
Statistics and Its Interface Volume 7 (2014) 241–250

Joint modeling of survival data and mismeasured
longitudinal data using the proportional odds
model

Juan Xiong
∗
, Wenqing He, and Grace Y. Yi

CONTENTS

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
2 Notation and model formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
3 Estimation procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

3.1 Naive method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
3.1.1 Naive method 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
3.1.2 Naive method 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

3.2 EM algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
4 Simulation studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
5 Application to Mediterranean fruit fly fecundity data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Authors’ addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

Joint modeling of longitudinal and survival data has been
studied extensively, where the Cox proportional hazards
model has frequently been used to incorporate the rela-
tionship between survival times and covariates. Although
the proportional odds model is an attractive alternative to
the Cox proportional hazards model by featuring the de-
pendence of survival times on covariates via cumulative co-
variate effects, this model is rarely discussed in the joint
modeling context. To fill up this gap, we investigate joint
modeling of survival and longitudinal data where the pro-
portional odds model is employed to feature survival data,
and longitudinal covariates are postulated using measure-
ment error models. An estimation method based on the ex-
pectation maximization algorithm is developed. In addition,
the impact of naive analyses, which fail to address errors oc-
curring in longitudinal measurements, is assessed. The per-
formance of the proposed method is evaluated through sim-
ulation studies, and a real example is invoked for illustra-
tion.

AMS 2000 subject classifications: 62N01.
Keywords and phrases: Joint modeling, Proportional
odds model, Measurement error, Survival analysis, Time-
varying covariates.
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1. INTRODUCTION

In biomedical studies and clinical trials, it is often the
case that data consist of times to an event of interest and
covariates that are repeatedly measured over a time period.
A typical example is that in HIV/AIDS clinical trials, the
time to death is of interest, while the biomarker CD4 lym-
phocyte counts are measured at regularly scheduled inter-
vals over a certain follow-up period. We are interested in
not only identifying the risk factors to death, and the trend
of the CD4 counts, but also the relationship between time
to death and longitudinal CD4 counts measurements. Re-
gression models are usually employed to describe the rela-
tionship between response and covariate variables. For time
to event data, popularly used regression models include the
Cox proportional hazards (PH) model [7], and the acceler-
ated failure time (AFT) model [8]. When longitudinal co-
variates are time-varying, it is typical to require that time
dependent covariates are observed at all failure times in or-
der to carry out valid inferences. This requirement is rarely
possible in practice, most longitudinal covariates are only
measured at intermediate scheduled times. In addition, lon-
gitudinal covariates may be subject to substantial measure-
ment error. Naive methods which ignore these issues often
yield biased estimates.

Two stage approaches [9, 27] and joint modeling meth-
ods [11, 18] have been developed to overcome the difficulties
discussed above. With the two stage approaches, missing co-
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variate values are first imputed through a longitudinal pre-
diction model, and in the second stage, a survival model is
fitted to the imputed data. This two stage method can only
partially correct for bias as opposed to the naive method
which ignores missing observations. Further difficulties arise
from the informative dropout which incurred in longitudinal
covariates due to the occurrence of the event time. The joint
modeling method, on the other hand, uses information from
both longitudinal and survival processes to improve the ef-
ficiency of parameter estimates and to correct for the bias.
There has been extensive research on addressing joint mod-
eling of survival data and longitudinal covariate measure-
ments. See [11, 18, 22, 23, 26, 29, 32], among many others.

A large number of inference methods have been devel-
oped for joint modeling of survival data with longitudinal
covariates, in which the Cox PH model [7, 31] is frequently
employed to modulate the survival process, and longitudi-
nal covariates are treated as time varying covariates. This
treatment basically requires time varying covariates to be
observed at all time points at which failures occur. How-
ever, in reality those observations of longitudinal covariates
are often not available at failure times. To get around this
problem, it is a common practice that covariate measure-
ments at the latest time points are used as approximated
versions. This approach can produce approximate analysis
results, but it is not ideal. In this paper, we use a differ-
ent approach to handle this issue. We particularly take into
account the differences of the true covariates and observed
measurements by embedding the problem into the frame-
work with covariates measurement error models.

The Cox proportional hazards model has been popularly
used in survival data analysis by both researchers and ana-
lysts. The main reason is that the baseline hazard function
in the proportional hazards model does not need to be spec-
ified, and the partial likelihood inferential procedure makes
its implementation easy. Moreover, elegantly theoretical jus-
tifications are available to support its use. The availabil-
ity of various statistical software packages makes inferential
procedures based on the Cox proportional hazards models
ready to be used. Although the Cox proportional hazards
model enjoys wide applications, this model can be restric-
tive for real applications. A key condition in using such a
model is the proportionality assumption for the hazard func-
tions. This is a strong assumption that often fails in prac-
tice. To overtime this inflexibility, many alternative models
have been proposed to handle data with distinct features.
Among them, the proportional odds (PO) model is a useful
tool, and this model has been widely used in areas such as
epidemiological and biomedical studies [33].

The proportional odds model has often been suggested
as an attractive alternative to the Cox PH model when the
ratio of the two hazard functions is not constant over time,
but is changing along the time [10, 24]. For instance, when
the treatment effects diminish over time, the ratio of the
hazard functions of different treatment groups is typically

not a constant, and using the proportional hazards model
to feature such a scenario is apparently not feasible. The
proportional odds model can be, however, a useful alterna-
tive to characterizing this case.

Regression parameters in the proportional odds model
have a clear interpretation in terms of log odds ratios. Infer-
ence procedures for the proportional odds model have been
studied by many authors [1, 6, 20, 21, 33]. Despite the useful-
ness of such a model, there is no investigation on joint mod-
eling of survival data that are posited by the proportional
odds model, along with longitudinal covariates subject to
measurement error. Aiming to fill up this gap to provide an
alternative to the Cox model, we develop inferential proce-
dures to jointly analyze survival and longitudinal data, with
survival data being postulated directly to the proportional
odds model, and the longitudinal covariates being subject
to measurement error. Furthermore, we assess the impact of
naive analyses that fail to address error incurring in longi-
tudinal measurements on the estimation of the model pa-
rameters of interest.

Our work is partially motivated by the Mediterranean
fruit fly egg-laying data [4]. The data set consists of the life-
time and complete records of the numbers of eggs produced
daily until death from 1,000 female Mediterranean fruit flies.
We are interested in investigating the relationship between
reproduction and longevity.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the notation and model formulation. Sec-
tion 3 describes the joint modeling estimation procedures. In
Section 4, the performance of the proposed method is evalu-
ated by simulation studies. The proposed method is applied
to the Mediterranean fruit fly egg-laying data in Section 5
for illustration. Discussion and concluding remarks are pro-
vided in the last section.

2. NOTATION AND MODEL
FORMULATION

Let Ti and Ci be the survival time and censoring time
for the ith subject, respectively, i = 1, . . . , n. The observed
time is denoted by Vi = min(Ti, Ci), and δi represents the
censoring indicator, taking 1 if Ti ≤ Ci and 0 otherwise. Let
Zi be the vector of time independent covariates and Xi(t)
be the vector of time-varying covariates. Assume that Ti and
Ci are independent conditional on the covariates.

In the absence of time-varying covariates Xi(t), the pro-
portional odds model for the survival time associated with
time independent covariate Zi is defined as

(1)
1− S(t|Zi)

S(t|Zi)
= exp

(
βT
z Zi

) 1− S0(t)

S0(t)
,

where S(t|Zi) is the survival function given covariate Zi,
S0(t) denotes the baseline survival function, and βz is the
parameter vector. Equivalently, (1) can be written as a form
by differentiating both sides of (1) with respect to time t.
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That is, let r(t;Zi) = (d/dt)
[
{1 − S(t|Zi)}/S(t|Zi)

]
and

r0(t) = (d/dt)[{1− S0(t)}/S0(t)], then (1) is equivalent to

(2) r(t;Zi) = exp
(
βT
z Zi

)
r0(t).

To accommodate time varying covariates Xi(t) into the
PO model, it is more convenient to use (2) then (1) [25].
Specifically, we set the model

(3) r(t;Xi(t),Zi) = exp {βT
xXi(t) + βT

z Zi}r0(t),

and this model yields the survival function linking Ti and
covariates {Xi(t),Zi}:

(4) S(t|Xi(t),Zi) =
1

1 +
∫ t

0
r(u;Xi(u),Zi)du

,

where β = (βT
x ,β

T
z )

T is the vector of regression parameters.
Under model (3), the cumulative distribution function of Ti

is given by

(5) F (t) =

∫ t

0
exp {βT

xXi(s) + βT
z Zi}h0(s)/S0(s)ds

1 +
∫ t

0
exp {βT

xXi(s) + βT
z Zi}h0(s)/S0(s)ds

,

where h0(t) is the baseline hazard function. The correspond-
ing density function under model (3) is then

(6) f(t) =
exp {βT

xXi(t) + βT
z Zi}h0(t)

S0(t)
[
1 +

∫ t

0
exp {βT

xXi(s) + βT
z Zi}h0(s)

S0(s)
ds

]2 .
As noted in [17], under the joint modeling setup, leaving

the baseline survival function completely unspecified may
result in inexplicit maximum likelihood estimates of the as-
sociated parameters. A viable strategy is to use a parametric
or weakly parametric model to postulate the baseline sur-
vival function. While step functions or regression splines can
be used to model baseline functions, here we employ a para-
metric form to posit the baseline survival function, and use
α to denote the associated parameter vector.

To complete modeling, we modulate the longitudinal co-
variate vector Xi(t) by

(7) Xi(t) = UT
i ρi(t),

where Ui = (ui1, . . . , uir)
T is a r-dimensional vector of ran-

dom effects, and ρi(t) = (ρi1(t), . . . , ρir(t))
T is a vector of

functions of t. Different specification of ρi(t) allows flexi-
bility in modeling various time trajectories. Other model-
ing schemes can be used to model longitudinal covariates as
well. For instance, [32] introduced the simple linear model;
[16] and [30] considered Gaussian processes; [2] and [22] dis-
cussed representing the time trajectory via the polynomial
model, and [3] and [12] proposed the B-splines approach.
Here we assume the random effects Ui to follow a multi-
variate normal distribution N(μ,Σu) as often discussed in

the literature [15, 26, 32], and let ζ denote the vector of
associated parameters.

In practice, longitudinal processes can not be fully ob-
served, but are measured intermittently at certain time
points and they are often subject to measurement error.
Let ti1 < · · · < timi ≤ Vi denote the time points at
which longitudinal covariates are assessed, and write ti =
(ti1, . . . , timi , Vi)

T . Let Xi(ti) = {Xi(tij), j = 1, . . . ,mi}
be the covariates Xi(t) at all the longitudinal assess-
ment points, and X∗

ij be the observed version of covariate
Xi(tij), j = 1, . . . ,mi.X

∗
ij andXi(tij) are assumed to follow

a classical additive measurement error model[5].

(8) X∗
ij = Xi(tij) + eij ,

where the measurement error eij , independent of other vari-
ables, is assumed to follow a multivariate normal distribu-
tion with mean zero and covariance matrix Σe = [σkl] with
σkk denoted as σ2

e . We use Δ to denote the vector of asso-
ciated parameters.

3. ESTIMATION PROCEDURES

Let η = (βT ,αT ,γT )T be the vector of the unknown
parameters, where β is the vector of regression parameters,
α is the vector of parameters associated with the baseline
survival function S0(t), and γ = (ζT ,ΔT )T denotes the
parameters characterizing the random effect model and the
measurement error process.

We estimate η by maximizing the joint observed likeli-
hood which can be constructed by integrating out random
effects with the assumption of nondifferential measurement
error. The observed likelihood function contributed by sub-
ject i by integrating out random effects is obtained:

Li(η) =

∫
u

[
f(Vi, δi|Xi(ti),Zi,Ui) ·{ mi∏

j=1

f(X∗
ij |Ui)

}
f(Ui)

]
dUi,

where f(X∗
ij |Ui) is determined by (7) and (8), and with the

undifferential measurement error mechanism, the survival
density function is derived from (5) and (6)

f(Vi, δi|Xi(ti),Zi,Ui)(9)

= f(Vi|Xi(ti),Zi,Ui)
δi(1− F (Vi|Xi(ti),Zi,Ui))

1−δi

=

[
exp {βT

xXi(Vi) + βT
z Zi}h0(Vi)

S0(Vi)

]δi
·[

1

1 +
∫ Vi

0
exp {βT

xXi(s) + βT
z Zi}h0(s)

S0(s)
ds

]1+δi

.

Let L(η) =
∏n

i=1 Li(η). Then maximizing L(η) gives
the maximum likelihood estimator of η, denoted by η̂.
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Under regularity conditions,
√
n(η̂ − η) has an asymp-

totic normal distribution with mean 0 and covariance

matrix [E{(∂�i(η)/∂ηT )(∂�i(η)/∂η)}]−1, where �i(η) =

logLi(η).

The observed likelihood method is conceptually straight-

forward, but its implementation can be computational dif-

ficult due to complex integrals involved. Alternatively, an

expectation-maximization method can be developed for in-

ferences. Below we describe this method in detail, proceeded

with two naive methods.

3.1 Naive method

In naive analyses, measurement error is often ignored and

Xi(t) is treated as constant. Here we discuss two naive meth-

ods that are used in practice.

3.1.1 Naive method 1

A naive method is to directly replace the true covariate

Xi(t) with the last observed surrogate X∗
imi

, and treat it as

constant over the integral, therefore, leading to the approx-

imation ∫ t

0

exp {βT
xXi(s) + βT

z Zi}
h0(s)

S0(s)
ds

≈ exp {βT
xX

∗
i (timi) + βT

z Zi}
∫ t

0

h0(s)

S0(s)
ds.

3.1.2 Naive method 2

A less naive method is to approximate Xi(t) with con-

stants over small intervals formed by the time points

{ti1, ti2, . . . , timi}. Specifically, we use the following approx-

imation to simplify the likelihood function Li(η):∫ t

0

exp {βT
xXi(s) + βT

z Zi}
h0(s)

S0(s)
ds

≈ exp {βT
xX

∗
i1 + βT

z Zi}
∫ ti2

0

h0(s)

S0(s)
ds

+

mi∑
j=3

exp {βT
xX

∗
i(j−1) + βT

z Zi}
∫ tij

ti(j−1)

h0(s)

S0(s)
ds

+ exp {βT
xX

∗
imi

+ βT
z Zi}

∫ Vi

timi

h0(s)

S0(s)
ds.

3.2 EM algorithm

To fully incorporate the measurement error in the

longitudinal covariate measurements, we now develop an

expectation-maximization (EM) algorithm to obtain an es-

timate of η. With models (6), (7), and 8, the complete data

likelihood for subject i is given by

Li(η)

= f(Vi, δi|Xi(ti),Zi,Ui)

{ mi∏
j=1

f(X∗
ij |Xi(tij),Zi,Ui)

}
·

f(Xi(ti),Ui|Zi)

= f(Vi, δi|Xi(ti),Zi,Ui)

{ mi∏
j=1

f(X∗
ij |Xi(tij),Ui)

}
·

f(Xi(ti),Ui),

where nondifferential measurement error is assumed.
Since Xi(t) is a function of Ui, Xi(t) = UT

i ρi(t), an
alternative way to view this likelihood is to replace Xi(t)
with model (7), leading to

(10) L∗
i (η) = f(Vi, δi|Zi,Ui)

{ mi∏
j=1

f∗(X∗
ij |Ui)

}
f(Ui)

for some functions f∗(X∗
ij |Ui). In the formulation (10), ran-

dom effect Ui is the only unobserved variable.
Let L∗(η) =

∏n
i=1 L

∗
i (η) and �∗(η) = logL∗(η). At the

E-step, we compute the expected log-likelihood of the com-
plete data, E{�∗(η)}, conditional on the observed data and
the estimate η(k) of the parameters from the previous it-
eration k, where the conditional density function is given
by

f(Ui|Vi, δi,X
∗
ij ,Zi;η

(k))

=
f(Vi, δi,Ui|X∗

ij ,Zi;η
(k))

f(Vi, δi|X∗
ij ,Zi;η(k))

=
f(Vi, δi|Ui,X

∗
ij ,Zi;η

(k))f(Ui|X∗
ij ,Zi, ;η

(k))∫
u
f(Vi, δi|Ui,X∗

ij ,Zi;η(k))f(Ui|X∗
ij ,Zi;η(k))dUi

.

To evaluate the conditional expectation E{�∗(η)|η(k)},
we use the Gauss-Hermite quadrature approximation [19].
Specifically if a function g(x) has the form g(x) =
h(x)φ(x; a, b), where φ(x; a, b) is a Gaussian density func-
tion with mean a and standard deviation b, then∫ ∞

−∞
g(x)dx ≈

M∑
i=1

√
2bwi exp (c

2
i )g(

√
2bci + a),

where M is the number of sample points used for the ap-
proximation, ci are the roots of the Hermite polynomial, and
wi are associated weights.

In the M-step, we maximize the resulting approximation
of E{�∗(η)|η(k)} and obtain a new updated estimate η(k+1)

of the parameter η. Iterate between the E-step and M-step
until the parameter estimate converges. The associated stan-
dard errors are calculated by the bootstrap method.

In implementing the EM iterations, convergence is de-
clared if either of the following two conditions is satisfied:

E{�∗(η(k+1))} − E{�∗(η(k))} < tol1

{
|E{�∗(η(k))}|+ tol1

}
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or

max
{
|η(k+1) − η(k))|/(η(k) + tol2)

}
< tol3,

where tol1 = 1.490116·10−8 is the square root of the machine
precision, and we set tol2 = 10−3 and tol3 = 10−4.

4. SIMULATION STUDIES

We carry out extensive simulation studies to assess the
performance of the proposed method. We focus on the sit-
uation of a single time-varying covariate Xi(t) and a single
time independent covariate Zi. The sample size is n = 200.
Five hundred simulations are run at each parameter setting.
The covariate Zi is generated from the binomial distribution
BIN(1, 0.5). The longitudinal component Xi(t) is generated
from the linear growth curve model Xi(t) = Ui0 + Ui1t.

Random effects Ui = (Ui0, Ui1)
T follow a bivariate nor-

mal distribution with mean (μ1, μ2)
T = (4.173,−0.103)T

and covariance matrix Σu, (σ11, σ12, σ22)
T =

(1.24,−0.0114, 0.0003)T to mimic an HIV clinical trial
as described at [9, 28]. Longitudinal covariate Xi(t) are
measured at tij = 0, 2, 4, 8, 16, 24, 32, 40, 56, 64, 72, 80 weeks
with constant probability 0.1 of missing observation at
any time point except the baseline. The surrogate version
X∗

ij is generated from the classic measurement error model

X∗
ij = Xi(tij) + eij with eij ∼ N(0, σ2

e) and σ2
e = 0.6.

Survival times are generated based on the proportional
odds model (1). That is, for the ith subject, i = 1, . . . , n, we
first generate a random variate vi ∼ U [0, 1], and calculate
the survival time Ti by solving equation

vi
1− vi

=

∫ Ti

0

exp {βT
xXi(s) + βT

z Zi}h0(s)/S0(s)ds,

where S0(t) is the baseline survival function. We particularly
consider two parametric modeling for S0(t): (1) an expo-
nential distribution S0(t) = exp (−t/α1) with α1 = 30, and
(2) a log-logistic distribution S0(t) = 1/1 + (α1t)

α2 with
α1 = 0.05 and α2 = 2. We set βx = − log(2) and βz = 0.5.

Censoring times are generated independently from the ex-
ponential distribution with three different means: 1) a fixed
mean of 110 weeks, 2) a fixed mean resulting in roughly 20%
censoring rate and 3) a fixed mean resulting in about 40%
censoring rate.

We compare the performance of the three methods:
(1) the naive method 1 with the true covariate Xi(t) di-
rectly replaced by the last observed surrogate X∗

imi
; (2) the

naive method 2 with the integration involved in the sur-
vival function approximated by treating Xi(t) as constant
over the intervals formed by the grid {ti1, ti2, . . . , timi}; and
(3) the EM method. Here we report on the results of the
biases of the estimates (Bias), the empirical standard er-
rors (SEE), the bootstrap standard errors (SEB), and the
coverage rates (CR) for 95% confidence intervals of the pa-
rameters. Tables 1 and 2 report the results for the case that
the baseline function follows an exponential distribution. In T
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Table 2. Simulation Results on the Random Effect
Parameters and Variance of Measurement Error Obtained
from the Proposed Method. The True Baseline Distribution

Follows an Exponential Distribution

Censoring Proposed Method
Rate Parameter Bias SEB SEE CR

20%

μ1 0.005 0.085 0.084 0.954
μ2 0.000 0.003 0.003 0.940
σ11 0.002 0.148 0.149 0.946
σ12 0.000 0.003 0.003 0.920
σ22 0.000 0.000 0.000 0.924
σ2
e 0.002 0.029 0.027 0.952

28%

μ1 0.006 0.086 0.084 0.954
μ2 0.000 0.003 0.003 0.934
σ11 0.003 0.148 0.149 0.946
σ12 −0.001 0.003 0.003 0.926
σ22 0.000 0.000 0.000 0.926
σ2
e 0.001 0.029 0.029 0.946

40%

μ1 0.006 0.086 0.084 0.954
μ2 0.000 0.003 0.003 0.940
σ11 0.001 0.149 0.151 0.942
σ12 −0.001 0.004 0.004 0.934
σ22 0.000 0.000 0.000 0.924
σ2
e 0.000 0.030 0.029 0.946

Table 1, we report the results for the regression coefficients
and the baseline function parameters, while Table 2 reports
the results for the estimates of parameters associated with
the distribution function of the random effect and measure-
ment error. Similarly, Tables 3 and 4 display the results for
the case that the baseline function follows a log-logistic dis-
tribution.

The estimates from the naive method 1 have the largest
bias and the worst coverage of the 95% confidence interval
compared to the other two methods. As the censoring rate
gets higher, the biases of the estimates of the regression co-
efficients decrease while the associated standard errors tend
to become bigger. The corresponding coverage rates for the
95% confidence intervals are far off the nominal level. For the
parameters of the baseline distribution function, as the cen-
soring rate gets higher, the biases of the estimates and the
standard errors increase and consequently, the correspond-
ing coverage rates for the 95% confidence intervals decrease.

Naive method 2, as expected, leads to more accurate ap-
proximation than naive method 1. The estimates from naive
method 2 have smaller biases and standard errors than those
from naive method 1. As the censoring rate gets higher, the
biases of the point estimates decrease while the associated
standard errors increase, thus the coverage rates for the 95%
confidence intervals increase.

In implementing the EM integration algorithm, we use
the bootstrap method with 100 runs for each configura-
tion to calculate standard errors. This method remarkably T
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Table 4. Simulation Results on the Random Effect
Parameters and Variance of Measurement Error Obtained
from the Proposed Method. The True Baseline Distribution

Follows a Log-logistic Distribution

Censoring Proposed Method
Rate Parameter Bias SEB SEE CR

20%

μ1 0.006 0.085 0.084 0.952
μ2 0.000 0.003 0.003 0.938
σ11 0.001 0.149 0.149 0.934
σ12 0.000 0.003 0.003 0.942
σ22 0.000 0.000 0.000 0.938
σ2
e 0.002 0.029 0.028 0.940

26%

μ1 0.005 0.085 0.084 0.952
μ2 0.000 0.003 0.003 0.938
σ11 0.002 0.150 0.148 0.942
σ12 0.000 0.004 0.003 0.944
σ22 0.000 0.000 0.000 0.942
σ2
e 0.002 0.029 0.029 0.940

40%

μ1 0.007 0.085 0.084 0.954
μ2 0.000 0.003 0.003 0.928
σ11 0.002 0.150 0.149 0.950
σ12 −0.001 0.004 0.004 0.942
σ22 0.000 0.000 0.000 0.936
σ2
e 0.001 0.031 0.030 0.950

outperforms the two naive methods. It produces reasonably
small finite sample biases for the estimates of both the re-
gression coefficients and the baseline parameters. The stan-
dard errors obtained from the EM approach are larger than
those obtained from the naive methods, but the correspond-
ing coverage rates are reasonably close to the nominal value.
The biases of the estimates of regression coefficients and the
associated standard errors increase as the censoring rate gets
higher. Meanwhile the biases of the estimates of the base-
line parameters are quite stable regardless of the change of
censoring rate. In addition to estimating β and α, we also
assess the performance of the estimates of the nuisance pa-
rameters γ = (μT ,Σu, σ

2
e). As shown, in Tables 2 and 4, the

estimates have reasonably small finite sample biases and the
coverage rates of the 95% confidence intervals are close to
the nominal value. The point estimates and standard errors
of γ from the proposed method do not appear to be obvi-
ously affected by varying the censoring rate.

We comment that the proposed joint modeling method
relies on the parametric modeling of the baseline survival
function. A natural concern is on the effects of misspecifying
baseline survival functions. Our simulation study demon-
strates that biased estimates of covariate effects can be
yielded, if the baseline survival function is misspecified, as
seen in Table 5 where the true Gumbel distribution is mis-
specified as Exponential distribution. To increase modeling
flexibility, one scheme is to approximate the baseline sur-
vival function through weakly parametric approaches, such

Table 5. Simulation Results for Evaluating the Effect on
Misspecifying the Baseline Survival Function

σ2
e Bias

μ1 μ2 σ11 σ12 σ22 σ2
e βx βz

0.25 −0.049 0.000 0.013 −0.005 0.000 0.023 −0.888 −0.330
0.60 −0.045 −0.001 0.013 −0.008 0.000 0.023 −1.019 −0.252

Figure 1. Scaled Schoenfeld Residuals Plot of the Cox PH
Model.

as regression splines [14]. The weakly parametric methods
can approximate the baseline survival function reasonably
well for many applications, and this modeling scheme allows
a finite number of parameters thus retaining the validity of
the proposed method.

In summary, the naive analyses would often lead to biased
results due to the inherent nature of ignoring the measure-
ment error. Naive method 2 partially improves the estima-
tion compare to the naive method 1, nevertheless, the im-
provement is limited and not entirely satisfactory. The EM
method behaves the best and outperforms the two naive
methods. This method is advantageous in that it adjusts for
the measurement error effects on estimation of the covari-
ate effects and the parameters for the baseline distribution
function simultaneously; it produces reasonable estimates
for the model parameters.

5. APPLICATION TO MEDITERRANEAN
FRUIT FLY FECUNDITY DATA

As an illustration, we apply the proposed method to the
egg-laying data originated from [4]. The data set consists
of the lifetime and complete records of the numbers of eggs
produced daily until death from 1,000 female Mediterranean
fruit flies. We are interested in investigating the relationship
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Table 6. Analysis of Mediterranean Fruit Fly Data: Estimation from the Exponential Baseline Function

Exponential Distribution
βx log(α1) μ1 μ2 σ11 σ12 σ22 σ2

e

Estimate −0.238 3.675 2.142 −0.132 0.144 −0.019 0.003 0.253
Bootstrap SD 0.017 0.237 0.026 0.004 0.016 0.002 0.000 0.013

Table 7. Analysis of Mediterranean Fruit Fly Data: Estimation from the Log-logistic Baseline Function

Log-logistic Distribution
βx log(α1) log(α2) μ1 μ2 σ11 σ12 σ22 σ2

e

Estimate −0.393 −3.607 1.454 2.126 −0.130 0.105 −0.014 0.002 0.261
Bootstrap SD 0.091 0.173 0.501 0.042 0.005 0.023 0.003 0.000 0.020

between reproduction and longevity. Such an investigation
is much needed, given that reproduction is a fundamental
life history trait of uttermost importance in the study of
evolutionary biology.

A key to the proposed procedure is a suitable parametric
longitudinal model. The following parametric longitudinal
process is suggested by [4, 26] to describe the individual
fly’s fecundity profile

Xi(tij) = Ui0 log(tij) + Ui1(tij − 1),

where random effect Ui = (Ui0, Ui1)
T is assumed to follow

a bivariate normal distribution with mean (μ1, μ2)
T and a

covariance matrix with parameters (σ11, σ12, σ22).
It is acknowledged that the daily egg production X∗

ij is
subject to random daily fluctuations. The classic measure-
ment error model (8) provides a good way to link the un-
derlying reproductive process to the actual observed daily
egg-laying. The measurement error is assumed to follow a
normal distribution eij ∼ N(0, σ2

e). To overcome the prob-
lem that in some days there are eggs laid, it is common to
take the logarithmic transformation to the daily egg-laying
plus one

log (X∗
ij + 1) = Xi(tij) + eij .

Following the criteria of other authors who analyzed this
data set [26], we include only the flies that produced more
than 1,150 eggs in their lifetime. The effective sample size
is 251 flies, with lifetimes ranging from 22 to 99 days. The
first two days contain zero counts for all flies and therefore
were left out from the analysis. To test our procedure in
the presence of irregular sampling plans on the longitudinal
data, we randomly set the measurement at any of the days
to be missing with probability 0.1 for all flies except the
baseline at day three.

The Cox PH regression model assumption is evaluated by
the plot of scaled Schoenfeld residuals versus time [12]. The
PH model was rejected at p-value = 0.0004. [26] explored
this data by the joint modeling approach with the AFT as-
sumption for the survival component. [13] studied this data
by the Bayesian approach for joint models. Specifically, they

Figure 2. Mediterranean Fruit Fly Data Survival Curves.

compared the performance of Cox PH, AFT and PO survival
models and suggested that the PO model predictively out-
performs the other survival specifications. Here we fit the
data to the proportional odds model in conjunction with
longitudinal data, with baseline survival function following
either exponential distribution and log-logistic distribution.

The estimated model parameters with baseline function
postulated by an exponential model or a log-logistic model
are reported in Tables 6 and 7. The negative regression co-
efficient suggests that the odds of survival increases with
increasing egg counts, i.e, reproduction activity is positively
associated with longevity.

We compared the estimated survival functions from the
exponential baseline function and log-logistic baseline func-
tion with the Kaplan-Meier estimate of the survival func-
tion. Figure 2 shows that the fitted survival curve for the
log-logistic is much closer to the nonparametric Kaplan-
Meier curve than the exponential baseline model, which
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suggests that log-logistic baseline survival function better
describe the baseline survival function. Other weakly para-
metric models, such as spline based approach, may be worth
investigating for this data set.

6. DISCUSSION

In this paper, we explore the joint modeling of longitu-
dinal and survival data under the proportional odds model.
Longitudinal covariates subject to measurement error are as-
sumed to follow a linear mixed effects model. The procedure
is based on maximizing the joint likelihood of both longitu-
dinal and survival processes. The EM algorithm is used to
estimate the parameters. Our simulation studies and real
data analysis show that the performance of the proposed
method is reasonably satisfactory. Our method can not only
correct for the measurement error effects on estimation of
the covariate and the parameters for the baseline distribu-
tion function, but also produce accurate estimates for the
parameters of random effect.

As seen in the simulation studies, the proposed joint mod-
eling method relies on the parametric modeling of the base-
line survival function, and the estimates may be biased if the
baseline survival function is misspecified. Weakly paramet-
ric approaches, such as step functions or regression splines
[14], can be invoked to approximate baseline survival func-
tion to both increasing modeling flexibility and retain the
validity of the proposed method.

When estimating the standard error of the parameters,
we encounter the difficulty that the exact information ma-
trix of parameters of interest cannot be obtained directly in
the EM algorithm. In such a case, the use of the bootstrap
estimates of standard deviations is desirable. This technique
works well in the simulation studies and data illustration.
Nevertheless, it is computationally intensive. Another diffi-
culty that needs to be further addressed in the future study
is the requirement for numerical integration with respect
to the random effects. The integration is conventionally
performed using Gaussian quadrature rules or the Monte
Carlo algorithm. However due to its increasing computa-
tional complexity with the dimension of the random-effects
vector, this algorithm is time consuming.
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