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Modern sample size determination

for unordered categorical data

JUNHENG MAT, JIAYANG SUN®T, AND JOE SEDRANSK

Sample size determination is one of the most important
practical tasks for statisticians. In this paper, we study sam-
ple size determination for unordered categorical data, with
or without a pilot sample. With a pilot sample, we pro-
vide a minimal difference method, a first order correction,
and bootstrap methods for sample size determination in the
comparison of two multinomial distributions using the usual
chi-squared test. We also propose a Bayesian approach that
uses an extension of a posterior predictive p-value. The per-
formance of these methods is investigated via both a simula-
tion study and a real application to leukoplakia lesion data.
We advocate a better performance measure than MSE when
the sampling distribution is highly skewed. Practical rec-
ommendations are given. Some asymptotic results are also
provided.

AMS 2000 SUBJECT CLASSIFICATIONS: Primary 62F10,
62F15; secondary 62F40.

KEYWORDS AND PHRASES: Bootstrap, Calibrated poste-
rior predictive p-value, Multinomial distribution, Pilot data,
Power calculation, Practical recommendations.

1. INTRODUCTION

Sample size determination (SSD) is one of the most im-
portant practical tasks for statisticians. There has been con-
tinuous research to develop appropriate methodology, e.g.,
methods for sample size determination for continuous or or-
dered categorical outcome data. However, methodology is
relatively limited for sample size determination in compara-
tive studies with unordered categorical data, which has im-
portant applications. For example, one of our collaborators
was interested in deciding the number of images that he
needs radiologists to view in order to evaluate the quality of
two contrasting imaging modalities. Other examples include
comparing the distributions of the locations of leukoplakia
lesions for different smoking or chewing habits [20] and com-
paring the response patterns for two or more different com-
binations of treatments in clinical trials [7]. A somewhat
different type of example is related to survival data, where
the five-year survival rate is often used to evaluate the effi-
cacy of different treatments in clinical trials. However, the
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difference could also be seen at other important landmark
years, such as 1, 2, 3, 10, and 15 years (see Figures 2 and 3
in [15]). Thus, to have a more complete comparison of two
survival functions, either simultaneous confidence bands for
both survival functions should be provided, or survival rates
under the two treatments should be compared for selected
time periods, i.e., leading to a comparison of categories.

Unordered categorical data from two populations can be
modeled by a two-multinomial model, where n;1,n;2, ..., Nk
are the observed cell frequencies from a multinomial dis-
tribution with parameters (n;,p,), denoted as Multino-
mial (n;, p;), for i = 1,2. Here n; is the sample size and
p; = (pi1,Pia, - - -, Pix) is the vector of cell probabilities, sat-
isfying Z?Zl Nij = Ny, Z?leij =1 for ¢ = 1,2. So, to
compare these two multinomial populations, one could test
if there is a difference between p,; and p,, given observed
samples {n;;}. In practice, before observing the two multi-
nomial samples, one might be interested in determining the
minimum sample sizes n; (for population 1) and ng (for pop-
ulation 2) needed to draw the samples to achieve a specified
power for a test of the null hypothesis that p; = p, against
the alternative hypothesis that p; # py. This SSD problem
is the focus of our investigation.

A selective literature review on sample size determina-
tion includes the books [5, 6], an excellent review article [2],
a representative Bayesian paper [27], and references therein.
In detail, [6] presented common methods for determining the
sample sizes in experiments and sample surveys. [5] provided
a comprehensive and unified presentation of statistical pro-
cedures (Bayesian and non-Bayesian) for sample size calcu-
lation needed at various phases of clinical research. [27] pro-
posed a simulation-based approach to sample size determi-
nation in two situations. The first situation is finding the
sample size needed to achieve specified performance with
regard to one or more features of a model. The second one
is selecting a sample size to achieve a specified separation of
two models.

There is limited specific literature on practical SSD for
comparing differences of two multinomial vectors, but there
have been many references on SSD for one multinomial
population. [25, 26] considered sample size determination
for simultaneously estimating the parameters of a multino-
mial distribution with a specified confidence interval width;
while [1] developed a Bayesian approach to select the sam-
ple size such that the parameter of interest is contained in
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a tolerance region with specified probability (which holds
on average over all possible samples). [11] investigated using
information from a previous study to determine the sample
size for a chi-squared test. [23] developed two procedures to
construct simultaneous confidence intervals for the multino-
mial proportions and proposed two corresponding sample
size determination methods to achieve a specified coverage
probability.

In this article, we find the sample sizes needed to detect
a difference between two vectors of multinomial proportions
using both frequentist (or non-Bayesian) and Bayesian ap-
proaches, although the procedures should be applicable to
comparisons of I multinomial populations for I > 2.

Our paper is organized as follows. In Section 2, we briefly
set up and review general approaches for sample size de-
termination. In Section 3, we study the chi-squared test for
contingency tables, recommend three practical implementa-
tion methods for the sample size determination, and inves-
tigate some asymptotic properties. In Section 4, we develop
bootstrap and other improvements to the basic approach
in Section 3. In Section 5, we use the concepts of posterior
predictive p-values [9, 10, 17] and calibrated posterior pre-
dictive p-values (cppp) [14] to develop a Bayesian approach
to sample size determination. More recent applications of
cppp can be found in [4, 24]. The simulation studies, a real
data application and their results are described and sum-
marized in Sections 6 and 7. This investigation provides
a much needed comparative study among the frequentist
procedures, and between the frequentist and Bayesian ap-
proaches, providing practical advice for SSD for unordered
categories. Our conclusions are in Section 8, followed by an
Appendix.

2. GENERAL APPROACHES FOR SAMPLE
SIZE DETERMINATION

All sample size determination methods require that the
sample sizes satisfy a specified target level of accuracy or
maximize a specified objective function. The approaches for
sample size determination can be classified into two broad
groups, Bayesian and non-Bayesian.

In a typical non-Bayesian (i.e. frequentist) approach, we
first specify a null and an alternative hypothesis for the pa-
rameter of interest, u, say, Hyp : p € w, Hp :p € Q—w.
Second, we specify a desired test size o and power (1 — f3).
Then, a critical value for deciding when to reject Hy is ob-
tained, so that the probability of making a type I error is
close to but not larger than «, i.e., Pr{reject Holu} < «
for p € w. Third, based on the critical value, we choose the
smallest sample size n to satisfy Pr{reject Ho|lu} > 1 — S,
where p is a specified value in € — w. This method usu-
ally requires finding an exact or approximate pivotal quan-
tity that is related to the test statistic and the computation
is specific to the problem under consideration. Frequentist
methods such as this have been used widely in practice and
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can also serve as a starting point for a Bayesian approach;
see our algorithm in Section 5.

In a typical Bayesian approach, we first specify a prior
distribution for the model parameter(s). Second, we calcu-
late the posterior distribution of the parameters based on
the prior distribution and data. Third, we find a test quan-
tity (also called a discrepancy measure) which is a function
of the data and parameters. Fourth, we compute the poste-
rior predictive p-value based on the test quantity. Then we
look for the minimum sample size such that

Py, {pq(ﬁ(’bs) < a} >1-7,

where p, (77°%%)

is the posterior predictive p-value based on
the observed value 71°%* of n, “H,” denotes a specified value
of pin Q —w, and (a, B) are choices comparable to those
for the frequentist method. Note that this approach for SSD
differs from the Bayesian model selection approach that in-
volves computing marginal likelihoods for two competing
models and hence the corresponding Bayes factors. In Sec-
tion 5, we replace the posterior predictive p-value, p, (7 Obé),
with the calibrated posterior predictive p-value [14] to over-
come the possible non-uniformity of the distribution of the
posterior predictive p-values under the null (hypothesis)
model.

3. BASIC APPROACH

Consider the hypotheses Hy :
P1 # Py, where p = (p1,...
ter vector, s.t. >, p; = 1. A reasonable test statistic for
testing the null hypothesis is

2k n )
Z Z \Ibig — 144P05) Zp()j ’

poj

P1 =P, =D, vs Hi:
, k) is some unknown parame-

(3.1)

where n;; is the observed cell frequency for cell j from
Multinomial(n;, p;), ni = n;. = ijl n;; are the row sums,
n.j = nyij + ng; are the column sums, N = n; + ny is the
total sample size, and po; = n;/N is the estimated cell
probability under Hy for 7 = 1,2,...,k and ¢ = 1,2. It
is straightforward to extend this test for the equality of 2
multinomial distributions to that of I multinomials, but the
2-multinomials case is the most important and hence is the
focus of this paper. Under the null hypothesis Hy and rea-
sonable regularity conditions, as n —» oo, X2 “" X%kfly
by using properties of the generalized likelihood ratio test.
Therefore we may reject Hy at level « if the observed value
of X* > X%kq)(a% where X%kfl)(a) is the upper a quan-
tile of the chi-squared distribution with (k — 1) degrees of
freedom. When the alternative hypothesis H; is true, i.e.,
Py # Po, the test statistic X2 has approximately a noncen-
tral chi-squared distribution with (k —1) degrees of freedom
and noncentrality parameter A as shown by [18].



We advocate rewriting A in a way that provides a sym-
metric expression. This will lead to a more accurate approxi-
mation to the sample size than the one without symmetriza-
tion. Specifically, we denote p; = p + 1 and py, = p + do,
where p = (p; + pP2)/2 and 6; = p; — p for i = 1,2 re-
spectively. A general formula to calculate the noncentrality
parameter A for a (2 x k) contingency table is then

k A2
A:NququxZ{—?},

=\ Pi

where ¢; = n;/N for i = 1,2; A; = p1j; — pej, and p; =
(p1j + p2;)/2 for j = 1,2,...,k. In a balanced design, we
have n; = ne = n and then A = (n/2) Z?zl{A?/pj}. To
have large power, we require that Prg, {X* > X%k_l)(oz)} >
1 — A. Since X? has a noncentral chi-squared distribution
with (k—1) degrees of freedom and noncentrality parameter
A, then ) satisfies

(3.2) Xte—ya(1=8) = xG1y (@),

where X%k—l))\(l — () is the upper (1 — ) quantile of the
noncentral chi-squared distribution with (k — 1) degrees of
freedom and noncentrality parameter .

Given «, 8 and k, we can find the value of A\g from a
noncentral chi-squared table that makes the equality in (3.2)
hold. For example, for k£ = 5 and o = 0.05,8 = 0.2,
Ao = 11.94. Also, note that X%k_m,,\(l — B) increases in )\,
so the minimal n required to have power 1 — 3 to detect the
difference when A > \g is

<) |

where [z] denotes the smallest integer that is greater than
or equal to z. The formula in (3.3) provides the basic
approach to sample size determination by the frequentist
method. In the unbalanced case, let 7 = nq/ny be the ra-
tio of n; to ma, specified in advance. Then it can be shown

easily that
k 2 -1
A
ny = |(r+ 1)/\0 E L ,
=1 P

which is n in (3.3) if » = 1, and ny = ny/r. The improve-
ments and Bayesian approach described in detail below are
for the balanced case, for simplicity of the notation. The
data application has unbalanced data.

We notice that n in (3.3) depends on unknown parame-
ters A = (Aq,...,Ag) and p = (p1,...,pk), the differences
and averages of p; and py. Therefore, we recommend the
following three practical implementations to deal with these
unknown parameters.

(3.3)

(3.4)

o Method M1: Specify a minimum average difference d
between p; and p,, and a minimum relative difference,
r, that we want to detect. In other words, if the average
difference D, and relative difference R;, are defined to
be

1 p1j — p2j
D:EZ|AJ'|7 R; = : s
J

7j:172,"'7k7
pj

_ ‘Aj
pj

then the sample size needed to detect a difference with
D >d R; >rfor j=1,2,...,k with power at least
1-4is

(3.5) i = [2Xo(r - kd)~*].

e Method M2: Replace A and p by estimates obtained
from historical, pilot, proxy, or approximate data. Then

)]

where p; = 5(p1j + P2;), and Aj = p1j — pa;.

e Method M3: When comparing k categories of two multi-
nomial populations, if we already know that some cate-
gories have the same or similar counts for the two popu-
lations, it is highly recommended to remove these cate-
gories to reduce the problem to one comparing k'(< k)
categories. This is not only practical, but also gener-
ally results in a smaller n needed to compare these k'
categories than n computed based on the original k cat-
egories.

Remark 3.1. Methods M1 and M3 are reasonable, as it
is common to ask our collaborators for reasonable smallest
differences (i.e., the parameters that are analogous to d and
r here) that they would like to detect in practice. It is also
common to ask for pilot or proxy data if a SSD method
depends on some unknown parameters. A proxy data set
can be a relevant data set from the literature. If these data
do not exist we would use method M1, or suggest conducting
a small pilot study first, if such a pilot study is feasible.

(3.6)

In Method M2, the A; and p in (3.6) are estimates. One
situation where (3.6) is appropriate is when an investigator
observes A; from a pilot sample and thinks that if A; =
01 — 025 was, in fact, no less than Aj, j=1,...,J, he/she
would like to be able to reject Hy : p; = py = p with
probability (1 — ) when H;j is true. Then, the total sample
size needed to achieve this objective is given by (3.6). In the
following, we provide some asymptotic properties about n
obtained in (3.6) to show its justification, give a CI for n,
and motivate improvements in Section 4.

In a balanced design, suppose the sample size from a
pilot sample is m for each multinomial distribution. Let
t; = (p1;(1—p1;) +p2;(1—p2;)). For large m, by the Central
Limit Theorem, it’s easy to see that

o d 1 /¢t 1 ~ 4 ts 1
pj = pj+Zj1§\/ EJ—"_OP(E); Aj = Aj+Zj2 EJ—FOP (E)’
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where “d” represents equality in distribution, and Zj;
and Z;y are standard normal random variables. Using this
asymptotic expansion, we have the following lemma and
proposition. The proof of Lemma 3.2 is straightforward and
the proof of Proposition 3.6 is in the Appendix.

Lemma 3.2. Given a pilot sample of size m from the two
multinomial populations, if m is not too small, then

N k k 2

n d A QAJ tj Aj\/tj 1
rd_ 2, 229V 5 AN il
n n (Z D, 72 ; 2p; | o m)’

j=1 7

—
@
~

-

- g (53) o)

Jj=1

and Z;1 and Zjo are standard normal random variables. Fur-
ther, as “m — o0”,

R 1
(3.8) Var(n) = A? - B—&-o(W),
where
k k k L
B=> (a;+b)+>, > {abitit;) 2 (puip1; — p2ip2s)}
j=1 j=1i#j,i=1
k k .
=0 {biby + aiay)(tity) "2 (priprs + paip2s) b,
G=1i#j,i=1

and a; = 20\t /pi, b = AFNVE/(2p) for 1 =1,2,... k.
Remark 3.3. From (3.7), the estimator 7 has the following
property: n/n =1+ O,(1//m).

Remark 3.3 gives a sense of the magnitude of the ratio
between n and n, which is consistent to what would be ex-
pected of a well behaved estimator of n, of course.

Remark 3.4. From (3.8) we can see that Var(n) =
O(1/m). Hence (3.7) and (3.8) give us some measure of the
accuracy of 7 in estimating the fixed n when m is not too
small. We shall examine by simulation how good the esti-
mate 7 is in estimating n for finite n and m in Section 6.

Remark 3.5. All these big or little o’s should be interpreted
as the approximation when the pilot or proxy sample size is
not too small so that the pilot estimates of the parameters
are not too erratic. Although we can do asymptotics to say
that Var(a) = O(1/m) — 0 and 7 "R N(n, Var(n)) as
m — oo, they would only be “true” if the “pilot” sample of
size m is a proxy or a historical sample and is not included
in the total sample size n of the current study (otherwise,
n would also go to co). In practice, it’d be foolish to not
reuse the pilot sample if it’s from the same experiment un-
der study. This shows the limitation of an asymptotics study
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in some cases and confirms the need for studying its actual
improvements in finite sample situations, as those in Sec-
tion 6.

Defining the power of the test under H; based on a sample
of size fi to be Power(n) = Pg, (X? > xi_,(a)) we have
Proposition 3.6 below.

Proposition 3.6. If |n/n — 1| < €, then Power(d) =1 —
B+ 0O(e).

This means that the actual power of # tends to (1 — )
as n — n if the pilot sample gives a good estimate of the
unknown parameters or as m — o0o. See the Appendix for
the proof and a bound for the O(g) term.

For a pilot study with sample size m, we use the Aj’s and
Dj’s to estimate the A;’s and p;’s, and let

N|=

k k k

(Priprs — f)zﬂhj)}

— Z Z {(i?zi)j + diéj)(iiij)_% (ﬁliﬁlj +ﬁ2iﬁ2j)}

j=1i#j,i=1

which is an ugly, long expression, but is extremely simple
to compute. Then, a 100(1 — «)% approximate confidence
interval for n is (7 — 24/200, 7 + 24 /200), Where z, /5 is the
upper «/2 quantile of the standard normal distribution.

4. IMPROVEMENTS TO THE BASIC
APPROACH

Methods M1 and M3 in the basic approach (Section 3) are
simple, practical, and straightforward to implement. There
is no need to find improvements to M1 and M3 if they are ap-
plicable. Method M2 given in (3.6) is based on the estimated
parameters from a pilot sample or proxy data. In order to
reduce the sampling error of the estimate from the pilot
sample or proxy data and also to stabilize the estimated re-
quired sample size, we study the following improvements to
M2, one borrowing the computing power by bootstrap, one
by posing a minimum difference, and another by a simple
“ad hoc” correction using asymptotics.

4.1 Bootstrap method (BOOT)

The basic idea of the bootstrap method is to draw boot-
strap samples from the pilot data and take, typically, the
mean or median of the calculated sample sizes computed
from the bootstrap samples as the required sample size,
see [5].

Parametric bootstrap-mean and bootstrap-median meth-
ods. With these two methods, bootstrap samples are drawn
parametrically from multinomial distributions where the pa-
rameters of the multinomial distributions are estimated from
the pilot data. Then we calculate the sample sizes using (3.6)



for each of the bootstrap samples, for i = 1,2,..., B,

A AL T
n — 20 <Z %) ,
=1 Pij

where A(J D = A(“) Ag;z), Dij = (pgj 9 —Hﬁ;l)) and the
ﬁl(;z), l=1,2, are the usual estimates but based on the ith
bootstrap sample and B is the bootstrap sample size. Then
take the mean and median of {n*",i = 1,2,..., B} as the
required sample sizes for the bootstrap -mean method and
for the bootstrap-median method, respectively. Preliminary
simulations suggested that both bootstrap methods under-
estimate the true sample size especially when the pilot sam-
ple size is either small or moderate. In order to correct for
the underestimation issue, we propose using the 75% or 80%
quantile of the estimates from the bootstrap samples as the
estimated sample size, after experimenting further bias and
skewness corrections including a bootstrap BCa method (§6
and §7).

Non-parametric bootstrap-mean and median methods. For
a non-parametric bootstrap method, one would proceed as
for a parametric bootstrap method but draw the bootstrap
samples nonparametrically, i.e., from the pilot data using
random sampling with replacement. However, it is impor-
tant and straightforward to see that the sampling distribu-
tion of a non-parametric bootstrap from the pilot sample is
also multinomial with cell probabilities set to be the two
relative frequencies computed from the pilot data. So in
this multinomial case, the parametric and non-parametric
bootstrap procedures yield the same result, which is also
confirmed by our simulation study. In the following, we will

just examine the parametric bootstrap method and call it
BOOT.

4.2 Minimum difference method (MIN)

If a scientist is interested only in parameter differences
that are at least as large as ¢, using this information in find-
ing the required sample sizes usually will reduce the sample
sizes (relative to not using this information) and can improve
the accuracy of the SSD if the true parameter differences are
indeed at least as large as c¢. Doing this the required sample

size is
k A9 -1
2
4.1 = |2\ — :
j_
where C; = maz(c, \A |). Formula (4.1) is the same as that

in (3.6) except that AJ is replaced by C The common p;
does not change because when Aj; is changed to CJ, Dj1
is changed to pj; = pj2 + C; and pj2 to pjy = pj1 — Cj,
which imply that p; = %(ﬁ;l —l—ﬁjQ) = %(ﬁjl + Pj2) = Pj.
In practice, ¢ is determined by the scientist as the smallest
difference that would be useful and meaningful to detect.

That is, the objective of the minimum difference method is
to find the sample size so that the power is at least 1 — 3 in
the parameter space where the differences are at least as big
as c¢. This minimal difference method differs from method
M1 in that in method M1, one would need to know d > ¢
(here) and r. Here, without r, we use both ¢ and the pilot
sample to estimate n.

4.3 Correction method (CORR)
From (3.7), we see that the 2nd term in the right hand

side
k k 2
INLE A=/t
4 (20, -y S )
Jj=1

=1 j 2p;

is of the order of 1/y/m. To rigorously correct the bias of 72 in
estimating n, one would need to derive an inverse Edgeworth
expansion or Cornish-Fisher expansion, and then to evaluate
the finite sample performance of this correction numerically.
This rigorous approach is left as future research. Here, we
opt for a simple, “ad hoc” bagging approach; i.e., draw N
pairs of random samples for (Z;1, Z;2) from standard normal
distributions and then examine the performance of the “ad
hoc” corrected estimate

(4.2)
(Z L\/E 2 _

j=1 J

N

Z

k AQ
5 fzﬁ?)

Jj=1

numerically. Here A,Aj,fj and p; are the estimates of
A,Aj,t; and p; respectively. The performance of this sim-
ple correction procedure will be evaluated together with the
original (M2), the bootstrap (BOOT) and minimal differ-
ence (MIN) procedures.

5. BAYESIAN APPROACH

We now describe a Bayesian method that is motivated
by and parallel to the frequentist approach. Under the null
model, i.e., Hp, the two multinomial distributions have the
same probability parameter p* = (pf,p3,...,p;) such that
ﬁi = (Tlil, iy ... ,nik) ~ multinomial(p*, ni), i = 1, 2,
where n; = Z;Ll ni;. For a multinomial distribution, the
conjugate prior distribution is Dirichlet with density func-
tion,

F(p*la) o Hp*“fl,

where the distribution is restricted to nonnegative p* =
(p},...,py) with Z?le;f =1,p; > 0 and a; > 0, for j =
1,..., k. The resulting posterior distribution of the p*, given
= (ny,i=1,2;j=1,2,...,k) under Hy, is

k

f(p*|ﬁ) X Hp;(afr".jfl),
j=1

(5.1)
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where n ; = 22 1 Mij. Let t(n, p) be a discrepancy measure
and let 77°®® be an observed value of 7. A natural choice of

t(1i,p) is

2 k
o nlj Lp]
=30y sl
=1 5=1 g
as in (3.1), where @ = (n;; : i = 1,2;j = 1,2,...,k),

p = (p1,p2,-..,pk) and n,; = Z?Zl ni;. Then the posterior
predictive p-value (ppp) is defined as

(52)
pppp{—»obs} _ PTHO{t(ﬁpTEd, p*) > t(ﬁObs

)l—»obs}

where p* is the common vector of proportions for the two
multinomial distributions. The probability in (5.2) is taken
over the joint distribution of (7P"¢¢, p*) given 7°**, in which

~ f(p*|i°**) is Dirichlet in (5.1), and 7iP"? is a pre-
dlctlve value of 7, where given p*, 7P"*? is assumed to be
independent of n"bs, and 7i? e has the multinomial distri-
bution, mult(p*,n?®*). One may reject the null model at
level a if p,pp {7} < a. However, [14] explained problems
with the posterior predictive p-value: “the ppp calculation
uses the data twice, first updating the prior to fit the data
better and then estimating how surprising the data are rel-
ative to the posterior parameter distribution. Thus it is not
surprising that its distribution across likely values of y,ps is
not uniform; we can, in fact, demonstrate various extreme
aspects of non-uniformity in several situations. This makes
the interpretation and comparison of ppp values a difficult
and risky matter.”

To correct the possible non-uniformity of the distribution
of the posterior predictive p-value, a calibrated posterior
predictive p-value was proposed by [14], i.e

pcmw{ﬁObs} = Pry, {pppp{ﬁ} < pppp{ﬁObS}}a

where 77 comes from the marginal distribution derived from
the joint distribution of (p*,7) in which 7 has the multi-
nomial distribution with parameter p*, which comes from
the prior distribution m(p*). Another attempt to improve
posterior predictive checks was investigated by [16].

Since the calibrated posterior predictive p-value has a
uniform distribution under the null model, it can play the
role of a classical p-value.

Double-simulation can be used to estimate the value
of pcppp{ﬁ‘)bs}. In our case, given specified sample sizes
n1 = nma = m, the value of p,,,{7i°*} can be evaluated
by simulation,

hS

(53) obs} ~

Z a;im"ed’pj;) >t(ﬂobs,p:))7

Pppp { n

for a large simulation size A, where each p} is simulated from
the posterior distribution f(p*|77°**) and 7P"*? is simulated
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from the multinomial distribution with parameters p; and
m. The simulation is repeated independently A times.

Then for a large number B, the calibrated posterior pre-
dictive p-value can be estimated by simulation,

peppp{#Obs}NEi pppp{n }<p {_»Obs})

where p* is simulated from the prior distribution 7(p*) and
each 7U) is simulated from a multinomial distribution with
parameter p* and m. For each 77, pppp{fi(j)} can be ap-
proximated using (5.3). The simulation is repeated indepen-
dently B times.

Given a significance level a and power 1 — 3, we want to
find the minimum sample size for each multinomial distri-
bution such that

PTHl {pcppp(ﬁ()bs) S a} 2 1- 6;

where “H;,” denotes a specified value in 2 — w.
In a balanced design, suppose that the sample size is m
for each multinomial. We generate samples from the two
multinomials N times, 7/ = (nl;,nl,y,...,nl,), where j =
1,2,...,Nandi=1,2.
Let 719" = (nl,fiQ) forj=1,2,.
ate the cahbrated posterior predlctlve p-value, peppp(7?

, N. We need to evalu-
),

J

for each nj . Then we compare each calibrated posterior

predictive p-value with the specified bigniﬁcance level « and

calculate the proportion for which pep, (75 bs) < a.

If the calculated proportion is less than 1 (3, we increase
the sample size m and repeat the whole process. Otherwise,
we decrease the sample size m and repeat the process. Fi-
nally, we can find the minimum sample size m such that the
calculated proportion is at least 1 — .

Since this process is very computationally intensive, a
good starting point of m is very important. In practice, we
use the hypothesis test method to obtain a reasonable start-
ing point.

The following is our proposed calibrated posterior predic-
tive p-value based procedure to find the desired m:

e Choose a starting value of m.

e Select p1 and py from Q@ — w. Here, p1 and py are
the parameters representing the minimal differences one
would like to detect, or, possibly, estimates from pilot
data.

e Generate samples Ty
multi(m,p;), where j =1,2,...,N and i = 1,2.

o Let il = (i],i3) for j =1,2,...,N. Evaluate the cal-
ibrated posterior predictive p-value peppp(7i?) for each
.

e Compare each calibrated posterior predictive p-value
with the specified significance level o and calculate the
proportion for which pepy, (i) < a.

N times, 7 ~

and T #

For a specified B, choose alternative values of m until the
proportion for which peppy(?) < a is about 1 — f.



6. SIMULATION STUDY

In this simulation study, we evaluate the performance of
both the frequentist and Bayesian methods when there is
a pilot sample, contrasting these with the basic method in
(3.6). In practice, the pilot sample size should depend on
the model or problem under consideration. Therefore, we
choose three representative experimental settings (Experi-
ments 1, 2 and 3). Under each of the three experiments, we
choose pilot sample sizes ranging from 10 to 200. For each
parameter setting and fixed pilot sample size we generate pi-
lot data 5000 times; and for each pilot data, we compute 7
by the five frequentist methods, i.e., the original method M2
using (3.6), and the improvements in Sections 4.1-4.3 (boot-
strap mean and median, minimum difference and correction
methods). For the minimum difference method (Section 4.2),
the specified minimum difference between the proportions
of the two multinomial distributions is set to be 0.02, i.e.,
¢ = 0.02. However, we have found that the bootstrap mean
and median corrections have severely underestimated the
target; see the 3rd and 4th boxplots in each of the panels
(for pilot sample sizes 20 to 200) in all Figures 1-4. Then we
tried to develop further corrections that would incorporate
both bias and skewness of the bootstrap estimates, using the
bootstrap BCa idea and an ad-hoc skewness correction idea;
unfortunately, these “further corrections” did not help with
the underestimation, but had in fact increased the variances
from the original bootstrap counterparts. Therefore, in or-
der to uplift the entire set of the bootstrap mean and median
estimates, we also examined the performance of bootstrap
75 and 80 quantile estimates (i.e., taking the 75th or 80th
percentile instead of the median of bootstrap duplicates).
See the 5th and 6th boxplots for the quantile estimates in
each of the panels in Figures 1-4, where a total of seven
methods are compared side-by-side ending with the mini-
mal difference method in the 7th boxplot.

6.1 Experiment 1 (small differences)

We first set the proportions for the two multinomial dis-
tributions to be p; = (0.10,0.25,0.30,0.20,0.15) and ps =
(0.15,0.20,0.25,0.30,0.10). Clearly, the true differences be-
tween pi; and po; are small, mostly at 0.05. Thus, the re-
quired sample size to detect the difference can be large.
Indeed, if these values of p; and p5 are known, a = 0.05
and S = 0.20, the true required sample size from (3.3) is
239. Figure 1 is our side-by-side modified boxplot compar-
ison of the estimated sample sizes for the seven frequentist
methods when the values of p; and py are unknown but
some pilot data are available. These modified boxplots have
all the information provided by the standard boxplots ex-
cept for the points which are outside of the whisker; the
counts of these outside points are presented at the top of
each modified boxplot. The horizontal line in the middle
of the plot indicates the true sample size, 239. The circle,

triangle, and solid line indicate the mean, standard devi-
ation, and median (over the 5000 replicates) of the esti-
mated sample size using each method. This modified box-
plot gives a simple, compact, and informative view of the
data although other modifications of the standard boxplot
are possible.

From the simulation results, in terms of mean (the cir-
cle o) and standard deviation (the triangle A), we see that
the original and correction methods (the 1st and 2nd boxes)
have somewhat similar performance although the correction
method seems to have corrected the bias slightly, but at the
expense of increasing the standard deviation sometimes. The
minimum difference method produces comparable means
and medians as the original and correction methods do, but
with much smaller standard deviations. Comparing these
three methods with the two basic bootstrap methods (us-
ing bootstrap mean and median estimates), four of the five
methods (except bootstrap median) approach the required
sample size 239 as the pilot sample size increases while the
bootstrap median estimate also tries to reach 239, though
very slowly. This confirms our intuition and the asymp-
totics that we derived. However, for the smallest pilot sam-
ple size (30) there is a significant underestimation for all five
methods, while the underestimation of the bootstrap mean
and median methods are much more severe than the other
three methods, although their standard deviations are much
smaller than those of the other three methods. Clearly, the
mean and standard deviation are not the only possible mea-
sures of the performance. The bootstrap median estimates
have the smallest standard deviation but 75% of them, i.e.,
the entire box of bootstrap median estimates, are below the
target line even for large pilot sample sizes (150 and 200)
and hence they are not good estimates.

On the another hand, the bootstrap 75% and 80% meth-
ods, in terms of the performance of median (the bar in each
of the boxes) provide great improvements over the other
methods, i.e., approaching the target more quickly than oth-
ers for moderate and large pilot sample sizes (80, 120, 150
and 200).

Up to about 10% of the cases, the calculated sample sizes
can be extremely large due to small estimated p; from the
pilot data. In a practical situation one would either remove
the categories with extremely small probabilities of occur-
rences or draw another pilot sample before conducting the
main study. So, we repeated the simulation study (with 5000
replicates) but required that the calculated sample sizes for
all 5000 replicates not exceed 900 which is a large, conser-
vative, upper bound. To have a tighter upper bound, one
can use M1 by imposing conservative values of r and d. The
results, presented in Figure 2, show that for all the seven
methods the means approach the required sample size, 239,
as the pilot sample increases though the bootstrap median
estimates are the slowest. For the smaller pilot sample size
(30), there is also a significant underestimation. The seven
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Figure 1. Side-by-side modified Box plot for Experiment 1.
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Figure 2. Side-by-side modified Box plot for Experiment 1 with cap 900.

methods have slightly smaller means but much smaller stan-
dard deviations than those of the uncapped cases in Fig-
ure 1. Again, the bootstrap mean and median methods pro-
vide smaller means, medians and standard deviations than
the other three methods, i.e., original, correction, and mini-
mum difference methods. Both the bootstrap 75% and 80%
methods have better performance in terms of the median for
moderate and large pilot sample sizes (80, 120, 150 and 200).
The original, correction, and minimum difference methods
have similar performance.

Alternative performance measure. Since the bootstrap
mean and median methods severely underestimate the tar-
get especially for small and moderate pilot sample sizes (30
and 80), mean square error (MSE) could provide mislead-
ing information in comparing the performance of the seven
methods. To provide a practical recommendation, we rank
the methods based on their absolute differences from the
target, in two ways.

Let d;; = |s;j —no| be the absolute difference of the esti-
mated sample size s;; from the ith replicate and jth method
to the target ng, for j = 1,...,7, and ¢« = 1,...,5000. The
first rank measure R; is computed by ranking the seven ab-
solute differences d;;, j = 1,...,7, for each replicate, and
then averaging 5000 ranks from the replicates for each of
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seven methods. That is, for method j, R1; = ave;(rank;d;;).
The second rank measure Ry is computed by averaging
absolute differences over 5000 replicates for each method
and then ranking the seven averages, i.e., for method j,
Ry; = rank;(ave;d;;). We then average these two rank mea-
sures to obtain the final combined Rank, R = (R; + R2)/2
for the seven methods, where R; = (R;1, ..., R;7) is the vec-
tor of the ranks of seven methods for i =1, 2.

A summary of these measures when there is no sample
size cap is given in Table 1 on page 227, while a summary
with the sample size cap of 900 is in Table 2 on page 227.
From Tables 1 on page 227 and 2 on page 227 it is clear that
for small and moderate pilot sample sizes (30 and 80), the
bootstrap 80% performs the best while the bootstrap 75%
performs the best for fairly large pilot sample sizes (120 and
150). For large pilot sample size (200), the bootstrap 75%
performs better than others for the uncapped case and the
bootstrap median and minimum difference methods perform
the best for the capped case.

Due to the underestimation issue, we also computed the
ranks for trimmed data, where the trimming is done on the
original data by a specified percentage from both sides. The
trimming percentages we chose were 5%, 10%, 15% and 20%.
A summary of the results for these methods by trimming the



Table 1. Rank Distances to the Target (239) under
Experiment 1 (without cap)

Table 3. Rank Distances to the Target (239) under
Experiment 1 (trimming 15% and without cap)

Pilot Sample Size 30 80 120 150 200 Pilot Sample Size 30 80 120 150 200
Original Method 3.0 5.6 5.1 5.1 5.1  Original Method \ﬁ[ 5.0 4.4 4.9 4.8
Correction Method 4.0 5.0 5.6 5.6 5.6  Correction Method 2.4 3.8 5.0 4.4 4.3
Min-Diff Method 2.6 4.6 4.7 4.6 4.1 Min-Diff Method 3.2 4.7 4.2 4.1 3.6
Bootstrap Mean 5.7 3.8 3.6 3.1 3.5 Bootstrap Mean 6.0 4.2 4.0 3.9 3.3
Bootstrap Median 6.9 5.2 5.0 4.4 3.2 Bootstrap Median 7.0 6.9 6.6 6.5 6.4
Bootstrap 75% 4.0 2.4 | 1.8 | | 1.9 ‘ | 2.5 | Bootstrap 75% 4.5 2.3 2.1 ’1—8‘ lz—o‘
Bootstrap 80% 16| [14] 22 34 41 Bootstrap 80% 31 [12] [17] 24 36

Note: Among non-bootstrap procedures, minimum difference
method is better. Among all seven methods, bootstrap 80% is the
best for small sample and bootstrap 75% is the best for large
sample.

Table 2. Rank Distances to the Target (239) under
Experiment 1 (with cap)

Pilot Sample Size 30 80 120 150 200
Original Method 3.6 4.5 5.6 5.1 4.0
Correction Method 3.0 5.0 5.1 5.6 5.0
Min-Diff Method 27 41 47 46
Bootstrap Mean 5.7 3.8 3.6 3.5 3.5
Bootstrap Median 6.9 6.7 5.0 3.8 3.1
Bootstrap 75% 4.5 24 [18] [19] 42
Bootstrap 80% [1.6] [14] 22 3.4 5.3

data by 15% in total for uncapped case is given in Table 3 on
page 227. For the trimmed data, the original method gives
better performance than others for small pilot sample size
(30) while the bootstrap 80% performs the best for moderate
pilot sample sizes (80 and 120). For fairly large pilot sample
sizes (150 and 200), the bootstrap 75% performs better than
the other six methods.

6.2 Experiment 2 (medium differences)

In this experiment, the proportions for the two multi-
nomial distributions are set to be p; = (0.10,0.25,0.30,
0.20,0.15) and p» = (0.17,0.32,0.36,0.10,0.05), and the
true sample size calculated from (3.3) is 104. The side-by-
side boxplots analogous to those in Figure 1 (without cap
900) are shown in Figure 3. The results in Figure 3 lead
to conclusions similar to those in Section 6.1 for Experi-
ment 1.

The summarized ranks without the sample size cap are in
Table 4 on page 227. These results, and those when there is
a sample size cap, are similar to those seen in Experiment 1.
The results for the trimmed data show a pattern similar to
what we have seen in Experiment 1.

6.3 Experiment 3 (large differences)

In Experiment 3, we consider the case in which the differ-
ences between the parameters from the two populations are

Table 4. Rank Distances to the Target (104) under
Experiment 2 (without cap)

Pilot Sample Size 20 30 50 80 100
Original Method 4.6 4.9 5.6 5.1 5.1
Correction Method 3.6 4.3 5.0 5.5 4.5
Min-Diff Method 3.2 3.9 4.6 4.6 4.0
Bootstrap Mean 5.2 4.0 3.8 3.6 3.6
Bootstrap Median 6.9 6.8 5.1 3.8 3.2
Bootstrap 75% 2.9 26 [1.9] [19] [25]
Bootstrap 80% [1.6] [14] 21 3.4 5.1
Table 5. Rank Distances to the Target (45) under
Experiment 3 (without cap)
Pilot Sample Size 10 20 30 50 80
Original Method 4.1 5.6 5.6 5.0 4.5
Correction Method 2.9 4.8 4.9 44 3.4
Min-Diff Method 3.6 4.6 4.6 4.0 4.0
Bootstrap Mean 5.8 3.9 3.2
Bootstrap Median 6.9 5.1 4.4 3.1 4.8
Bootstrap 75% 3.0 25  [19] 31 4.8
Bootstrap 80% [17] [16] 34 5.2 5.4

moderately large, i.e., p1 = (0.10,0.25,0.30,0.20,0.15) and
P2 = (0.30,0.10,0.20,0.10,0.30). The true required sample
size calculated from (3.3) is 45. The side-by-side boxplots
analogous to those in Figure 1 (without cap 900) are shown
in Figure 4. In this case, i.e., large differences, there are
little differences among the original, correction, and mini-
mum difference methods while the bootstrap methods give
smaller means and much smaller standard deviations than
the other three methods. The summarized ranks are in Ta-
ble 5 on page 227. Similar to Experiments 1 and 2 for small
pilot sample sizes (10 and 20) the bootstrap 80% performs
the best while for moderate pilot sample sizes (30 and 40)
the bootstrap 75% is preferable. For the large pilot sample
size, especially when the pilot sample size is greater than
the target, the correction using the bootstrap 75% or 80%
methods is no longer necessary and the bootstrap mean has
the best performance, though it’s not too different from the
original and correction method.
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m=10 m=20 m=30 m=50 244 m=80
o & ! 238
= " & Moan * 276 x2 | bl
% o | Std Dev . 3?632:4 . 24_4 : 3%12?3 T 23'3_4 : ! 23223524_3230 : : o34
a ® 4—%53% 21624- 4—%2l IZ; T I i | | H T1 Lo H
£ Y- R S A R R R I R
& g 7 386 Col E:::::‘ﬁ:'::::T H:i::ill—él:
8 et L 1003‘9'9 : \ 7 : ! : rat ! lgll:ll‘(‘)‘ :”_h'JI : r(;_lo . I_I\JI ! |g| |i_|
o _I T T T ) ! A
g F [l O loElREol LY mFTA N minim S g
= L
2 g ; Z{OQ (&L, ] LA T @ S i ?A_A_,MM
o i e _._.:.-:- - A e R o R e
o -
[ ® & SRS FE & SRR S S LT & S FP SOt S LD
9 ojb@@@ QT EO OOQ)§0Q§ QPO 0°<z$®‘$ QFE O o‘l}y@ QPP 0‘:5@@@ QP

Figure 4. Side-by-side modified Box plot for Experiment 3.

Based on the simulation results, our recommendation
for practice is provided as follows:

1. If a pilot sample is not available, use methods M1
and M3.

2. If a pilot sample of size m > 10 is available, use the
combined approach below:

2.1 Compute a cap using M1 with reasonable r
and d.

2.2 If a reliable minimum difference, ¢, is available,
minimum difference method should be used.

2.3 If ¢ is not available, compute the estimates
using the other six methods. If all the estimates are
large, remove some categories as suggested in M3 or
conduct an additional pilot study.

2.4 For small and moderate pilot sample sizes, use
the estimate from the bootstrap 80% method. For a
fairly large pilot sample size, use the estimate from the
bootstrap 75% method. For a very large pilot size, use
the estimate from the bootstrap mean.

Here we require that a useful pilot sample have a sample
size at least 10.

6.4 Experiment 4

In this experiment, we use the same parameter settings as
those in Experiments 1 and 2. First we generate 50 pilot data
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sets. For each of these pilot data sets, we use the original
frequentist method to calculate the estimated sample size ng
using (3.6). Using three different starting values, ng, no —
15, and ng + 15, we apply our Bayesian method to each
of the pilot data sets. Then we compare the performance
of the Bayesian method with these three different starting
values. Figures 5 and 6 present the simulation results for
pilot sample sizes 30 and 80 from Experiment 1. Figures 7
and 8 present the simulation results for pilot sample sizes 20
and 30 from Experiment 2. Each Figure is a scatter plot of
indices 1 to 50 versus the 50 sorted ng, superimposed with
the three matching Bayesian estimates at each index.

Overall, these four estimates are very close to each other,
indicating some robustness in the Bayesian method. Tak-
ing a microscopic look, the original method and Bayesian
method with starting value ng produce the closest esti-
mates. On the other hand, the calculated sample sizes for
the Bayesian method using starting value ng — 15 (ng + 15)
are usually less (greater) than the calculated sample sizes
from the original method. Therefore, it’s possible that the
Bayesian method starting from ng + 15 produces more esti-
mates that are close to the target than the original ng would,
even though the differences are small (see the summary in
Table 6 on page 229).

In Table 6 on page 229, we count the number of times
that |np — nr| > |ho — nr| for each data set, where fp
is the estimated sample size from the Bayesian method, nip
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Figure 6. Plot of estimated sample sizes based on pilot sample size 80 for Experiment 1.

Table 6. Percentage that cppp is inferior to the original

method
Starting Value Figure 5 Figure 6 Figure 7 Figure 8
no — 15 73% 42% 70% 30%
no 32% 12% 40% 20%
no + 15 20% 20% 56% 40%

is the estimated sample size from the original method, and
np is the target sample size. The results are summarized in
Table 6 on page 229.

Based on the results in Table 6 on page 229 and Fig-
ures 5-8, the Bayesian method with starting value ng usu-
ally gives better results than the original method, although
it is computationally intensive. Note also that with all start-
ing values the performance of the Bayesian method improves
with larger pilot sample sizes.

7. APPLICATION TO LEUKOPLAKIA
LESIONS

Leukoplakia is associated with several factors such as
poor diet, poor oral hygiene, local irritants, alcohol, and
tobacco [20]. According to [19], the locations of oral leuko-
plakia are significantly correlated with the frequency of find-
ing dysplastic or malignant changes at biopsy. The locations
of leukoplakia lesions are closely related to different smoking
habits. Here, we want to compare the distribution of lesion
locations for two different types of smoking, i.e., Bidi smok-
ing and non-Bidi smoking. [20] presented a data set giving 10
locations of lesions for 363 Bidi smoking individuals and for
142 non-Bidi smoking individuals. We test our SSD meth-
ods by using them as the pilot data. Instead of examining
the potential differences from any of the 10 locations in the
original data, we calculate the sample sizes for Bidi smoking
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Table 7. Leukoplakia lesion locations regarding to Bidi and
non-Bidi smoking habits

Location of lesion non-Bidi smoking

LABIAL COMMISSURE

Bidi smoking

right 101 24
left 88 25
BUCCAL MUCOSA

right 70 31
left 70 35
Total 329 115

and non-Bidi smoking in any of its first four lesion locations
(see the data Table 7 on page 230). These four locations
are the most common leukoplakia lesion locations. The jus-
tification for this analysis is that one may be interested in
investigating the sample sizes for the major lesion locations
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instead of all ten locations. Unlike the previous simulation
study, the pilot sample sizes in this application are unequal.
So, using the pilot sample sizes as our guide, we set the ratio
of the two required sample sizes equal to the ratio of the two
pilot sample sizes. In this application, the ratio of the two
pilot sample sizes, r, is 329/115 = 2.86. Letting the required
sample size for Bidi smoking be ny, the required sample size
for non-Bidi smoking is ny = n;/2.86. Then the required
sample size for Bidi smoking, n1, to detect the difference for
the two habits can easily be calculated using (3.4) for the
unequal sample size situation. To use (3.4), we take k = 4
and A\ to be the minimum value of A such that (3.2) holds
given « and (1 — 8) for @ = 0.05 and 8 = 0.20.

The corresponding frequentist improvements for the un-
balanced case are similar to those for the balanced case ex-
cept for the correction method which can not be modified
directly. The calculated sample sizes for Bidi smoking and



Table 8. Sample sizes for leukoplakia lesion

Method Orig. B-Mean B-Median B-75% B-80%
ni 454 468 414 536 575
na 159 164 145 188 201

non-Bidi smoking, provided in Table 8 on page 231, show
similar results for the original and bootstrap mean meth-
ods while the estimated sample sizes using the bootstrap
median method are slightly smaller than these two meth-
ods. The bootstrap 75% and 80% methods provide larger
estimated sample sizes than the other three methods.

If we choose ¢ = 0.02 for the minimum difference method
we get the same results as the original method, i.e., ny = 454
and ny = 159. However, this does require that ¢ be specified.
In addition, there is always a trade-off between total sample
size and the resulting power. If we take ¢ = 0.02 and the
actual smallest difference is at least as large as 0.02, the
power based on the sample sizes of 454 and 159 would be at
least 80%.

If each individual patient has only one leukoplakia le-
sion or his/her primary lesion is of concern, the multinomial
models would be reasonable for these data and the sample
sizes in Table 8 on page 231 would be the required sam-
ple sizes. If there is more than one lesion for some patients
(which is often true, but the number of overlaps is unknown
a priori) and the primary lesion can not be identified, the
sample sizes calculated from our procedures will serve as an
upper bound for the true required sample sizes as there will
be more occurrences of each lesion (even though the occur-
rences are likely to be positively correlated). And this upper
bound will provide useful information for choosing the sam-
ple sizes.

8. DISCUSSION AND CONCLUSION

In this paper, we have systematically studied and devel-
oped both frequentist and Bayesian approaches to the cal-
culation of the sample sizes needed to contrast two multi-
nomial populations with and without a pilot/proxy sample.
The practical implementation methods M1 and M3 should
be used if applicable. The original approach, M2, is based
on asymptotic theory while the Bayesian approach is based
on computationally intensive simulation. The Bayesian ap-
proach starting from the original estimate (or M2) has some
advantages over the original one. We also have studied sev-
eral methods to improve the M2 approach, one using the
bootstrap mean or median, one using bootstrap 75 or 80
quantile, one using an ad hoc bias correction, and another
specifying the minimum difference between the parameters
that the investigator wishes to detect. We have found that
both the M2 method and the correction method provide
similar choices for the sample sizes while the bootstrap 75%
and 80% methods may provide better performance than the

others when the pilot sample size is not too large. If the pi-
lot sample size is relatively large, the corrections using the
bootstrap 75% and 80% methods are not necessary. In this
case, the bootstrap mean method should be used. We also
tried bias-corrected and accelerated (BCa) bootstrap meth-
ods. While the BCa bootstrap performs better in terms of
bias correction than the other methods, it has the largest
standard deviations. In the main body of the estimates, the
bootstrap 75% and 80% methods are the winners. There-
fore, we suggest a combined practical approach at the end
of Section 6 with the Bayesian approach added to the bag
of choices if the computing power is not an issue. In addi-
tion, the correction method may be improved by using a
Cornish-Fisher expansion, which is not covered by this pa-
per.

Our methods are developed and studied based on a non-
parametric approach to unordered categorical data. Alter-
natively, parametric solutions that model p;’s as a function
of i depending on a finite parameter (3, e.g., are possible
especially for ordered categories. For ordered categorical
data, two representative references are [28] and [21] where
a parametric approach is used. Finally, note that although
there are other sample size calculations based on similar
chi-squared tests, the objectives are different from ours, see,
e.g., [8,12, 13, 22] and [3].

APPENDIX
Proof of Proposition 3.6:
Proof. Let &y = |2 — 1| and
I (01— 8y)°
‘T2 Jz_:l{ 2 }
Conditioning on the pilot sample, for each fixed numerical

value of 7 (i.e. not random value), the power can be evalu-
ated as following:

(A.1)
o (x> 2 S T Rt )
P, (X° > xi—1(a)) =1— e 2. —=—. 2 ,

where I'(a) = [;7t*'e~'dt is the gamma function,
y(a,z) = fOT t*=1 . e~tdt, which is lower incomplete gamma

function and
© A (8 — b2y)?
A= {4}

no|

If 7 equals to the true sample size in (3.3), then the power
from (A.1) is exactly (1 — ) by the construction in (3.2).
Next, we will see the effect of the difference between n and
n, and hence the difference between A and \.
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Under H;, the power is where the p(j; A) is the probability distribution function for
. ) ) Poisson distribution with parameter A. Hence, let M = 2(A+
P, (X* = Xg-1(a)) A)/d, then inequality (A.3) holds. For the first part of (A.2),

IS s ) B 27 (a . .
_1_26_% (%>J.7(]+%7xk21 )) if M is large, we have
- . k_ . N .
= J! INCEEY i[_g (3)7 Y (’2\)3] (i)
e - — € | - 1
o0 (A)J k—1 Xi 1 (@) ._ ]' .7' g
o _A D) 7(]‘1‘ 2 ) Jj=0
B G5 < @)Y s Y
3=0 2 < Z|:e_% 2_| -’-e_% . 2' :|
where Z[eé (;'>J+6 é(i')]}
oS By GF] i )
I T il R vrw =y M BV s B
” T :Z[e_i i %Z{ﬁ E'}
Let =0 7=
A A
(.+ k—1 X(zkfl)(a)) _ F(M+ L, 5) + F(M+ 1, 5)
9(j) = L 2 ’k 12 M! M!
LG +%5%) _/+°° M et M1
Notice g(j) < 1. Then y T(M+2) t
. S FoogMAL =t M 41
M, Y s Gy + o MEly
(A.2) C = ez A —eE 2" - g(4) s (M +2) t
i=0 I e J2M A1) 2AM 1)
oo Ayi (A =7 3
+ D {6_% (2~|) _6_%'(%”'9(") 1 1\ /2 4 )
=41 I I =2+ )20+ +1
! AN/ \d
For any given § > 0, we want to find M such that the second .
. From above calculation, we can see
part of (A.2) satisfies
e . neyj
(A.3) Z {e_% . (j') —e_% (3') ] g(i)| < 1 JE::()[ ( 0) ] 4! (7)
e <04ty Q(A M) +1
Since S RS VAVEREC R E
i [e; ) (3) _ o3 (%)]] (i) Since the Taylor expansion of e~ % at 0 s
. J! J!
J=M+1 0 20X (BoN)?
S (27 (2yi et :1‘507+ (508) +0(&)-
< > |er Bf et b7
M1 J J: Then
> A A i e o
= Z [p(37§> +p<];§>} Z[l—e > (1+&0)]
j=M+1 j=0
A A nc — 2,—1 ()
1 TR IO 3] (v (57 s i
M! ’ M! ! I‘(j—i—%l)
2 gM-le=z o 2 gM-lg—e o ncyj k1 XGen(@)
_ L r_° Ty . _ne (F) 0+ )
/0 (M —1)! M“/O M1 M 0(50)‘(6 R T
3 M—1 3 A M-1 g ro+%)
SR | S PR S L ~0(é0) -8
Qi/f 0 . I'(M) 2M Jo  T(M) O(0)
< BYi + Wa Now we get Power(n) =1 — 8+ O(&). O
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