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Optimal estimation of sparse correlation matrices
of semiparametric Gaussian copulas
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∗
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Statistical inference of semiparametric Gaussian copulas
is well studied in the classical fixed dimension and large
sample size setting. Nevertheless, optimal estimation of the
correlation matrix of semiparametric Gaussian copula is un-
derstudied, especially when the dimension can far exceed
the sample size. In this paper we derive the minimax rate of
convergence under the matrix �1-norm and �2-norm for esti-
mating large correlation matrices of semiparametric Gaus-
sian copulas when the correlation matrices are in a weak �q
ball. We further show that an explicit rank-based thresh-
olding estimator adaptively attains minimax optimal rate
of convergence simultaneously for all 0 ≤ q < 1. Numeri-
cal examples are provided to demonstrate the finite sample
performance of the rank-based thresholding estimator.

Keywords and phrases: Correlation matrix, Gaussian
copula, Minimax optimality, Rank correlation, Threshold-
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1. INTRODUCTION

Practitioners often take variable transformation before
applying the intended multivariate analysis method. For ex-
ample, when doing principal component analysis the cor-
relation matrix is preferred over the covariance matrix if
variables have very different scales. Using the correlation
matrix is amount to using the covariance matrix of lin-
early transformed variables such that after transformation
the mean is zero and variable is one. From this perspec-
tive, semiparametric Gaussian copulas adopt nonparamet-
ric transformation techniques and assume normality after
transformation. More specifically, we have the following def-
inition.

The semiparametric Gaussian copula model:
(X1, . . . , Xp)

′ obeys a semiparametric Gaussian
copula model with the correlation matrix Σ,
if there exists a vector of unknown univariate
monotone increasing transformations denoted by
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(f1, . . . , fp) such that the transformed random
vector follows a multivariate normal distribution
with mean 0 and covariance Σ:

(1) (f1(X1), . . . , fp(Xp)) ∼ Np(0,Σ)′,

where Σ = (σij)p×p and σii = 1, i = 1, . . . , p.

It should be noted that for each univariate continuous
variable Xj , Zj = Φ−1(Fj(Xj)) is standard normal where
Fj(x) is the cumulative distribution function of Xj and
Φ−1(·) is the inverse of the cumulative distribution function
of N(0, 1). This simple fact tells us that fj(·) = Φ−1(Fj(·))
and model (1) basically assumes that after transformation
those marginally normal distributed variables also follow a
joint normal distribution. Of course, we cannot guarantee
that marginal normal variables are jointly normal as well.
Like any other semiparametric model, the semiparametric
Gaussian copula model can have the model mis-specification
issue when being applied in applications. However, it is clear
that the semiparametric Gaussian copula model is much
flexible than the normal model whilst keeping its nice in-
terpretability. Semiparametric Gaussian copulas have gener-
ated a lot of interests in statistics, econometrics and finance
[7, 16, 28, 30].

Much of the existing theoretical work on the inference
of semiparametric Gaussian copulas focuses on the classi-
cal asymptotic setting where the dimension is fixed and the
sample size goes to infinity. With the advances in modern
technology, massive high-dimensional data are being rou-
tinely produced in various fields, including computational
biology, genetics, medical imaging, climate studies, and so
on. The focus of this paper is estimating Σ based on a ran-
dom sample x1, . . . ,xn from model (1). To have a deep un-
derstanding of the problem, we need to address two funda-
mental questions.

1. What is the fundamental limit for estimating Σ, when
the dimension can far exceed the sample size, at least
p ≥ nν for some ν > 1?

2. Can we find a data-driven method to achieve the fun-
damental limit?

To address these two fundamental questions we consider
estimating Σ over a large parameter space stated as below
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(2)

Gq =
{
x1, . . . ,xn are random samples generated from

model (1) and Σ satisfies |σ[−j]j |q(k) ≤ cn,pk
−1,

for any j = 1, . . . , p and k = 1, . . . , p− 1
}
,

0 ≤ q < 1 and cn,p ≤ Mn(1−q)/2(log p)(q−3)/2,

where σ[−j]j denotes the j-th column of Σ with σjj removed
and the notation of |σ[−j]j |(k) denotes the k-th largest el-
ement in the magnitude in |σ[−j]j |. For any estimate of

Σ, denoted by Σ̂, its quality of estimation is measured by
E‖Σ̂−Σ‖2�1 and E‖Σ̂−Σ‖2�2 . Note that for a matrix A, its
matrix �a-norm is defined as the operator norm induced by
the vector �a-norm, ‖A‖�a = sup‖u‖�a=1 ‖Au‖�a .

The following two theorems provide direct answers to
questions 1 and 2, respectively.

Theorem 1. Under the matrix �1 or �2 norm, there is a
constant c such that

inf
̂Σ

sup
Σ∈Gq

E‖Σ̂−Σ‖2�1 ≥ inf
̂Σ

sup
Σ∈Gq

E‖Σ̂−Σ‖2�2

≥ cc2n,p (log p/n)
1−q

.

Theorem 2. An explicit rank-based thresholding estimator

Σ̂
∗
, which is defined in section 2.2, satisfies the risk inequal-

ity

sup
Σ∈Gq

E‖Σ̂
∗
−Σ‖2�2 ≤ sup

Σ∈Gq

E‖Σ̂
∗
−Σ‖2�1

≤ Cc2n,p (log p/n)
1−q

for some positive constant C.

Theorems 1 and 2 imply that the estimator Σ̂
∗
is adap-

tive minimax optimal for estimating Σ under the matrix
�1 and �2 norm. The minimax optimal rates of convergence
for estimating sparse covariance matrices have been estab-
lished in [5, 6, 35] where their parameter space Pq is al-
most Gq except that the distribution of the data is as-
sumed to be sub-Gaussian and Σ is the population co-
variance matrix of the raw data. [3] showed that a data-
driven adaptive thresholding estimator can attain the min-
imax rate of convergence. Our adaptive minimax theory
shows a bigger difference between our results and previ-
ously established theory for sparse covariance matrices es-
timation. Note that in [3] the condition log p = o(n1/3) is
required for establishing the adaptive minimax result. Com-
pared with [3], our theory shows that the adaptive min-
imax optimal estimation is doable for ultra-high dimen-
sions as long as log(p)/n → 0. Thus our theory can handle
much higher dimensions than the adaptive minimax theory
in [3].

The rest of the paper is organized as follows. Main results
are presented in Section 2 where we prove Theorem 1 and
Theorem 2. In Section 3 we also prove the sparsity recovery

property of the rank-based thresholding when Σ belongs to
an �0 ball. Section 4 contains numerical examples. Technical
proofs are presented in an Appendix.

2. MAIN RESULTS

In this section we prove Theorems 1 and 2.

2.1 Proof of the lower bound

Because a correlation matrix can be viewed as a special
covariance matrix with variance being 1, it turns out that
we can directly use the lower bound results from Theorem
2 of [6] to prove the desired lower bound in our Theorem 1.
In what follows we use c and C to denote generic constants
in lower and upper bounds, respectively.

[6] proved Theorem 2 by considering a subspace of Pq

denoted by F∗ (see equation (20) in [6]), which contains a
collection of normal distributions whose covariance matrices
are in the weak �q ball and the diagonal elements of the co-
variance matrix are all 1. The readers are referred to Section
3 of [6] for the technical details. For space consideration we
do not repeat these details here. It is shown in [6] that

inf
̂Σ

sup
Σ∈F∗

E‖Σ̂−Σ‖2�2 ≥ cc2n,p (log p/n)
1−q

.(3)

Now we notice that F∗ is in fact a subspace of Gq, be-
cause each normal distribution is a special semiparametric
Gaussian copula (with identity transformation) and each co-
variance matrix in F∗ can be viewed as a correlation matrix
since its diagonal elements are all 1. Therefore, the minimax
lower bounds in Theorem 1 are proved by using (3) and the
following inequalities

inf
̂Σ

sup
Σ∈Gq

E‖Σ̂−Σ‖2�1 ≥ inf
̂Σ

sup
Σ∈Gq

E‖Σ̂−Σ‖2�2

≥ inf
̂Σ

sup
Σ∈F∗

E‖Σ̂−Σ‖2�2 .

2.2 The adaptive estimator and the upper
bound

To complete the proof of Theorem 1 we now need to con-

struct an estimator Σ̂
∗
such that

(4) sup
Σ∈Gq

E‖Σ̂
∗
−Σ‖2�a ≤ Cc2n,p (log p/n)

1−q
, a = 1, 2.

Note that supΣ∈Gq
E‖Σ̂

∗
−Σ‖2�2 ≤ supΣ∈Gq

E‖Σ̂
∗
−Σ‖2�1 ,

and thus it suffices to prove that

sup
Σ∈Gq

E‖Σ̂
∗
−Σ‖2�1 ≤ Cc2n,p (log p/n)

1−q
.(5)

Furthermore, in order to prove Theorem 2 we need to show
that the constructed estimator is fully data-driven, free of
the parameter space Gq.
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A technical difficulty in constructing the estimator and
proving the upper bound is how to handle these p unknown
transformation functions in the semiparametric Gaussian
copula model. Somewhat surprisingly, we can construct the
desired estimator without estimating these transformation
functions at all. Our estimator is based on the nonparamet-
ric rank estimation idea [15, 17]. Let (x1i, x2i, . . . , xni) be the
observed values of variable Xi. We convert them to ranks
denoted by ri = (r1i, r2i, . . . , rni). Spearman’s rank correla-
tion r̂ij is defined as Pearson’s correlation between ri and
rj , Spearman’s rank correlation is a nonparametric measure
of dependence between two variables. Because data ranks
are preserved under monotone increasing transformations,
r̂ij is also equal to the Spearman’s rank correlation of the
“oracle” variables Zi, Zj , where Zi = (fi(x1i), . . . , fi(xni)).
According to model (1) (Zi, Zj) follows a bivariate normal
distribution with correlation parameter σij . Then a classical
result due to [15] shows that r̂sij = 2 sin(π6 r̂ij) is an asymp-
totically unbiased estimator σij .

We apply the thresholding idea to obtain the desired es-
timator

Σ̂
∗
= (sλ∗(r̂

s
ij))1≤i,j≤p,

where sλ(·) applies the hard thresholding rule hλ(t) =
tI(|t| > λ) to the off-diagonal elements, i.e.,

sλ(r̂
s
ij) = hλ(r̂

s
ij) · I(i �= j) + r̂sij · I(i = j).

We set the thresholding parameter λ to be λ∗ = 40π ·
(log p/n)1/2. Note that the construction of Σ̂

∗
does not de-

pend on parameter space Gq. To complete the proof of The-
orem 1 and Theorem 2, we only need to prove the following
upper bound result

(6) sup
Σ∈Gq

E‖Σ̂
∗
−Σ‖2�1 ≤ Cc2n,p (log p/n)

1−q
.

The proof of (6) is given in the Appendix.

3. SPARSE RECOVERY IN THE �0 BALL
CASE

If q = 0 we have the �0 ball case in which the correlation
matrix Σ is strictly sparse in the sense that each row of Σ
only has a small number of nonzero elements and the rest
majority are exactly zero. [24] proved the so-called spar-
sistency property of the thresholding covariance estimator
with sub-Gaussian data. It is interesting to note that in
the semiparametric Gaussian copula model variables i and
j are marginally independent if and only if σij = 0. Recall

the rank-based thresholding estimator Σ̂ = (sλ(r̂
s
ij))1≤i,j≤p,

and now we prove the sparsistency property of the rank-
based thresholding estimator.

Theorem 3. Let A = {(i, j) : i < j, σij �= 0} be the
support set of Σ, denoted by supp(Σ). Write sn = |A| as

the cardinality of A. Define γ0 = min(i,j)∈A |σij |. Pick the
thresholding parameter λ satisfying that nγ0 − 12π ≥ nλ ≥
12π, nλ2−100π2 log p → ∞ and n(γ0−λ)2−50π2 log(sn) →
∞ as n → ∞. Then as n → ∞, we have

pr(supp(Σ̂
∗
) �= supp(Σ))

≤ p2 exp

(
− nλ2

50π2

)
+ 2sn exp

(
− n(γ0 − λ)2

50π2

)
→ 0.

Remark. Although the upper bound result (6) and The-
orem 3 are established for the rank-based estimators using
Spearman’s rho, the same analysis can be easily extended
to the rank-based estimators using Kendall’s tau.

A related problem is to recover the sparsity pattern of
Σ−1 when Σ−1 is in an �0 ball. In the semiparametric
Gaussian copula model, the nonzero entries of Σ−1 cor-
respond to the edges in a nonparametric graphical model
representing the Markov dependence structure among the
original variables [18, 19, 34]. [19] took a “plug-in” ap-
proach to estimate Σ−1. They first estimated fj(xj) by

f̂j(xj) = Φ−1(F̂j(xj)) where F̂j(xj) is an empirical ver-
sion of Fj(xj). Then the graphical lasso estimator [9, 12,
22, 23, 37] was constructed based on the working data

(f̂1(xi1), . . . , f̂p(xip)), i = 1, 2, . . . , n. Their asymptotic the-
ory was established for p = O(nξ) for some ξ > 0. Re-
cently, [34] and [18] independently proposed the rank-based
approach for estimating Σ−1 and the theories therein work
for the nearly exponentially large dimension, i.e. log(p) =
o(n).

One may argue that the �0 ball case is more interesting
for sparse inverse covariance (or inverse correlation) matri-
ces because of the graphical model interpretation. Recently,
[31] showed an interesting result that when computing the
graphical lasso estimator of Σ−1, one can first threshold the
small entries of Σ to zero and use those zero entries to dis-
cover the disjoint blocks in Σ−1, and thus it is sufficient to
find the sparse estimates of those blocks using the graphical
lasso in order to construct the graphical lasso estimator of
Σ−1. In short, thresholding the sample covariance (or corre-
lation) matrix can be used to greatly boost the computation
of sparse inverse covariance (or inverse correlation) matrix
estimation.

4. NUMERICAL RESULTS

In this section we use both simulated and real data to ex-
amine the finite-sample performance of the proposed rank-
based estimators.

4.1 Simulation studies

We use several simulation models to examine the finite
sample performance of the proposed estimator. We first gen-
erated n independent hidden p-dimensional random vectors
z1, . . . , zn from N(0,Σ) and then transfer the normal data
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Table 1. Simulation results of Model 1. Estimation accuracy
is measured by the matrix �1-norm and �2-norm averaged
over 100 replications with standard errors in parentheses

ρ = 0.3 ρ = 0.7
p 250 1,000 3,000 250 1,000 3,000

Matrix �1-norm

̂Σ
o 0.93 1.13 1.22 2.39 2.70 2.84

(0.01) (0.02) (0.03) (0.02) (0.03) (0.04)

̂Σ
∗ 0.98 1.18 1.25 2.49 2.80 2.93

(0.01) (0.02) (0.03) (0.02) (0.04) (0.05)

Matrix �2-norm

̂Σ
o 0.60 0.71 0.79 1.44 1.69 1.86

(0.01) (0.01) (0.01) (0.01) (0.02) (0.04)

̂Σ
∗ 0.63 0.76 0.81 1.51 1.77 1.94

(0.01) (0.01) (0.01) (0.01) (0.02) (0.03)

Table 2. Simulation results of Model 2 & 3. Estimation
accuracy is measured by both the matrix �1-norm and

�2-norm averaged over 100 replications with standard errors
shown in parentheses

Model 2 Model 3
p 250 1,000 3,000 250 1,000 3,000

Matrix �1-norm

̂Σ
o 0.67 0.86 0.95 1.52 2.32 2.98

(0.01) (0.02) (0.03) (0.04) (0.05) (0.04)

̂Σ
∗ 0.71 0.91 0.99 1.70 2.51 3.21

(0.01) (0.02) (0.03) (0.04) (0.06) (0.05)

Matrix �2-norm

̂Σ
o 0.47 0.56 0.61 0.68 0.91 1.12

(0.01) (0.01) (0.01) (0.01) (0.02) (0.02)

̂Σ
∗ 0.50 0.60 0.65 0.74 0.99 1.22

(0.01) (0.01) (0.01) (0.01) (0.02) (0.03)

to the actually observed data x1, . . . ,xn using transforma-
tion functions in the following order

g = [f−1
1 , f−1

2 , f−1
3 , f−1

4 , f−1
1 , f−1

2 , f−1
3 , f−1

4 , . . .]

where f1(x) = x, f2(x) = log(x), f3(x) = x
1
3 and f4(x) =

log( x
1−x ). In other words, x1, . . . ,xn are n independent re-

alizations from the semiparametric Gaussian copula model
with the transformation functions being

[f1, f2, f3, f4, f1, f2, f3, f4, . . .]

and the correlation matrix being Σ. In our simulation we let
n = 250 and p = 250, 1,000 & 3,000. We considered three
different correlation matrices:

Model 1: σij = ρ|i−j| for ρ = 0.3 and 0.7.
Model 2: σij = I{i=j} + ρI{|i−j|=1} for ρ = 0.3.

Model 3: σij = sij(siisjj)
−1/2 where S = (sij)p×p =

(Ip×p + U)T (Ip×p + U) and U is a sparse matrix with
exactly p nonzero entries equal to +1 or −1 with equal
probability.

Table 3. Simulation results of Model 2. Support recovery
accuracy is measured by true positive rate / false positive rate

averaged over 100 replications with standard errors in
parentheses

Model 2
p 250 1,000 3,000

̂Σ
o 0.92 / 0.00 0.84 / 0.00 0.77 / 0.00

(0.00 / 0.00) (0.00 / 0.00) (0.01 / 0.00)

̂Σ
∗ 0.88 / 0.00 0.78 / 0.00 0.70 / 0.00

(0.00 / 0.00) (0.00 / 0.00) (0.01 / 0.00)

Table 4. Simulation results of Model 3. Support recovery
accuracy is measured by true positive rate / false positive rate

averaged over 100 replications with standard errors in
parentheses

Model 3
p 250 1,000 3,000

̂Σ
o 0.95 / 0.00 0.92 / 0.00 0.89 / 0.00

(0.00 / 0.00) (0.00 / 0.00) (0.00 / 0.00)

̂Σ
∗ 0.94 / 0.00 0.90 / 0.00 0.87 / 0.00

(0.01 / 0.00) (0.00 / 0.00) (0.00 / 0.00)

These models have been used in previous works [2, 24, 26,
27]. Model 1 belongs to the weak �q ball case, and Model
2 and 3 are the �0 ball case. Model 3 has a random �0
ball structure, and on average it has 990, 3,981 and 12,008
nonzero entries for p = 250, 1,000 and 3,000 respectively.

The goal is to use simulation to confirm the theoretical
finding. To this end, we include the “oracle” estimator as the
benchmark in our simulation study. The “oracle” estimator
is constructed by thresholding the sample correlation matrix
of the hidden data z1, . . . , zn, because the oracle knows the
true transformation functions. Our rank-based estimator is
constructed using the observed data x1, . . . ,xn. We used
the 5-fold cross validation [2, 3, 24] to tune both estimators.
For ease of notation, we denote the “oracle” estimator by

Σ̂
o
and the proposed rank-based estimator by Σ̂

∗
.

The simulation results are summarized in Tables 1–4. For
all three simulation models, we compare the estimation per-
formance using both the matrix �1-norm and the matrix
�2-norm. In the simulation models 2 and 3, we also report
the sparsity recovery performance using the true positive
rate and the false positive rate [24], i.e.,

#{(i, j) : σ̂ij �= 0, & σij �= 0}
#{(i, j) : σij �= 0}

and

#{(i, j) : σ̂ij �= 0, & σij = 0}
#{(i, j) : σij = 0} .

From Tables 1–3, the proposed rank estimator works as well
as the “oracle” estimator, which is what our theory predicts.

204 L. Xue and H. Zou



Table 5. Normality test results for the Arcene data. The
counts of genes that fail to pass each normality test are

shown in the table

Data Cancer Healthy

Critical value 0.01 0.01/200 0.01 0.01/200

Anderson–Darling 197 190 196 188
Lilliefors 194 183 194 157

Pearson’s χ2 198 188 194 165
Shapiro–Francia 197 180 195 172

The “oracle” estimator is slightly better than the rank es-
timator, which is expected because some information is lost
when converting the original data into ranks.

In our simulation study, we also tried the rank-based es-
timators using Kendall’s tau. The corresponding simulation
results are nearly identical to that of the rank estimators
using Spearman’s rho.

4.2 Arcene data

We use the Arcene mass-spectrometric data [14] to
demonstrate the use of the semiparametric Gaussian copula
model and the proposed estimator. This dataset includes
200 samples with 112 healthy patients and 88 cancer pa-
tients with ovarian or prostate tumors from the National
Cancer Institute and the Eastern Virginia Medical School.
Each sample has 7,000 original features indicating the abun-
dance of proteins in human sera having a given mass value,
and 3,000 distractor features having no predictive power.
The Arcene dataset can be downloaded from the UCI Ma-
chine Learning Repository [11].

We first performed the Kolmogorov filter [20] to pick
the top 200 features. The Kolmogorov filter is a fully non-
parametric screening method for the data with binary re-
sponses, and this method is shown to enjoy the sure screen-
ing property under weak assumptions [20]. Denote by F̂h

j (x)

and F̂ c
j (x) the empirical conditional cumulative distribu-

tion function of the j-th feature for healthy patients and
cancer patients, respectively. The Kolmogorov filter ranks
all features by the corresponding two-sample Kolmogorov-
Smirnov test statistic K̂j = sup−∞<x<+∞ |F̂h

j (x) − F̂ c
j (x)|,

and selects 200 features whose K̂j are amongst the first 200

largest of all K̂j ’s. We then conducted various normality
tests on these top 200 features. The test results are shown
in Table 5. For both cancer and healthy patients, more
than 90% genes are unable to pass any of four normality
tests at the significance level of 0.01, and under Bonferroni
correction there are still over 75% genes that fail to pass
the normality tests. Figure 1 plotted the histograms of the
mass-spectrometric values for the top 4 features in terms of
the Kolmogorov-Smirnov statistic in the Kolmogorov filter.
From Figure 1 we see that the features can have a bimodal
distribution or a highly skewed empirical distribution for
both cancer and healthy patients.

To deal with the non-normal issue, we consider the semi-
parametric Gaussian copula model to this dataset. In the
Arcene data, the order of features were randomized [14]. We
are interested in comparing the correlation matrices between
the healthy patient group and the cancer patient group. Be-
cause there is no reliable ordering information, we applied
the rank-based thresholding estimator to these 200 features
for cancer and healthy patients respectively. Figure 2 shows
the heatmaps of the corresponding rank-based threshold-
ing estimators. The features in Panel (A) and (B1) are or-
dered by hierarchical clustering using the estimated cor-
relations for healthy and cancer patients respectively. We
also plotted the heatmap for the cancer patients accord-
ing to the order by hierarchical clustering using the esti-
mated correlations of healthy patients in Panel (B2). Both
Panel (B1) and Panel (B2) have shown a quite different
pattern from Panel (A). We further calculated the statis-

tic L2 = ‖Σ̂
∗
cancer − Σ̂

∗
healthy‖�2 = 41.49. We further com-

puted the 95% bootstrap confidence interval of L2 based on
B = 500 bootstrapped random samples. The bootstrap con-
fidence interval is [30.51, 53.26], which clearly indicates that
the correlation structures among two groups are different.

5. DISCUSSION

Besides thresholding, there are several other useful reg-
ularization techniques for high-dimensional covariance esti-
mation, such as banding [1, 32], tapering [4, 13], Cholesky-
based regularization [1, 25] and positive definite �1 penalized
estimation [33]. These techniques can be combined with the
rank-based correlation estimation idea for estimating the
correlation matrices of semiparametric Gaussian copulas, if
Σ is assumed to have a different structure that is more suit-
able for applying these techniques. [36] studied rank-based
tapering estimator. In this work we focus on thresholding es-
timation because it is permutation invariant, which is a big
advantage over banding/tapering and Cholesky-based reg-
ularization when there is no reliable ordering information
about the variables [2, 24].

APPENDIX A. TECHNICAL PROOFS

Our proof uses the following useful concentration bound
whose proof is given in [34].

Lemma 1. Fix any 0 < ε < 1 and suppose that nε ≥ 12π,
we have

Pr(|r̂sij − σij | > ε) ≤ 2 exp

(
− nε2

50π2

)
.

A.1 Proof of Equation (6)

As we discussed in Section 2, the proof of Theorem 1 is
boiled down to the proof of (6). First we derive the proba-
bility upper bound for |sλ∗(r̂

s
ij)− σij |. Notice that

|sλ∗(r̂
s
ij)− σij | = |σij | · I{|r̂sij |≤λ∗} + |r̂sij − σij | · I{|r̂sij |>λ∗}.
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Figure 1. Illustration of non-normality using histograms of the mass-spectrometric values in the Arcene data.
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Figure 2. Heapmaps of the absolute values of thresholding
estimators for the Arcene data. The features are ordered by
hierarchical clustering using the estimated correlations.

Following [5] we consider the following three possible set-
tings with respect to |σij |.

(i) when |σij | < 1
2λ∗, {|r̂sij | > λ∗} ⊂ {|r̂sij − σij | > 1

2λ∗}
obviously holds by the triangle inequality |r̂sij − σij | >
|r̂sij |− |σij | > 1

2λ∗. Then we have |sλ∗(r̂
s
ij)−σij | = |σij |

with probability at least 1 − Pr(|r̂sij − σij | > 1
2λ∗) =

1− 2p−8.
(ii) when 1

2λ∗ ≤ |σij | ≤ 3
2λ∗, |sλ∗(r̂

s
ij) − σij | ≤

max{|σij |, |r̂sij−σij |} ≤ |σij | with probability of at least

1− Pr(|r̂sij − σij | > 1
2λ∗) = 1− 2p−8.

(iii) when |σij | > 3
2λ∗, we have {|r̂sij | ≤ λ∗} ⊂ {|r̂sij − σij | >

1
2λ∗} by the triangle inequality |r̂sij−σij | > |σij |−|r̂sij | >
1
2λ∗. Then we have |sλ∗(r̂

s
ij) − σij | = |r̂sij − σij | ≤ 1

2λ∗
with probability at least 1 − Pr(|r̂sij − σij | > 1

2λ∗) =

1− 2p−8.

For all three scenarios, we always have |sλ∗(r̂
s
ij) − σij | ≤

min{|σij |, 3
2λ∗} with a high probability of at least 1 −

Pr(|r̂sij − σij | > 1
2λ∗) = 1− 2p−8.

Pick k∗ = 
cn,p(log p/n)−q/2�, and thus

(cn,p/k
∗)1/q ≥ (log p/n)1/2 ≥ [cn,p/(k

∗ + 1)]1/q.

Uniformly for any i = 1, . . . , p we have that,

p∑
j=1

min

{
|σij |,

3

2
λ∗

}
· I(j �= i)

≤ 3

2
λ∗ · k∗ +

∑
i>k∗

(
cn,p
i

)1/q

≤ Ccn,pλ∗
1−q + Cc1/qn,p(k

∗)1−1/q

≤ Ccn,pλ∗
1−q.

Then we can derive the desired upper bound as follows

E
∥∥Σ̂∗

−Σ
∥∥2

�1

= E

(
max

i=1,...,p

p∑
j=1

|sλ∗(r̂
s
ij)− σij |

)2

× I

(
max
(i,j)

|r̂sij − σij | ≤ min

{
|σij |,

3

2
λ∗

})

+E

(
max

i=1,...,p

p∑
j=1

|sλ∗(r̂
s
ij)− σij |

)2

× I

(
max
(i,j)

|r̂sij − σij | > min

{
|σij |,

3

2
λ∗

})

≤ E

(
p∑

j=1

min

{
|σij |,

3

2
λ∗

}
· I(j �= i)

)2

+4p2 Pr

{
max(i,j) |r̂sij − σij | > min

{
|σij |, 32λ∗

}}
≤ Cc2n,pλ∗

2−2q + Cp4 · p−8

≤ Cc2n,p

(
log p

n

)1−q

.

This completes the proof of Equation (6).
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A.2 Proof of Theorem 3

First we notice that{
supp(Σ̂

∗
) �= supp(Σ)

}
⊆

{
max

(i,j)∈Ac
|r̂sij | > λ

}
∪

{
max

(i,j)∈A
|r̂sij | ≤ λ

}
⊆

{
max

(i,j)∈Ac
|r̂sij − σij | > λ

}
∪

{
max

(i,j)∈A
|r̂sij − σij | > γ0 − λ

}
.

Then by using the concentration bound for r̂sij − σij from
Lemma 1, we have

pr(supp(Σ̂
∗
) �= supp(Σ))

≤ pr
(

max
(i,j)∈Ac

|r̂sij − σij | > λ
)

+pr
(

max
(i,j)∈A

|r̂sij − σij | > γ0 − λ
)

≤ p2 exp(−c0nλ
2) + 2sn exp(−c0n(γ0 − λ)2).

This completes the proof of Theorem 3.
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