), f (3), f (4)}, we derive the respective conditional

distributions f
(i)
x|y and f

(i)
y|x, i = 1, . . . , 4, and compare each

to the given conditionals in (3). Here, for the purpose of
illustration, we use the divergence measure G2 (see the sub-
section on divergence measures) for indicating the difference
between the derived and the given conditional distributions.
For the above example, the G2 measure for f (1), . . . , f (4) are
respectively 0.37, 0.30, 0.36, and 0.28.

The final step for creating a CE estimate of the joint
distribution can be summarized as follows: (1) derive the
weight for each candidate f (i) as the reciprocal of the di-
vergence measure, and (2) form the weighted combina-
tion of the candidate joint distributions from the ensem-
ble.

The CE estimate of the joint distribution for Example 1b
is given by

f∗
xy =

[
0.07 0.20
0.12 0.61

]
,

which has a divergence measure G2 of 0.16, smaller than the
G2 of every f (i).

2.1 Discrepancy and weighted averages

To evaluate the quality of an ensemble of pdfs that is
“fitted” to a given DN, we consider the following discrepancy
measures:

(1) Freeman-Turkey [14]: F 2(p̂; p) = 4
∑n

i=1(
√

p̂i −
√
pi)

2;
(2) The divergence measure of [18, p. 33-34]: G2(p̂; p) =

2
∑n

i=1 pi log(pi/p̂i);
(3) Neyman’s chi-square [5, p. 348]: N2(p̂; p) =

∑n
i=1(p̂i −

pi)
2/pi.

Here, p̂i represents the conditional probability of a pdf of the
ensemble and pi represents the given conditional probability.
The G2 measures goodness-of-fit and is often used for model
selection in statistics literature; N2 measures the closeness
of the DN to the computed p̂i and reflects the predictive
power of p̂i; and F 2 is a bona fide distance and has been
used in the study of robustness.

3. SIMULATION EXPERIMENTS

We conducted two simulation experiments to compare the
performances of canonical ensemble (CE) with the methods
of PGS and LP. In the first experiment, we used two ways to
generate low-dimensional conditional distributions: (1) with
pre-specified entries of conditional probability, and (2) with
conditional probability entries randomly generated and then

normalized. To further study the performance of the various
approaches in more practical settings, in the second experi-
ment we simulated 10-dimensional DNs for comparison. For
randomly generated conditional distributions in both exper-
iments, we simulated 100 sets of random DNs for evaluating
the competitive performance of CE.

3.1 Experiment 1: Bivariate conditional
models

The following DN (Example 3.1) is taken from [17]. The
conditional models are specified as

fx|y(c, d) =

⎡⎢⎣
1
7

1
4

3
7 + c 1

7 + d
2
7

2
4

1
7

2
7

4
7

1
4

3
7 − c 4

7 − d

⎤⎥⎦ and

fy|x(a, b) =

⎡⎢⎣
1
6 − a 1

6 + a 3
6

1
6

2
7

2
7

1
7

2
7

2
6 + b 1

12 + b 1
4 − 2b 1

3

⎤⎥⎦ .

When a = b = c = d = 0, fx|y and fy|x are compatible. We
designated the following 4 sets of values for the perturba-
tion parameters a, b, c, and d to create increasing magnitude
of incompatibility accordingly: Case (1): a = −1/12, b =
c = d = 0; Case (2): c = −1/7, d = 1/7, a = b = 0; Case
(3): c = −1/7, d = 1/7, a = −1/12, b = 0; and Case (4):
c = −1/7, d = 1/7, a = −1/12, b = 1/12. The degree of
incompatibility increases from Case (1) to Case (4).

The comparison methods for CE are the LP [3] and
PGS [16]. LP computes a joint p̂ij > 0 with minimum εij
such that |p̂ij − fx|yp̂+j | ≤ εij , |p̂ij − fy|xp̂i+| ≤ εij and∑

i,j p̂ij = 1. The LP formulation frames the derivation of
the joint distribution as a a multi-objective optimization.
By imposing restrictions εij = ε, the problem can be trans-
formed into a single-objective linear programming problem
[3]. For the example in this experiment, there are 48 inequal-
ities, 1 equality, and 13 unknowns.

Table 1 lists the three divergence measures for PGS (us-
ing 100,000 samples), LP, and CE. From Case (1) through
Case (4)—i.e., when incompatibility increases—the advan-
tage of LP over PGS diminishes from 15.5% (G2 = 0.056 vs.
0.0663) to 2.7% (G2 = 0.6248 vs. 0.6418). Furthermore, from
Table 1, the CE solutions consistently outperform the com-
putationally intensive LP. The G2 errors for CE are 26.6%,
47.9%, 43.4%, and 31.5% smaller than the respective G2 for
LP across Cases (1) to (4).

To further examine the distribution of the errors, Fig-
ure 2 shows the heat map of G2 error, computed cell-wise for
Case (4). Recall that when a = b = c = d = e = 0, fx|y(c, d)
and fy|x(a, b) are compatible and determine a unique joint
pdf f∗

xy such that there is zero discrepancies between the es-
timated and the given conditional distributions. The heat
maps A1 and B1 show, respectively, the cell-level differ-
ence (error) between fx|y(−1/7, 1/7) and f∗

x|y, and between
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Figure 2. Heat maps based on G2 error, computed at the cell level, for Example 3.1 Case (4). A and B respectively represent
fx|y and fy|x, and 1, 2, 3, 4 respectively represent the given conditional distributions, the LP solution, the PGS solution, and

the CE solution.

Table 1. Comparison of the Performance Among LP, PGS,
and CE for Example 3.1

G2 N2 F 2

LP 0.0000 0.0000 0.0000
Compatible PGS 0.0006 0.0006 0.0006

CE 0.0000 0.0000 0.0000

LP 0.0560 0.0551 0.0557
Case (1) PGS 0.0663 0.0768 0.0680

CE 0.0411 0.0410 0.0409

LP 0.2186 0.2242 0.2191
Case (2) PGS 0.2231 0.2720 0.2304

CE 0.1138 0.1166 0.1141

LP 0.2712 0.2905 0.2741
Case (3) PGS 0.2891 0.3518 0.2987

CE 0.1536 0.1619 0.1551

LP 0.6248 0.6258 0.6163
Case (4) PGS 0.6419 0.8523 0.6637

CE 0.4278 0.4696 0.4321

fy|x(−1/12, 1/12) and f∗
y|x—i.e., all of the non-white (non-

zero) areas in A1 and B1 arise because of the perturbations
in a, b, c, and d. Similarly, the heat maps A2 and B2, A3

and B3, and A4 and B4 respectively show the cell-level dif-
ferences between the derived and given conditionals using
LP, PGS, and CE. From A2 and B2, it can be seen that
the LP method tends to distribute cell-wise discrepancies
rather evenly over the entire support. In other words, the
LP method tends to “disregard” the original pattern of in-
compatibility as suggested in A1 and B1. In contrast, there
exists a strong imbalance in the distribution of errors in A3

and B3, suggesting that PGS tends to concentrate the er-

rors to the (y|x) pdf, while the entries of A3, representing
the error in the (x|y) pdf, are all less than 0.01.

Another interesting observation of the CE solution is that
the conditional distributions not only have the smallest local
errors, they also exhibit a distributional pattern similar to
that in A1 and B1. The similarities between A1 and A4 (and
between B1 and B4) are not surprising because the canonical
parameters in the CSOI are measures of local dependency
and as a result they also reflect local incompatibility. In
other words, the CE solution creates a joint density of which
the derived conditionals mimic the source of incompatibility
in the given conditionals. This kind of information may be
useful for fine tuning the DN toward a more compatible
model.

Randomly generated bivariate conditional distributions
This simulation study follows a sequence of steps, as fol-
lows: (1) Generated 100 pairs of 3×4 matrices with random
positive integers between 1 and 100. (2) Convert one matrix
to fx|y and another to fy|x by column normalization and row
normalization, respectively. (3) For each pair, compute the
LP, the PGS (using 100,000 sample), and the CE solutions.
(4) Calculate the respective divergence measures in G2, N2,
and F 2. (5) Compute the percentage of reduction relative
to PGS. A positive percentage implies a reduction in error
relative to PGS. (6) Average the percentages of reduction
relative to PGS over the 100 simulations.

The average percentages of reduction for LP relative to
the PGS were 9.5% in G2, −19.2% in N2, and −2.6% in F 2;
while the percentages of reduction for the CE were 41.6% in
G2, 41.5% in N2, and 37.3% in F 2. Thus, the CE method
outperforms both the LP and PGS methods by significant
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Figure 3. Box plots for G2 among PGS, LP, and CE based on
100 randomly generated 3× 4 conditional models.

margins. Figure 3 shows the box plots of the distributions
of the G2 for PGS, LP, and CE across the 100 simulations.
The graphs demonstrate that CE not only has a smaller
overall error, it also has less dispersion in the distribution,
which is suggestive of its potential robustness in dealing with
incompatibility.

3.2 Experiment 2: Randomly generated
10-dimensional DNs

We conducted similar comparisons for 100 randomly gen-
erated DNs with d, the dimension of the joint distribution,
set at 10, and each variable is assumed to be binary. Thus a
joint pdf has 210 = 1,024 cells. In this experiment, we ran-
domly selected 100 pdfs from the possible candidate canon-
ical solutions to form the ensemble. For the PGS, we used
1,000,000 PGS samples for every DN. For CE, the G2 errors
were used for computing ensemble weights. Figure 4 shows
box plots of G2 errors for the 100 simulated 10-dimensional
DNs for the three methods. LP has a substantial smaller G2

than PGS, and CE consistently outperforms PGS and LP in
the G2 error. The same ranking order in performance also
holds for the N2 and F 2 error measures. Table 2 summarizes
the means and standard deviations of the 100 G2, N2, and
F 2. Compared with PGS, the reductions in error for CE are
respectively 56%, 49%, and 49%.

In terms of a computational overhead, the PGS was the
largest and CE was the least (all approaches were imple-
mented using Matlab). For each simulated DN, the PGS
required 15 minutes of CPU time, and the LP used 50
seconds. In contrast, the CE method used only 2.5 sec-
onds. In summary, both in terms of computational efficiency

Figure 4. G2 among PGS, LP, and CE based on 100
randomly generated 10-dimension conditional models.

Table 2. Comparison of the Average Performance, Mean
(Standard Deviation) Among LP, PGS, and the CE on 100
Randomly Specified 10-Dimension Conditional Models

G2 N2 F 2

PGS 1257.7 (45.6) 5036.0 (268.7) 2365.6 (69.2)

LP 610.4 (10.7) 3375.9 (152.4) 1368.3 (26.9)

CE 554.4 (12.0) 2567.0 (115.4) 1208.3 (27.5)

and error reduction, the CE solution outperformed LP and
PGS.

4. REAL EXAMPLES

4.1 Example I: Hematologic toxicity

The first real data example is a study of a relatively sim-
ple two-variable DN of risk factor and treatment response.
The DN thus involves both a diagnostic model and a treat-
ment model. This example was used in illustrating the PGS
in [10] and we use it here to compare the performance of
several different approaches.

Table 3 is taken from a study reported in [26], which
then comprised one of the largest prospective studies for in-
vestigating the relationship between polymorphism in the
gene region UGT1A1*28 and the response to irinotecan for
metastatic colorectal cancer patients. It was observed that
a significant increased risk of developing severe hematologic
toxicity exists among patients carrying the TA7 allele [26].
The hypothesis is that genetic testing for the UGT1A1*28
polymorphism may have utility as a predictor of the re-
sponse to irinotecan. In Table 3, the row variable x repre-
sents polymorphism in gene region UGT1A*28 with three
genotypes, TA6/TA6, TA6/TA7, and TA7/TA7. These geno-
types are known to be associated with the response to treat-
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Table 3. Cross-Tabulation by UGT1A1*28 Polymorphism and Response to Treatment [26]

Response to Chemotherapy Treatment (y)
Polymorphism (x) Complete Response Partial Response Stable Disease Progressive Disease Total

TA6/TA6 10 34 29 36 109
TA6/TA7 5 40 32 31 108
TA7/TA7 3 11 5 2 21

Table 4. Comparisons of LP, PGS, and CE for the
Conditional Model of Table 3

G2 N2 F 2

LP 0.0245 0.0360 0.0265
PGS 0.0240 0.0291 0.0245
CE 0.0138 0.0182 0.0145

ment of a combination of irinotecan fluorouracil and leucov-
orin, which is represented by the column variable y. The four
categories of y are complete response, partial response, stable
disease, and progressive disease, respectively coded as 1–4.

Logistic regression was used to build the conditional
model. Specifically, fx|y was estimated by applying multi-
nomial logistic regression of x on y, and fy|x was estimated
by applying ordinal logistic regression of y on x:

fx|y =

⎡⎣ 0.5052 0.3877 0.4476 0.5388
0.4226 0.5008 0.4631 0.3975
0.0722 0.1115 0.0893 0.0637

⎤⎦ and

fy|x =

⎡⎣ 0.0648 0.3379 0.2861 0.3112
0.0679 0.3469 0.2847 0.3005
0.1677 0.4944 0.2034 0.1345

⎤⎦ .

Clinicians commonly use two conditional models for such
data: the diagnostic model is fx|y(x|y) and the treatment
model is fy|x(y|x). Of practical interest are the following
sets of parameters: the diagnostic odds dij = Pr(x = i|y =
j)/Pr(x = i|y = j + 1), 1 ≤ i ≤ 3, 1 ≤ j ≤ 3, and the re-
sponse odds tij = Pr(y = j|x = i)/Pr(y = j|x = i+ 1), 1 ≤
i ≤ 2, 1 ≤ j ≤ 4. We computed the joint distributions us-
ing, respectively, LP, PGS, and CE. Table 4 compares the
various divergences between the observed joint distribution
(Table 3) and the estimated joint distributions. Compared
to PGS, the G2 of LP is 2.08% larger, and the N2 of LP
is 23.7% larger. It was a surprise to see that the compu-
tationally intensive LP has slightly larger errors than PGS
given the results in our simulation experiments. On the other
hand, the performance of the CE method (weights based on
G2)is consistent with the results in the simulation experi-
ments, and it outperforms PGS across G2, N2, and F 2 with
47.5% reduction in G2, 37.5% reduction in N2, and 40.8%
reduction in F 2. CE also achieves similar percentages of er-
ror reduction relative to LP.

4.2 Example II: DN for symptom structure

The second data set contained information from N = 100
patients with either a primary brain tumor or brain metas-

Figure 5. Dependency network for concerns and symptoms in
cancer patients.

tases. Specific details of the data set were reported else-
where [22]. Here we only focused on a specific domain of
self-reported quality of life measures: emotion. Response
data were extracted from the functional assessment of can-
cer therapy (FACT) and the brain-tumor-specific subscale
(FACT-B), both of which have been validated in other stud-
ies [8, 30]. For illustrating the different approaches of the
DN, we used data collected from the following four emotion
items: “I feel sad” (Sad, x2); “I am losing hope in the fight
against my illness” (Losing Hope, x4); “I feel nervous” (Ner-
vous, x1); and “I worry that my condition will get worse”
(Condition, x3). The item responses were dichotomized as
1 = presence of symptom and 0 = absence of the concern or
symptom.

Logistic regressions were applied to the data set such that
each individual variable was treated as a dependent variable
and other variables were treated as predictors. Backward
selection was used to select the relevant predictors. The re-
sulting DN is shown in Figure 5.

We compare the divergences of three methods: LP, PGS,
and CE. For PGS, we implemented four different scan pat-
terns (e.g., 1234 represents the scan pattern x1 → x2 →
x3 → x4), each with 1,000 burn-in cycles and 1,000,000 sam-
ple points. Table 5 shows the divergences for LP, PGS, and
CE. Note that different scan patterns from the PGS produce
different results, an observation that is consistent with pre-
vious findings [10]. From Table 5, the CE method tends to
have smaller divergences compared to the LP and the PGS
methods. For example, using N2, the canonical-ensemble
method has a divergence of 0.016, which is 57% less than
the divergence of the PGS (average divergence across four
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Table 5. Comparisons of LP, PGS, and the CE for the DN in
Figure 5

G2 N2 F 2

LP NaN1 0.4146 0.8186
PGS (1234) 0.0079 0.0349 0.0360
PGS (2341) 0.0145 0.0601 0.0649
PGS (3421) 0.0057 0.0281 0.0268
PGS (4123) 0.0051 0.0250 0.0239

CE 0.0035 0.0161 0.0162
1LP produces a joint distribution with structure zeros.

scan patterns = 0.037), and 92% less than the divergence of
LP (0.41).

5. CONCLUSIONS

The DN represents a flexible and powerful modeling tool
to capture complex relationships between a large number
of variables. One can think of the joint distribution derived
from the DN as an approximation to a causal structure rep-
resented by a Markov network. It is also a generalization of
DAG models. Thus, while the DN is often used as a “black
box” for optimizing prediction, it can also be used to serve
the purpose of an explanatory model in health and medi-
cal sciences. In this paper, we propose an efficient ensemble
method for computing the joint distributions for incompat-
ible CSMs. The method may be viewed as two-level model
averaging. At the first level, we take averages of “copies” of
the characterizing interactions generated from incompatible
conditional distributions. A joint distribution is formed by
“gluing” averaged interaction terms from the conditionals.
At the second level, we take the (weighted) average of en-
semble members to form a final solution. The ensemble is
created by changing the anchor (i.e., switching rows and/or
columns) from which the canonical interactions are calcu-
lated.

Based on two simulation experiments and two real data
sets, our main finding is as follows: compared with two exist-
ing procedures, the PGS and LP, the two-level averaging CE
procedure tends to produce both smaller overall error and
less localized error distributions. The percentages of reduc-
tion in error, as measured by a variety of divergence mea-
sures, are substantial. An added bonus for the CE approach
is that its computations, which are mostly direct arithmetic
operations, are rather straightforward and also highly scal-
able. The procedure can also be easily parallelized. For an
LP-based analysis, the computational overhead is high. For
the 10-dimensional simulation Example 3.2, LP needs to
solve an optimization problem with a total of 10,240 in-
equalities and one equality in 1,024 unknowns. Despite its
computational overhead, the performance of LP optimiza-
tion is moderate compared to PGS and CE, as evidenced by
our results in the simulation experiments and the examples
with real data. In addition, because the LP method mini-
mizes the cell-wise deviations, the computational overhead

grows quickly with the dimension of the problem, which im-
plies that LP may be limited only to problems of low di-
mensionality. The PGS has been commonly used in DNs
and will probably continue to be a benchmark procedure
to which other new procedures will have to compare. We
demonstrated in this study that CE performs remarkably
well compared to PGS.

The problem of incompatible CSMs is not limited to DNs.
Another potential application of methods for potentially
incompatible CSMs is the multiple imputation of missing
data [27, 28]. Recent developments of multiple imputation
by chained equations (MICE), which makes use of a Gibbs
sampler or other Markov chain Monte Carlo-based meth-
ods that operate on a set of conditionally specified pdfs,
have drawn significant interest from researchers studying
missing values in complex data sets. For each variable with
a missing value, an imputed value is created under an in-
dividual conditional-regression model. This kind of proce-
dure bears a strong resemblance to a DN. Rubin [23] argued
that MICE combined the best features of many currently
available multiple-imputation approaches. Due to its flexi-
bility over compatible multivariate-imputation models [24]
and ability to handle different variable types (continuous,
binary, and categorical) MICE has gained acceptance for
its practical treatment of missing data, especially in high-
dimensional data sets [21]. However, MICE has the limita-
tion of potentially encountering incompatible conditional-
regression models, and it has been shown that an incom-
patible imputation model can lead to biased estimates from
imputed data [13]. This is an area in which the current ap-
proach could make a contribution.

There are limitations to this study. First, we focus on dis-
crete distributions. Not unlike many early graphical model
applications, continuous variables need to be discretized for
the CE method described in this article. It is possible to
create canonical parameters for CSMs for continuous vari-
ables [29] and current work is underway. Second, our results
were derived from CSMs of low-modest dimensions. Further
studies will be required to examine the performance of CE.

In conclusion, the ensemble approach based on canoni-
cal parameters represents a viable method for reconciling
incompatible (or nearly compatible) conditional distribu-
tions. We showed that the CE method performs well in low-
to moderate-dimensional problems, compared to two exist-
ing approaches—linear programming and the Gibbs sam-
pler. Thus, the canonical-ensemble method is a serious com-
petitor for computing models based on the DN, which is
increasingly used in a large, complex netwrok of variables in
medicine and health-related sciences.

APPENDIX A. THE CHARACTERIZING SET
OF INTERACTIONS

Suppose that X = (x1, . . . , xd), where each xj is a dis-
crete random variable with support Ωj = {1, . . . ,Kj}. Set
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ℵ = {1, . . . , d} and Ωℵ =
∏d

j=1 Ωj . The joint distribution of
X is a row vector fℵ = (fℵ(1, . . . , 1), . . . , fℵ(K1, . . . ,Kd)),
which is arranged in lexicographical order. Also, de-
fine log fℵ = (log f(1, . . . , 1), . . . , log f(K1, . . . ,Kd)). The
(xj |x−j) conditional distribution of fℵ is fj|−j(x) =
fℵ(x)/f−j(x−j), where f−j(x−j) is the marginal distribu-
tion of x−j = (x1, . . . , xj−1, xj+1, . . . , xd) ∈ Ω1×· · ·×Ωj−1×
Ωj+1 × · · · × Ωd.

Let Bi, i = 1, . . . , d, be a Ki×Ki upper triangular matrix
of 1’s and A = Bd⊗· · ·⊗B1 where ⊗ is the Kronecker prod-
uct. Then, θℵ = A−1(log fℵ)

T and θi|−i = A−1(log fi|−i)
T

are called the canonical interaction vectors of fℵ and fi|−i,
respectively. The orders of interactions can be more conve-
niently represented by the following difference operator ∇i

and identity operator ϑ: for 1 ≤ ki < Ki, i = 1, . . . , d,

∇ih(k1, . . . , ki, . . . , kd)

= h(k1, . . . , ki−1, ki, ki+1, . . . , kd)−
h(k1, . . . , ki−1, ki + 1, ki+1, . . . , kd),

and ϑh(k1, . . . , kd) = h(k1, . . . , kd), with
∇ih(k1, . . . ,Ki, . . . , kd) = 0. Define ∇i be the vector
(∇i, . . . ,∇i, ϑ)

T . Furthermore, let ∇ be ∇d ⊗ · · · ⊗ ∇1.
For example, with Kj = 3 and 1 ≤ j ≤ 2, the ∇
vector is (∇2∇1,∇2,∇2,∇2∇1,∇2,∇2,∇1,∇1, ϑ)

T ,
and for Kj = 2 and 1 ≤ j ≤ 3, the ∇ vec-
tor is (∇3∇2∇1,∇2∇3,∇1∇3,∇3,∇2∇1,∇2,∇1, ϑ)

T .
Thus, there are orders within ∇, and we will use
the shorthand notation ∇a, a ⊂ ℵ for

∏
j∈a ∇j . De-

fine Hamadan product · between two vectors as
(x1, . . . , xK)T · (y1, . . . , yK)T = (x1y1, . . . , xKyK)T.
It can be proved that θℵ = ∇ · (log fℵ)

T and
θi|−i = ∇ · log fi|−i [17, Theorem 1]. We call ∇a log fℵ
(∇a log fi|−i) the a-interaction of fℵ (fi|−i). For example,
∇12 log f1|−1 = ∇1∇2 log f1|−1 is the (1, 2)-interaction,
and ∇123 log f2|−2 = ∇1∇2∇3 log f2|−2 is the (1, 2, 3)-
interaction. The following two results [17] relate the
a-interaction of fi|−i with the a-interaction of fℵ, and
states the compatibility condition in terms of interactions.

(1) (Invariance) The a-interaction of fi|−i = fℵ/f−i is iden-
tical to the a-interaction of fℵ provided that a contains
i—i.e., for i ∈ a, ∇a log fℵ = ∇a log fi|−i—which is
termed an invariant interaction. The totality of all the
invariant interactions of a DN is called the characteriz-
ing set of interactions (CSOI). For d = 2, the CSOI is
the union of {∇12,∇1} of f1|2 and {∇12,∇2} of f2|1.

(2) (Compatibility) Two conditional fi|−i and fj|−j are
compatible if and only if for (i, j) ∈ a, ∇a log fi|−i =
∇a log fj|−j . When every pair of conditionals of
{fi|−i, 1 ≤ i ≤ d} are compatible, there exists a unique
joint probability density function (pdf), f∗

ℵ from which
every fi|−i can be exactly derived. Otherwise, the DN
is incompatible.

APPENDIX B. THE ENSEMBLE
APPROACH

We first describe the bivariate case and then the general
case.

B.1 The bivariate case

We first use the bivariate case to set up the notation and
motivate the approach. Let X = (x1, x2), and f1|2 and f2|1
be the two conditional pdfs, from which a joint pdf f12 is to
be constructed. Assume that x1 takes values 1, . . . ,K1 and
x2 takes 1, . . . ,K2. The invariant interactions of f1|2 and f2|1
are, respectively, A1 = {∇1 log f1|2(i|K2),∇12 log f1|2(i|j)}
and A2 = {∇2 log f2|1(j|K1),∇12 log f2|1(j|i)}, for 1 ≤ i <
K1 and 1 ≤ j < K2. Their degrees of freedom are (K1−1)+
(K1−1)(K2−1) and (K2−1)+(K1−1)(K2−1), respectively.
Then, we have the following equivalent conditions:

(I) ∇12 log f1|2 = ∇12 log f2|1; that is f1|2 and f2|1 are com-
patible.

(II) There exists a unique f∗
12 such that f∗

12/f
∗
+2 = f1|2 and

f∗
12/f

∗
1+ = f2|1, where “+” represents summation over

replaced subscript. For example, f∗
1+ is the x1-marginal

of f∗
12.

(III) The interactions uniquely determining f∗
12 are

{∇1 log f1|2,∇2 log f2|1,∇12 log f1|2}.

The compatibility condition (I) reduces the total number of
interactions to K1K2 − 1 interactions of (III) above. When
∇12 log f1|2(i|j) �= ∇12 log f2|1(j|i) for some i or j, there
does not exist a unique f∗

12 satisfying condition (2). Our goal
here is to compute a f∗

12 such that the corresponding f∗
1|2

and f∗
2|1 are least-deviated from f1|2 and f2|1 collectively.

The ensemble of the joint distributions is created as follows:

1. Take the vector operators ∇1= (∇1, . . . , ∇1, ϑ)
T and

∇2= (∇2, . . . ,∇2, ϑ)
T. Both have the identical oper-

ator in the last category x1 = K1 and x2 = K2, re-
spectively. For operators ∇2⊗ ∇1, the cell (K1,K2) is
called an anchor.

2. Interchange the ∇1 at location x1 = i with the ϑ at
location x1 = K1 within ∇1.

3. Interchange the ∇2 at location x2 = j with the ϑ at
location x2 = K2 within ∇2. After both interchanges,
position (i, j) becomes the new anchor.

4. Use the vectors of rearranged difference operators to
generate the interaction vector. Denote the interaction
vector generated from using (i, j) as the anchor by

∇a log f
(i,j)
1|2 and ∇a log f

(i,j)
2|1 .

5. Select from the above (i, j)-anchored interactions to
form the interaction terms for the joint distribu-
tion. Specifically, the canonical parameters of the

joint θ(i,j) is given by: θ(i,j) � { 1
2 (∇12 log f

(i,j)
1|2 +

∇12 log f
(i,j)
2|1 ), ∇1 log f

(i,j)
1|2 ,∇2 log f

(i,j)
2|1 } and denote

the corresponding joint pdf by g
(i,j)
12 .
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6. Perform the reverse interchanges for g
(i,j)
12 to obtain the

joint pdf h
(i,j)
12 . In the process, x1 = i, x1 = K1, x2 = j

and x2 = K2 are returned to their original positions.
7. Repeat steps 1–6 using a different anchor. As a result

of using different anchors (i, j),
1 ≤ i ≤ K1, 1 ≤ j ≤ K2, a total of K1 × K2 different

h
(i,j)
12 , are generated.

To illustrate how the anchored-interchange procedure
works, we use an incompatible 2 × 2 conditional model [3].
The original DN before any interchange (anchored at (2, 2))
is:

f
(2,2)
1|2 =

[
1
4

1
3

3
4

2
3

]
, f

(2,2)
2|1 =

[
1
3

2
3

1
10

9
10

]
.

The other conditional distributions that are anchored at a
different cell are:

(1): 1 � 2 for x1 and no interchange for x2

f
(1,2)
1|2 =

[
3
4

2
3

1
4

1
3

]
, f

(1,2)
2|1 =

[
1
10

9
10

1
3

2
3

]
;

(2): 1 � 2 for x2 and no interchange for x1

f
(2,1)
1|2 =

[
1
3

1
4

2
3

3
4

]
, f

(2,1)
2|1 =

[
2
3

1
3

9
10

1
10

]
;

(3): 1 � 2 for x1 and 1 � 2 for x2

f
(1,1)
1|2 =

[
2
3

3
4

1
3

1
4

]
, f

(1,1)
2|1 =

[
9
10

1
10

2
3

1
3

]
.

B.2 The d-component case

The ensemble procedure described in the previous sec-
tion can be generalized to higher dimensions. Consider the
following CSMs: F = {fj|−j(xj |x−j), 1 ≤ j ≤ d}. When all
of the invariant interactions from F are pooled together,
there are d versions of the form j∇1...d, one from each
fj|−j , 1 ≤ j ≤ d, and d − 1 versions of j∇1...(d−1), one
from each fj|−j , 1 ≤ j ≤ d − 1, and so on. The notation
ij � Kj indicates the relocation of the cell originally re-
siding at (i1, . . . , id) to (K1, . . . ,Kd) and forming the new
anchor for calculating interactions. As an illustration, the
following table lists the invariant interactions for a trivari-
ate DN.

Conditional pdf Invariant Interactions

f1|23(x1|x2, x3)
1∇123,

1∇12,
1∇13,

1∇1

f2|13(x2|x1, x3)
2∇123,

2∇12,
2∇23,

2∇2

f3|12(x3|x1, x2)
3∇123,

3∇13,
3∇23,

3∇3

The ensemble uses the average of the invariant interac-
tions to formulate a joint pdf. The set of canonical param-
eters consists of the following averaged interaction terms:

∇∗
1...d =

1

d

d∑
j=1

j∇1...d;

∇∗
1...(d−1) =

1

d− 1

d−1∑
j=1

j∇1...(d−1);

...

∇∗
ij =

1

2
(i∇ij +

j∇ij); and

∇∗
j = j∇j .

Let the corresponding joint pdf be f
(i1,...,id)
ℵ , where the

superscript indicates the anchor. The number of pdfs in the

ensemble {f (i1,...,id)
ℵ , ij = 1, . . . ,Kj ; j = 1, . . . , d.} equals the

number of interchanges, which is N =
∏d

j=1 Kj . We recom-
mend that a random sample (say of size 100) be selected to
form the ensemble if N is too large.
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