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Inference for multivariate mixtures of two
unknown symmetric components

Wenxiu Ge, Xiaobo Guo, Xueqin Wang
∗
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Modeling heterogeneity for multivariate data is an im-
portant research topic. In this paper, we give a sufficient
condition to establish the identifiability for semiparametric
multivariate mixture models with unknown location-shifted
symmetric components, and propose a novel minimum dis-
tance method to estimate the location and proportion pa-
rameters. Strong consistency and asymptotic normality of
our estimators under some regularity conditions are estab-
lished. Simulation studies show that the proposed method
is robust to misspecified component distributions. The Old
Faithful data is also used as a real benchmark to assess the
performance of the proposed method.
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1. INTRODUCTION

Parametric mixture models are common approaches to
dealing with the unobserved heterogeneity in the datasets,
and have been widely employed in diverse areas such
as biometrics, genetics, medicine, economics and finance
[6, 14, 15, 18, 23]. However, as [9] stated, the specification of
components’ distributions is necessary yet a great trouble,
and seldom well-established theories exist to guide the se-
lection of components’ distributions based on the observed
data.

In recent years, nonparametric (semiparametric) mixture
models have emerged as efficient approaches to character-
izing the heterogenous datasets [3, 4, 7–10, 13]. Unlike the
classical parametric mixture model, nonparametric mixture
models are generally not identifiable without additional in-
formation of components’ distributions. To avoid the iden-
tifiability issue, the assumption of conditional independence
is usually imposed on the component distributions. Specif-
ically, it assumes that the coordinates of the observed d-
dimensional vector are independent conditional on the com-
ponent from which the observed data are drawn; that is

(1) G(x) =

m∑
j=1

λj

d∏
l=1

Fjl(xl), ∀x ∈ R
d,
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where x = (x1, . . . , xd)
�, G(·) denotes cumulative distribu-

tion function (CDF) of the d-variate random vector, and Fjl

is the univariate CDF of the lth variate of the jth compo-
nent. Furthermore, the mixing proportions λ = (λ1, . . . , λm)
satisfy

∑m
j=1 λj = 1, λj ≥ 0. [8] showed that when m = 2,

the model identifiability only holds for d ≥ 3. [1] gave a gen-
eral result for more than two components’ case and showed
that the parameters in model (1) are identifiable for d ≥ 3
if the component density functions f1l, . . . , fml are linearly
independent except possibly on a set of Lebesgue measure
zero.

In this article, we employ a slightly different approach by
taking into account the joint distribution of each component
in the mixture model rather than imposing the conditionally
independent restriction on the d-variate component distri-
bution, and show that the mixture model is identifiable if
each component distribution is symmetric with respect to
some fixed locations. Similar ideas can be traced back to
[3] and [10] who studied independently the following uni-
variate, symmetric, location-shifted, semiparametric, mix-
ture model,

(2) G(x) =
m∑
j=1

λjF (x− μj), ∀x ∈ R,

where F (·) denotes an unspecified CDF of a component
which is symmetric about zero, namely, F (x) = 1− F (−x)
for all continuity points x of F . However, [3] and [10] focused
on only the univariate mixture component, i.e., d = 1. To
our best knowledge, the case of d ≥ 2 has not been well
studied.

The identifiability of our introduced semiparametric mul-
tivariate mixture model relies on the assumption of sym-
metric component distribution. To utilize the symmetry, we
develop a novel E-distance [21] based method to estimate
the parameters θ = (λ,μ1,μ2) defined in Section 2 in the
mixture model. This method exploits the symmetry of the
component distributions as well as the dependence informa-
tion of multivariate data. We shall demonstrate its higher
efficiency through simulation studies and real data analysis.

The rest of this paper is organized as follows. In Sec-
tion 2, we introduce the model and address its identifiabil-
ity. In Section 3, we present the distance-based method for
estimating the parameters, as well as the asymptotic prop-
erties. We assess the performance of the proposed estimators
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by numerical studies and a real data analysis in Section 4.
Detailed proofs of the theoretical results are deferred to Ap-
pendices A, B and C.

2. MODEL AND IDENTIFIABILITY

Considering the following m-term mixture distribution,

(3) G(x;λ,μ, F ) =

m∑
j=1

λjF (x− μj), ∀x ∈ R
d,

where λj denotes the mixture proportion of the jth com-
ponent which satisfies

∑m
j=1 λj = 1, λj ≥ 0, F (·) is a sym-

metric multivariate distribution function with origin 0, and
μj = (μj1, . . . , μjd)

� is the location vector for the jth com-
ponent (j = 1, . . . ,m). In this paper, we assume that m is
fixed and m = 2 unless stated otherwise. Let F denote the
set of all CDFs F (·) which are symmetric about the ori-
gin 0. Then, the parameter space of finite mixture model
(3) is Θ × F , where Θ = {θ = (λ,μ1,μ2) : 0 < λ < 1/2,
(μ1,μ2) ∈ R

2d \ Δ}, Δ = {(x,x),x ∈ R
d} and the con-

straint 0 < λ < 1/2 is used to avoid the “label switching”
problem [17].

For clarity, we rewrite the mixture distribution (3) by us-
ing its characteristic function. Let φG(·) be the characteristic
function of mixture distribution (3), then we have

φG(t) = E
{
exp

(
it�X

)}
(4)

=

∫
Rd

exp
(
it�x

)
dG(x)

=
{
λ exp

(
it�μ1

)
+ (1− λ) exp

(
it�μ2

)}

×
∫
Rd

exp
(
it�x

)
dF (x)

�
= φ(t;θ)× φF (t), ∀ t ∈ R

d,

where φ(t;θ) = λ exp(it�μ1) + (1 − λ) exp(it�μ2), and
φF (t) =

∫
Rd exp(it

�x)dF (x) is the characteristic function
of symmetric multivariate distribution F (·).

The identifiability of the model (3) means that no two
different parameter vectors (θ, F ) and (θ′, F ′) in Θ × F
satisfy

(5) φ(t;θ)× φF (t) = φ
(
t;θ′) × φF ′(t), ∀t ∈ R

d.

The following theorem shows that the proposed two-
component mixture model (3) is identifiable.

Theorem 2.1. Assume that there are two parameter vectors
(θ, F ) and (θ′, F ′) in Θ × F satisfying (5), then (θ, F ) =
(θ′, F ′).

The proof of this theorem is given in Appendix A.

3. ESTIMATION PROCEDURE

3.1 E-distance estimator

In this subsection, we introduce the E-distance based
method to estimate the parameters θ = (λ,μ1,μ2). First,
we have:

Theorem 3.1. If the mixture model (3) is identifiable,
then there is a unique θ = (λ,μ1,μ2) ∈ Θ such that
φ(t;λ,μ1,μ2)× φ(t;λ,−μ1,−μ2) is a real value function.

The proof of Theorem 3.1 is similar to that of Theo-
rem 1 in [10]. Theorem 3.1 implies that the multivariate
symmetric distribution corresponding to φ(t;λ,μ1,μ2) ×
φ(t;λ,−μ1,−μ2) is unique. Next, we construct a random
vector W which is the key to estimate the parameters. Sup-
pose the random vector U has the mixture distribution G0

(3) with the true parametric vector (θ0, F0), and let V be a
random vector with the support (−μ1,−μ2) and the weights
(λ, 1 − λ). The random vector W = U + V is centrally
symmetric about the origin 0 when θ = θ0, since the char-
acteristic function of W ,

φG0(t)× φ(t;λ,−μ1,−μ2)

= φF0(t)×
{
φ(t;θ0)× φ(t;λ,−μ1,−μ2)

}
,

is a real function if θ = θ0.
To exploit the symmetry of W , we use the concept of

E-distance between two random vectors developed in [21].
Suppose that X ′ and Y ′ are i.i.d. random vectors in R

d

corresponding to X and Y , respectively. ‖ · ‖ is the Eu-

clidean norm and
d
= means that two random variables (or

vectors) are identically distributed. We define D(X,Y )
�
=

2E‖X − Y ‖ − E‖X − X ′‖ − E‖Y − Y ′‖, then D(X,Y )
is a distance. The proof can be found in [21]. The following
lemma summaries some properties of the E-distance helping
us estimate the parameters:

Lemma 3.2. Let X and Y be two independent random
vectors in R

d, E‖X‖ < ∞ and E‖Y ‖ < ∞. Then,
(i) D(X,Y ) ≥ 0;

(ii) D(X,Y ) = 0 if and only if X
d
= Y .

Now, let W1 and W2 be i.i.d. random vectors and have
the same distribution as W , we define

D(θ)
�
= D(W ,−W )(6)

= E{‖W1 +W2‖ − ‖W1 −W2‖}
= E

{
hθ(X1,X2)

}
,

where

hθ(X1,X2)(7)

= λ2(‖X1 +X2 − 2μ1‖ − ‖X1 −X2‖)
+ 2λ(1− λ)

(
‖X1 +X2 − (μ1 + μ2)‖
− ‖X1 −X2 + (μ2 − μ1)‖

)
+ (1− λ)2(‖X1 +X2 − 2μ2‖ − ‖X1 −X2‖),
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where X1 and X2 are i.i.d random vectors with the same
mixture distributions (3). It follows from Theorem 3.1 and
Lemma 3.2 that D(θ) ≥ 0 and D(θ) = 0 if and only if
θ = θ0. Hence, we can write

(8) θ0 = argmin
θ∈Θ

D(θ) = argmin
θ∈Θ

E
{
hθ(X1,X2)

}
.

The corresponding V-process of D(θ) can be calculated as

(9) Dn(θ) =
1

n2

n∑
i=1

n∑
j=1

hθ(xi,xj).

Thus, θ0 can be estimated by

(10) θ̂n = argmin
θ∈Θ

1

n2

n∑
i=1

n∑
j=1

hθ(xi,xj).

We call θ̂n the E-distance estimator (EDE).
Note that the estimator (18) in [10] is a special setting of

our EDE for d = 1.

3.2 Asymptotic properties

Let f be the component density function of mixture dis-
tribution (3). If f is continuous and bounded in an open

neighborhood of θ0, then the minimizer θ̂n of Dn(θ) is
strongly consistent and asymptotically normal under some
regularity conditions.

The following theorem presents the consistency:

Theorem 3.3. Suppose that the covariance matrix of com-
ponent in mixture model (3) is positive definite. Then θ̂n →
θ0 almost surely as n → ∞.

The proof of this theorem is given in Appendix B.
Next, we study the asymptotic normality of θ̂n. Note that

Dn(θ) in Equation (9) is a V-process as it is indexed by the
parameter vector θ. For convenience, denote the functions

V (k)(h) = Eh(X1, . . . ,Xk)

and

V (k)
n (h) =

1

nk

n∑
i1=1

· · ·
n∑

ik=1

h(Xi1 , . . . ,Xik),

where h is some vector-valued function of k variables and
X1, . . . ,Xn are random samples from some CDF Gθ0(·).
Then, we have D(θ) = V (2)(hθ) and Dn(θ) = V

(2)
n (hθ).

Note that Dn(θ) is a V-statistic for fixed θ ∈ Θ. According
to the Hoeffding decomposition for V-statistics, we have

(11) Dn(θ)−D(θ) = 2V (1)
n (π1hθ) + V (2)

n (π2hθ),

where πkhθ, k = 1, 2 is the kth Hoeffding projection defined
by

π1hθ(x1) = (δx1 −Gθ0)Gθ0hθ

and

π2hθ(x1,x2) = (δx1 −Gθ0)(δx2 −Gθ0)hθ

where Gh =
∫
hdG and δx denotes a point mass at x.

Meanwhile, the V-statistic and U-statistic are closely
related in behavior under appropriate moment conditions
([19], page 206). Therefore, we can take full advantage of
the U-process theory to obtain the asymptotic normality.

Theorem 3.4. In addition to the conditions of Theo-
rem 3.3, we assume that the following conditions hold:

C1. For all ε > 0,

lim
δ→0

lim sup
n→∞

Pr
{

sup
‖θ−θ0‖≤δ

|nV (2)
n (π2hθ − π2hθ0)| > ε

}
= 0;

C2. For the functions defined by rθ0(x) = 0 and

rθ(x) =
π1hθ(x)− π1hθ0(x)− (θ − θ0)

�η(x)

‖θ − θ0‖
, θ ∈ Θ\{θ0}

and for any ε > 0,

lim
δ→0

lim sup
n→∞

Pr
{

sup
‖θ−θ0‖≤δ

|n1/2V (1)
n (rθ)| > ε

}
= 0.

Then

√
n(θ̂n − θ0) → N(0, 4A−1BA−1), in distribution,

where A = − ∂2

∂θ2D(θ)|θ=θ0 , B = Cov{η(X)} and η(x) =

E ∂
∂θπ1hθ(x)|θ=θ0 .

The proof of this theorem is given in Appendix C.
Note that the asymptotic covariance in Theorem 3.4 has

a simple expression but becomes quite involved in compu-
tation. We adopt the bootstrap approach to evaluate the
standard error of θ in application.

4. SIMULATION AND APPLICATION

4.1 Numerical study

In this section, we will assess the finite sample behavior
of our proposed method by simulation studies. We consider
the following two scenarios:

1. λN(μ1,Σ) + (1− λ)N(μ2,Σ),
2. λt3(μ1,Σ) + (1− λ)t3(μ2,Σ).

In scenario 1, the value of mixing proportion λ is 0.3, μ1

and μ2 are set to be (0, 1)� and (2, 3)�, respectively, and Σ
is chosen to be the correlation matrix with the correlation
coefficient ρ with values 0.05, 0.50, 0.95, respectively. In sce-
nario 2, we follow the same parameter setting except that
μ2 = (4, 5)� and the covariance matrix equals to 0.5 times
the correlation matrix. In the simulation, the sample size is
n = 200 and we replicate 500 times.
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Figure 1. The scatter plot of eruption time and waiting time
in Old Faithful Geyser data.

Here, we compare the performance of our proposed E-
distance method with existing maximum likelihood esti-
mates of the homoscedastic normal mixture using the EM
algorithm (Norm-EM). In this paper, we use the function
NMixEM in the R package mixAK [11] to obtain the Norm-
EM estimates as well as the start values used in E-distance
method. Two criteria, the mean of the estimates and the
mean squared error (MSE), are used to measure the perfor-
mance. The results are summarized in Tables 1 and 2.

From Table 1, we can observe that the difference be-
tween E-distance method and Norm-EM is ignorable if the
true model is the multivariate normal mixture model. How-
ever, when the data are generated from the multivariate t-
mixture model, we can observe clearly from Table 2 that
the MSEs of E-distance method are much smaller than
the MSEs of Norm-EM. These results indicate that the E-
distance method has a comparable performance with the
parametric method if the underlying model is true. How-
ever, when the underlying distribution is misspecified, the
proposed semiparametric E-distance method is more robust
than the parametric method.

4.2 Case study

In this subsection, we will assess our proposed method by
using the benchmark data–Old Faithful Geyser in Yellow-
stone National Park, USA. We are especially interested in
the joint distribution of two measurements: eruption time
and waiting time. We should note that [10] analyzed the
waiting time between eruptions as a univariate random vari-
able.

Figure 1 presents the scatter plot of the eruption time
and waiting time, revealing two subpopulations. Hence, a
two-component mixture model is a reasonable choice. We
applied the E-distance method and the Norm-EM to analyze

the bivariate data, and Table 3 contains the results based
on 200 bootstrap samples.

From Table 3, we can observe that both methods yield
nearly the same sample average values and standard errors,
indicating that the two-normal mixture model fits the data
well. We note that the E-distance method does not require a
specification of the component distribution, hence it is more
flexible as also apparent in the simulation studies.

5. DISCUSSION

To the best of our knowledge, this is the first attempt
to establish the identifiability of a two-component mix-
ture model with multivariate symmetric component distri-
butions. The idea and property of “symmetry” are valuable
and have been widely adopted in theory and practice, see
[5, 20, 24] and so on. We prove that the multivariate two-
component mixture model is identifiable when the compo-
nent distributions are symmetric about some location pa-
rameters and do not need to be conditionally independent.
It is noteworthy that the symmetric component distribution
is only a sufficient condition for the identifiability of a semi-
parametric multivariate mixture model. It warrants further
effort to establish the necessary and sufficient condition.

Interestingly, we employ the E-distance estimation
method to estimate the parameters. Our method takes ad-
vantage of the symmetry in the component distributions,
and hence increases the estimation efficiency. Simulations
and real data analysis suggest great promise of our proposed
E-distance method as opposed to an existing method.

It should be noted that we only focused on the two-
component case, i.e., m = 2. For m ≥ 3, the identifiability of
a multivariate location-changed mixture model is a challeng-
ing topic. Imposing constraints on the proportion coefficient
λj or location parameters μj(j = 1, . . . ,m) in (3) may not
address the “label switching” problem.

Through preliminary simulation studies, we find that the
proposed E-distance method performs similarly to the para-
metric Norm-EM method when the model is correctly spec-
ified, and is more robust when the model is misspecified.
This observation is useful in practice. If our proposed E-
distance method performs similarly to the parametric Norm-
EM method, chances are that the model assumptions are
reasonably valid and so is the statistical inference. We il-
lustrate this point with the re-analysis of the Old Faithful
Geyser data.

APPENDIX A. IDENTIFIABILITY PROOF

Proof of Theorem 2.1. Suppose that there are indepen-
dent random vectors Y and Z such that Y has the prob-
ability (λ, 1 − λ) in the two-point support (μ1,μ2) and Z
is symmetric about the origin 0. Let X = Y + Z, then,
according to Equation (4), we have φX(t) = φY (t)φZ(t).

214 W. Ge et al.



Table 1. Sample average of estimated values (EST) and mean squared errors (MSE) of the two estimating methods
(E-distance and Norm-EM) for the two-component bivariate normal mixture model with μ1 = (0, 1)�, μ2 = (2, 3)� and

λ = 0.3

Parameters
ρ Measures Methods μ11 μ12 μ21 μ22 λ

EST E-distance 0.0375 1.0158 2.0114 3.0196 0.3110
Norm-EM 0.0020 0.9933 2.0007 3.0027 0.30190.05

MSE E-distance 0.0549 0.0429 0.0164 0.0159 0.0029
Norm-EM 0.0374 0.0322 0.0108 0.0116 0.0022

EST E-distance 0.0453 1.0331 2.0436 3.0448 0.3241
Norm-EM 0.0031 0.9930 2.0091 3.0068 0.30700.50

MSE E-distance 0.0761 0.0785 0.0343 0.0355 0.0067
Norm-EM 0.0739 0.0760 0.0268 0.0235 0.0059

EST E-distance 0.0253 1.0197 2.0608 3.0612 0.3255
Norm-EM 0.0101 1.0091 2.0426 3.0412 0.32010.95

MSE E-distance 0.1007 0.1036 0.0455 0.0468 0.0090
Norm-EM 0.1148 0.1147 0.0334 0.0327 0.0096

Table 2. Sample average of estimated values (EST) and mean squared errors (MSE) of the two estimating methods
(E-distance and Norm-EM) for the two-component bivariate Student’s-t mixture model with degrees of freedom ν = 3,

μ1 = (0, 1)�, μ2 = (4, 5)� and λ = 0.3

Parameters
ρ Measures Methods μ11 μ12 μ21 μ22 λ

EST E-distance −0.0027 1.0076 4.0030 4.9984 0.2993
Norm-EM −0.0226 0.9839 4.0258 5.0211 0.30310.05

MSE E-distance 0.0188 0.0184 0.0057 0.0051 0.0011
Norm-EM 0.1842 0.1901 0.0187 0.0169 0.0013

EST E-distance 0.0042 1.0103 4.0046 5.0064 0.3009
Norm-EM −0.0490 0.9595 4.0339 5.0339 0.30540.50

MSE E-distance 0.0245 0.0249 0.0084 0.0085 0.0014
Norm-EM 0.7873 0.9386 0.0231 0.0240 0.0017

EST E-distance 0.0085 1.0046 3.9925 4.9893 0.2991
Norm-EM −0.0849 0.9082 4.0272 5.0252 0.30590.95

MSE E-distance 0.0831 0.0791 0.0145 0.0143 0.0013
Norm-EM 1.5099 1.4337 0.0352 0.0351 0.0020

Table 3. Sample average of the estimated values (EST) and corresponding standard errors (SE) for the two estimate method
(E-distance and Norm-EM) based on the bootstrapped samples of the Old Faithful Geyser data

Parameters
Measures Methods μ11 μ12 μ21 μ22 λ

EST E-distance 2.0553 54.5892 4.3020 80.0316 0.3561
Norm-EM 2.0462 54.6279 4.2969 80.1044 0.3575

SE E-distance 0.0494 0.6984 0.0386 0.4475 0.0287
Norm-EM 0.0295 0.6586 0.0305 0.4305 0.0284
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Assume that there are alternative independent random

vectors (Y ′,Z ′) like (Y ,Z) satisfying X = Y ′+Z ′, that is

(12) φY (t)φZ(t) = φY ′(t)φZ′(t).

Multiplying each side of Equation (12) by the complex con-

jugate of φY ′(t), then we have

(13) φY (t)φ−Y ′(t)φZ(t) = φZ′(t).

Since Z and Z ′ are symmetric about the origin, their charac-

teristic functions ΦZ(t) and Φ′
Z(t) are real continuous func-

tions at t = 0. It follows from Equation (13) that the imag-

inary part of φY (t)φ−Y ′(t) is equal to 0 in an open ball of

t = 0. Furthermore, it must be identically zero on Rd by

the analytic property of the characteristic function.

Suppose that one d-variate random vector Y is symmet-

ric about d-dimensional vector μ. Then, the random vector

Y can be written as Y = μ+ ε, where ε is a d-dimensional

random vector which is symmetric about the origin. For

any unit vector u ∈ Rd, we have u�Y = u�μ + u�ε.
Then, w = u�ε is a univariate random variable and it

is symmetric about zero. According to Theorem 2 in [10],

for any linear independent vector u, we have μ = μ′ if

u�μ = u�μ′. Furthermore, we have φY (t) = φY ′(t). Ac-

cording to Equation (12), φZ(t) = φZ′(t) if φY (t) 	= 0.

Because φY (t) is an analytic function, it is not identically

zero. Thus, φZ(t) = φZ′(t) holds except for a discrete set.

Therefore, Equation (12) implies both Y
d
= Y ′ and Z

d
= Z ′;

that is (θ, F ) = (θ′, F ′). �

APPENDIX B. CONSISTENCY PROOF

Proof of Theorem 3.3. First, according to Theorem 3.1

and Lemma 3.2, θ0 is a unique minimizer of the criterion

functionD(θ). Next, note thatD(θ) is continuous about θ in

a neighborhood of θ0. Denote δ = inf‖θ−θ0‖≥ε D(θ)−D(θ0),

then we have δ > 0. Hence,

P
{
sup
n≥N

‖θ̂n − θ0‖ > ε
}

≤ P
[
sup
n≥N

{
D(θ̂n)−D(θ0)

}
≥ δ

]

≤ P
[
sup
n≥N

{
D(θ̂n)−Dn(θ̂n)

}
+ sup

n≥N

{
Dn(θ0)−D(θ0)

}
≥ δ

]

≤ 2P
{
sup
n≥N

sup
θ

|Dn(θ)−D(θ)| ≥ δ/2
}
.

If supθ |Dn(θ)−D(θ)| → 0, a.s., then the theorem holds.

In fact, denote H = {hθ : θ ∈ Θ}, which is a class function

on R
2d. Note that 0 < λ < 1/2 for hθ in (7). Next using the

Minkowski inequality, we have

hθ(X1,X2)

= λ2(‖X1 +X2 − 2μ1‖ − ‖X1 −X2‖)
+ 2λ(1− λ)

(
‖X1 +X2 − (μ1 + μ2)‖
− ‖X1 −X2 + (μ2 − μ1)‖

)
+ (1− λ)2(‖X1 +X2 − 2μ2‖ − ‖X1 −X2‖)

≤ λ2(‖X1 +X2‖ − ‖X1 −X2‖+ 2‖μ1‖)
+ 2λ(1− λ)(‖X1 +X2‖ − ‖X1 −X2‖+ 2‖μ1‖+ 2‖μ2‖)
+ (1− λ)2(‖X1 +X2‖ − ‖X1 −X2‖+ 2‖μ2‖)

≤ ‖X1 +X2‖ − ‖X1 −X2‖+ 2(‖μ1‖+ ‖μ2‖).

If E{max(‖X1‖, ‖X2‖)} < ∞ and max(‖μ1‖, ‖μ2‖) < ∞,
according to Lemma 18(ii) of [16], H is a VC class. Then,
we have supθ∈Θ |Dn(θ)−D(θ)| → 0, a.s. according to The-
orem 7 of [16]. �

APPENDIX C. ASYMPTOTIC NORMALITY
PROOF

Proof of Theorem 3.4. Denote Δ̂n =
√
n(θ̂n − θ0) and

Δ̃n = 2
√
nV

(1)
n η. First, we show that both of the se-

quences Δ̂n and Δ̃n are stochastically bounded. Define
θ̃n = θ0+A−1Δ̃n/

√
n and using these results we can obtain

the equations

nV (2)
n (hθ̂n

− hθ0) = −1

2
Δ̂�

nAΔ̂n + Δ̂nΔ̃n + op(1),

nV (2)
n (hθ̃n

− hθ0) =
1

2
Δ̃�

nA
−1Δ̃n + op(1).

By the definition of θ̂n, the left side of the second equation
is not less than that of the first equation. Then take the
difference, complete the square and we obtain

1

2

(
Δ̂n −A−1Δ̃n

)�
A

(
Δ̂n −A−1Δ̃n

)
+ op(1) ≥ 0.

Furthermore, ‖Δ̂n − A−1Δ̃n‖ → 0 in probability. By
the central limit theorem,

√
n(θ̃n − θ0) converges to

N(0, 4A−1BA−1) in distribution, and the result follows.
More technical details about this proof can refer to The-
orem 2.1 in [2]. �
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