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Nonparametric quantile regression models
via majorization minimization-algorithm

YUNLU JIANG

In this paper, we apply the Majorization Minimization
(MM)-algorithm to deal with the computational problem
of the smoothing nonparametric quantile regression. We
show that the proposed MM-algorithm possesses the de-
scent property, and the estimator obtained by the proposed
algorithm is smooth. Simulation studies demonstrate that
the estimator based on our proposed method is more ro-
bust and efficient than the estimator based on the mean
smoothing regression and the estimator proposed by Nychka
et al. (1995) [14] with GCV scores. Finally, we apply the
proposed methodology to analyze the dataset about bone
density (BMD) in adolescents.
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1. INTRODUCTION

Consider the following general nonparametric model

(1.1)

where Y is scalar response variates, X is 1-dimensional co-
variate variables and lies in compact intervals, m(-) is an
unknown smooth function, € is random error. It is assumed
that the error € with zero mean and variance 0% = Ele?],
and € is independent of X.

It is one of the most important problems to estimate the
smooth regression function m(z). There are many methods
introduced and extensively studied in the literature. For ex-
ample, local polynomial mean regression introduced by Fan
and Gijbels [5] is very popular method. However, it is sensi-
tive to outliers in the dataset. Koenker and Bassett Jr. [12]
first proposed quantile regression. One advantage of quan-
tile regression is that the quantile regression estimates are
robust against outliers in the response measurements. Fan
et al. [6] and Yu and Jones [20] proposed local polynomial
quantile regression, and Kai et al. (2010) [10] introduced
local composite quantile regression. Nevertheless, the com-
putational aspects of nonparametric quantile regression is
very challenging. Moveover, the estimated quantile function
is not smoothed in many applications, e.g., see Section 7.1
of Koenker [11].

Y =m(X)+e¢,

In order to obtain smoothing curves, Wahba (1990) [19]
introduced the mean smoothing regression, and pointed out
that the solution to the mean smoothing regression was a
natural cubic smoothing spline with knots at the observed
design points. However, the method was not robust since it
depended on the least squares method. Koenker et al. (1994)
[13] proposed quantile smoothing splines and Shen (1998)
[18] introduced the method of penalization. Some authors
studied their asymptotic properties, e.g., Cox (1983) [3]
studied asymptotic properties for M-type smoothing splines,
and Portnoy (1997) [17] studied local asymptotics for quan-
tile smoothing splines. Furthermore, many algorithms are
proposed and studied for quantile smoothing splines. For ex-
ample, Koenker et al. (1994) [13] used parametric linear pro-
gramming methods to deal with the L; roughness penalty,
and Pin (1996) [16] proposed the modified parametric linear
programming algorithm based on an algorithm introduced
by Bartels and Conn (1980) [2]. Although parametric linear
programming provides efficient computation for moderate
sample sizes, a large n requires substantial computational
resources. Nychka et al. (1995) [14] proposed the smooth-
ing quantile spline with the Lo roughness penalty, and in-
troduced a pseudo-data algorithm by iteratively solving a
weighted smoothing spline problem. Meanwhile, they pro-
posed the approximate Cross-Validation (ACV) as an ap-
proximation to the robust cross-validation (RCV) to choose
the smoothing parameter. Subsequently, Oh et al. (2004)
[15] chose the smoothing parameter by minimizing the gen-
eralized cross-validation (GCV), and Yuan (2006) [21] pro-
posed the generalized approximate cross-validation (GACV)
to use as a tuning criterion. In this paper, we first apply
the MM-algorithm proposed by Hunter and Lange [8, 9] to
deal with the computational problem of quantile smooth-
ing splines with the Lo roughness penalty, and then use
GCV scores to choose the smoothing parameter. The pro-
posed MM-algorithm possesses some advantages of MM-
algorithm, e.g., the descent property. Moreover, simulation
studies show that the proposed method is more robust and
efficient than the estimator based on the mean smoothing
regression and the estimator proposed by Nychka et al. [14]
with GCV scores.

The rest of the paper is organized as follows. In Section 2,
we first introduce the smoothing nonparametric quantile re-
gression, and then systematically study the MM-algorithm
and its properties in the smoothing nonparametric quantile
regression. In Section 3, we propose the data-driven pro-
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cedure to select the smooth parameter. Simulation studies
and real data application are given in Section 4. We con-
clude this paper with a brief discussion in Section 5. All
proofs are given in Section 6.

2. SMOOTHING NONPARAMETRIC
QUANTILE REGRESSION

2.1 Smoothing nonparametric quantile
regression

Suppose that {(X;,Y;),i =1,...,n} is a random sample
generated from the model (1.1). Wlthout loss of generality,
we assume the support of X lies in [a,b]. Our target is to
estimate the 7-conditional quantile function of response Y,
given X = z. Quantile regression estimates 7, (-) by mini-
mizing the quantile loss function

(2.2) g{mr()} = ZPT{Yi - m‘r(Xi)}y
i=1

where p,(r) = 7r — rI(r < 0) is the check loss function for
€ (0,1). Because Eq. (2.2) involves nonparametric func-
tions, we employ nonparametric natural cubic spline regres-
sion techniques to conduct optimization. Suppose 1, ..., x,
are given on [a,b] satisfying a = xg < x1 < -+ < Tpy1 = b.
A function g defined on [a, b] is a cubic spline if the following
two conditions are satisfied:
(a) g is a cubic polynomial on each of the intervals
((Ei,(Ei+1),Z' = 0,. oy
(b) the polynomial pieces fit together at the points z; in
such a way that g itself and its first and second derivatives
are continuous at each z;.

Furthermore, if the second and third derivatives of a func-
tion g are zero at a and b, then, a cubic spline on an interval
[a, b] is a natural cubic spline. Many merits about a natural
cubic spline regression are given in [7].

To consider goodness of fit and smoothness of a curve
estimate, we introduce the following smoothing nonpara-
metric quantile regression estimator 7h,(-) which mini-
mizes

23) ()} = 2{m O} +a [ {ml @) d

where « is the smoothing parameter controlling the trade-
off between fidelity to the data and roughness of the
fit and m. (z) is the second derivative of m,(z). From
Eq. (2.3), we can see that when « is too small, 7, (-)
tends to interpolate the 7-th quantiles at the distinct design
points. As a consequence, this will lead to undersmooth-
ing. Meanwhile, 7. (-) is the linear regression quantile fit
to the observations since there is too much penalty placed
on the estimate for a sufficiently large. We will use the
data-driven procedure to choose the smoothing parame-
ter « later. Asymptotic results of m.,(-) have been given
by [18].
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2.2 MM-algorithm and its properties

Since the objective function (2.3) are nondifferentiable,
we will apply MM-algorithm to optimize it. The key idea is
to first construct a surrogate function to majorize (2.3), and
then update the estimate of the whole quantile function in
the minimization step.

According to surrogate functions proposed by Hunter and
Lange [8], for given m(Tk)(~), where mgk)(-) is a given esti-
mated value at iteration k, we construct surrogate functions
(2.4)

b 2
Q{m-(-) ,miP) (. )} =Q {m, (), (Tk)(-)}—i—a/{mf(x)} dz,
where
m(k)(.)}
(Y; — mT X;
—Z { (X,))?

v = m (X5)]
+ 1= m0x0] .

*{m‘r .

+ (41 = 2)(V; = m-(X;))

In the following, we will minimize (2.4) about m.(-).
Let the order statistics of a random sample X,..., X, be
X(l) < X(g) < e < X(n) and h; = X(i+1) _X(i) for
i =1,...,n — 1. According to Theorem 2.1 in Green and
Silverman [4], the roughness of m,(-) can be written as a
quadratic form

b
/ {m(z)} de = W Kp,

where g = (1, ..., pin)7, i = m(z;) is the fit, and K is an
n x n matrix given by K = QR Q7 Q be the n x (n—2)
matrix of second differences, with entries
-1 -1 -1
=hj 1455 = —h_y = Ny
forj=2,...,n—1,
¢i; =0 for |i —j| >2.

-1
qj—1,j i1, = hy 7,

R is a symmetric tridiagonal matrix of order (n — 2) with
elements 7;;

1
Ty = g(hi_1+h,») fori=2,...,n—1,
1
Tiitl = Titl,i = Ehi fori=2,...,n—2.

Let

Y = (Vi + 27 = )[Yi —m® (X)),
+ (27 = DY, - mP (X)),
W = diag{1/|Y1 = m{(X1)],....1/|¥, — m¥) (X))}

Y



Then, the closed form solution of minimizing Eq. (2.4) is
given by

(2.5) mEH () = (W 4+ aK)'WY.

In the following, we will show that the surrogate functions
Q{mf(-),m(ﬁ)()} possess the the descent property [8, 9] of
MM-algorithm. The descent property makes the MM algo-

rithm a very remarkable numerical stability.

Theorem 2.1. The surrogate functions Q{m7(~),m£k)(~)}
satisfies the following inequalities

D) : Q{m® ()m®P ()} = . {mP ()}
2): Q{m. ()m® ()} = 4 {mr ()}

2.3 A perturbed version of MM algorithm

A major disadvantage of minimizing Eq. (2.4) is that,
when Y; — m{® (X;) = 0 for some z then the denominator
|Y; — m(k)( X;)| makes Q{m,(-),m m! ()} undefined. There-
fore, this motivates us to consider a perturbed version of
MM- algorithm that is to say, |Y; — mi (X;)] is replaced by
lY; — mi® (X (Xi)| + € in Eq. (2.4) for some sufficiently small

€ > 0. In the following, we define a perturbed version of
A {m.(-)}. Denote r;; =Y; —m,(X;),

(2:6)  elme()} = Z{me()} = Y Slog (et I

i=1
b
+a/ {m:(x)}zdx.

Next, we study the perturbed version of the MM-algorithm.

For given m! ( ), MA{m-(-)} is majorized by the following
surrogate function

Qe{mT()amS-k)()}
b 2
zQ:{mT(-),mg“)(-)} —I—a/ {m, ()} dz,

(2.7)

1l (Y- me(X))?
24{

v m(k)( Xl te + (47— 2)(Y; = m-(X3)) +C},

=1
where ¢ is a constant chosen so that Qg{mgk)(-), m(Tk)(-)} =
{m(k)( -)}. According to Proposition A.2. in Hunter and

Lange [8], Qe{mT(),m(Tk)(-)} also possesses the descent
property of MM-algorithm. It is worth it to point out

that when we calculate m{*™! )() according to Eq. (2.5),

lY; — (k)(X-)| i =1,...,n of Y and W should be re-

placed with |Y; — m(k)( X;)|+ei=1,...,n as well. Next, we

will give some convergence results of the perturbed version
of the MM-algorithm. Let x = 1 + sup{|Y; — m.(X;)|,i =

.y}

Theorem 2.2. 1. If ke <1, then

)} < =5 log(e);

A {m- ()}

[ {me ()} = A{ma(:
2. If 1.(-) and Mmr() minimize and
MAm(-)}, respectively, then
M ()} — A {1 (-)} < —enlog(e);
3. If () minimizes M A{m-(-)}, then any limit point of
{m-e(-)} as € = 0 minimizes A {m.(-)}.

2.4 Practical implementation issues

The proposed MM-algorithm involves the problem of ini-
tial value. Therefore, we first obtain initial value m{® (+) via
normal approximation. We apply kernel regression to obtain
Z;L:l K,K}L(Xi_r)

e Kn(Xi—z)
and further calculate variance estimate 62 =n=' > " {V;—
m(X;)}? by pretending a constant variance. By normal ap-

estimate of mean function, i.e., m(x) =

proximation, we set the initial value m(o)( ) = m(z) +
5, ®71(7), where ®~1(-) is the inverse cumulative distribu-
tion function (CDF') of a standard normal distribution. We
declare convergence for the proposed MM algorithm when-
ever

(2.8)
QM (), mB ()} = Qx{m¥) (), mlE (.

for a small positive value 6. In this paper, we take § =
e=1075.

3. SELECTION OF THE SMOOTHING
PARAMETER

From (2.3), we see that the smoothing parameter o con-
trols the degree of goodness of fit and smoothness of a curve
estimate. Therefore, to implement the methods described
in previous sections, it is desirable to have a data-driven
procedure for selecting the smoothing parameter «. In this
paper, we select a via minimizing an approximate general-
ized cross-validation (GCV) score. Let

()} <o

Af@) = (I + oK) = (I +aQR'QT) "

Then, GCV score is defined by

1 Zz 1(Y m.,-(XZ))Z
n (1—n"ltr(A(a)))?

GCV(a) =
Therefore,
& = argmin GCV («).

The minimization can be carried out by searching over a
grid of points for a.
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Figure 1. GCV against a.

4. SIMULATION AND APPLICATION

Example 1. We first illustrate how to select the smoothing
parameter a. We draw random samples of size n = 200 from
the model

(4.9) Y; =sin(27X;) + ¢,

where X; are independently sampled from U(0,1). The er-
ror term ¢; are independent and identically distributed ran-
dom variables from a Student’s t distribution with 2 degrees
of freedom. Since the error term is symmetric, we select
7 = 0.5. We plot GCV scores against the penalized param-
eter o as depicted in Figure 1. From Figure 1, we can see
that the smoothing parameter o equals 0.0007, selected by
minimizing the GCV scores.

Example 2. In this subsection, we conduct simulation
studies to evaluate the finite-sample performance of our
proposed estimator. We draw random samples of size n =
50,100,200 from the model (4.9), where X; are indepen-
dently sampled from U (0, 1). The error term ¢; are indepen-
dent and identically distributed random variables from

1. a standard normal distribution, ®;

2. a Student’s t-distribution with 2 degrees of freedom, ts;

3. a 5% contaminated normal distribution CNygs =
0.95®(z) + 0.05®(x/5);

4. a laplace distribution with location parameter p = 0,
and scale parameter b = 4, Laplace;

5. a standard Cauchy distribution, Cauchy.

Since the error terms for regression models are symmet-
ric, both conditional mean and median functions represent
the true regression function in the usual sense. In the simu-
lation, we select 7 = 0.5 and conduct 1,000 simulations, and
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Figure 2. The fitted curves based on LS-method,
WSS-method, and MQR-method.

calculate the mean-squared errors (MSE) of our proposed es-
timator (MQR), the mean smoothing regression (LS), and
the method (WSS) proposed by Nychka et al. (1995) [14],
where the smoothing parameter of these methods is chosen
by GCV, and the mean-squared error is defined by

n

MSE = % > (e (i) — m(z:))”.

i=1

We compute the estimator based on the method proposed
by Nychka et al. [14] using the gsreg function of the R pack-
age fields, and the mean smoothing regression using the
smooth.spline function of the R package stats. The means
and standard errors (in parentheses) of MSE are reported
in Table 1. From Table 1, we can clearly see that MQR is
more robust and efficient than the estimator based on the
mean smoothing regression and the estimator proposed by
Nychka et al. [14] with GCV scores when the error terms
are drawn from any of the thicker-tailed distributions.

Example 3. In this example, we use simulation studies
to illustrate the degree of goodness of fit of our proposed
method. We draw random samples of size n = 200 from
the model (4.9), where X; are independently sampled from
U(0,1). The error term ¢; are independent and identically
distributed random variables from a Student’s t-distribution
with 2 degrees of freedom. the fitted curves based on LS-
method, WSS-method, and MQR-method are drawn in Fig-
ure 2. From Figure 2, we see that the fitted curve based on
MQR-method is closer to the true curve than those based
LS-method and WSS-method when the error terms follow
the heavy-tailed distributions.



Table 1. Means and standard errors of MSE for MQR, WSS and LS for the following distributions

n Method [} to CNy.o5 Laplace Cauchy
MQR 0.1263(0.0776) 0.2174(0.1658) 0.1073(0.0725)  1.8667(1.5759) 0.3256(0.4225)
50 WSS 0.2158(0.1080) 0.4047(0.2691) 0.1870(0.0998) 4.1661(2.6554) 13.865(281.02)
LS 0.2267(0.3028)  6.4517(43.5986)  0.2377(0.3074)  8.7313(12.456) 7395.7(114992)
MQR 0.0714(0.0444) 0.1215(0.0736) 0.0569(0.0389)  1.0363(0.7606) 0.1534(0.1057)
100 WSS 0.1122(0.0538) 0.1846(0.0992) 0.0914(0.0498)  1.8500(1.0655) 0.5163(0.5346)
LS 0.1178(0.2189)  5.1448(22.3873) 0.1150(0.2149) 5.1014(10.136) 21602(414970)
MQR 0.0405(0.0247) 0.0662(0.0397) 0.0286(0.0195)  0.5364(0.2824) 0.0773(0.0500)
200 WSS 0.0568(0.0287) 0.0917(0.0466) 0.0420(0.0232)  0.8363(0.4447) 0.2156(0.1687)
LS 0.0607(0.1610) 0.1307(0.2930) 0.0748(0.1957)  2.1906(6.4256)  133190(2424003)
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Figure 3. (a) Conditional mean analysis; (b) Conditional quantile analysis.

Example 4. As an illustration, we apply the proposed
methodology to analyze the dataset about bone density
(BMD) in adolescents. The dataset was originally an-
alyzed in [1] and was also reported in [7]. The data
can be downloaded from http://statweb.stanford.edu/ " tibs/
ElemStatLearn/. The dataset contains the following four
variables: idnum, age, gender, and spnbmd (relative spinal
bone mineral density measurement). There are 485 obser-
vations in the dataset. We will study the relationship be-
tween age and spnbmd. Since there are the same age in age
variable, we take mean of spnbmd for the same age. We
obtain 239 observations, which are showed in Figure 3. In
the following, we apply the LS-based method and MQR-
method to deal with the dataset. The results are shown
in Figure 3. Figure 3(a) shows a conditional mean analy-
sis, and Figure 3(b) describes a conditional quantile anal-
ysis with 7 = 0.05,0.25,0.5,0.75,0.95. For MQR-method,

we apply the proposed methodology to select the smooth-
ing parameters with the corresponding quantile, and obtain
a = 0.9,0.9,0.9,0.9,0.87, respectively. From Figure 3, we
can see that the relative spinal bone mineral density obtains
maximum between 12 and 13 years. The conditional mean
analysis clearly gives the entire distribution of BMD changes
against age, but it provides only the central tendency of the
conditional distribution. As controls, the conditional quan-
tile analysis provides us more detailed information of these
changes. For example, we can see that the variance of the
BMD changes against the age is heteroscedastic, and that
the conditional distribution is slightly positively skewed.

5. DISCUSSION

In this paper, we applied MM-algorithm to solve the com-
putational problem of the smoothing nonparametric quan-
tile regression model. Simulation studies and the real data
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analysis illustrated that the proposed methodology was ro-
bust and efficient. Although the proposed algorithm only
dealt with the nonparametric model in this paper, More
work remained to be done on the application of the pro-
posed method to other models, like the generalized additive
models and semiparametric models.
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APPENDIX
Proof of Theorem 2.1. By Eq. (2.3) and Eq. (2.4), we have
- Z{m.(")}.

According to Hunter and Lange [8], we have

(A1) Q {m (), mM ()} = 2{mP ()},

(A.2) Q {m,(-),mP ()} = L{m.()}.

Therefore, by Eq. (A.1) and Eq. (A.2), we complete the
proof of Theorem 2.1. O

Proof of Theorem 2.2. f ¢ + |Y; — m.(X;)| < 1,
then [|log(e +1Y; —m,(X;)])] < —log(e). Otherwise,
[log(e + |Y; — m,(X;)|)| < log(k) < —log(e) since ke < 1.
Therefore,

[ {mr ()} = e {me ()} = 5 D log(e + [Yi —m(X))])|

IN

5 o e+ 1Yi = m (X,)])|

=1

IN

f% log(e).

M {1irc()} = A {10 () }

= ///{mﬂ'e()} - //lé{mfe(')} + ///E{T?LTE(')} - ///{mﬂ'()}
S e ()} — MArre() ) + M ()} — A {0 ()}

S |%{m’re()} - %e{mre()}’ + ‘%e{m‘r()}

— //l{ﬁ%()}’ < —enlog(e).

Let limg— o0 Mre, (1) = mE(-) when ¢, — 0 as k — oco. In
addition, we have limy_, o0 A, {m,(-)} = 4 {m,(-)}. Since
Mo A Mre, ()} < M, {m,(-)}, we take limits about this in-

equality, then, .Z{mZi(-)} < .#{m(-)}. This completes the
proof of Theorem 2.2. O
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