
Statistics and Its Interface Volume 7 (2014) 177–186

Predictor augmentation in random forests∗
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Random forest (RF) methodology is an increasingly pop-
ular nonparametric methodology for prediction in both re-
gression and classification problems. We describe a behavior
of random forests (RFs) that may be unknown and surpris-
ing to many initial users of the methodology: out-of-sample
prediction by RFs can be sometimes improved by augment-
ing the dataset with a new explanatory variable, indepen-
dent of all variables in the original dataset. We explain this
phenomenon with a simulated example, and show how in-
dependent variable augmentation can help RFs to decreases
prediction variance and improve prediction performance in
some cases. We also give real data examples for illustration,
argue that this phenomenon is closely connected with over-
fitting, and suggest potential research for improving RFs.
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1. INTRODUCTION

Random forest (RF) methodology is among many ma-
chine learning techniques useful for prediction and classifica-
tion problems [4]. The popularity of random forests (RFs) is
reflected by its extension and incorporation in other method-
ology, such as multivariate random forests [6, 15], quantile
regression forests [13], enriched random forests for microar-
ray analysis [1], random survival forests [10] and the R pack-
age “pathwayRF” for metabolic pathway analysis, etc. The
RF approach has also been found to work well in high di-
mensional problems [5]. Recent theoretical results of Biau [2]
provide insight about the good asymptotic performance of
RFs under sparse scenario where the number of relevant pre-
dictor variables may be small compared to the total number
of predictors.

A RF is a collection of classification or regression trees
generated by a bootstrap procedure. Each tree is grown from
an independent bootstrap resample until all nodes contain
observations no more than a pre-specified maximal node
size. No pruning is done, unlike in the case of a single tree.
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Each tree in the forest then provides a prediction of a re-
sponse variable of interest, and a single overall prediction is
obtained by taking a weighted average over the tree predic-
tions from the forest. In a regression problem, equal weights
are assigned to every tree (i.e., sample average); in a clas-
sification problem, the class predicted by the most trees is
taken as the prediction. This numerical approach of growing
trees in a forest through a series of bootstrap resamples and
creating predictions as their averages is typically how the
RF method is implemented in practice, per Breiman’s orig-
inal intention [4], and the methodology is an application of
so-called bagging (bootstrap aggregation) to trees. The RF
method has sometimes been referred to as a “black box”
because its properties are difficult to study analytically [16].
However, some statistical progress has been made in clar-
ifying RFs. Lin and Jeon showed the connection between
RFs and nearest neighbor method [9, 12]. More recently,
Biau derived rates of convergence for a model of RFs [2],
motivated by Breiman [3], that is more amenable to theo-
retical study than the actual RF procedure used in prac-
tice. Despite these advances, translating and interpreting
the general mechanics of RFs for prediction remains chal-
lenging.

The purpose of this paper is to investigate a feature of
RFs that many new users of the method would find coun-
terintuitive; namely, out-of-sample predictions can often be
improved by augmenting an original dataset with random
explanatory (or predictor) variables, created independently
of all variables in the original dataset. This is entirely dif-
ferent from the standard linear regression scenario where
better in-sample predictions (e.g., higher R2 values) can be
obtained by simply including additional predictor variables.
In that case, including random or meaningless explanatory
variables usually leads to higher mean squared prediction er-
ror by increasing variation without reducing bias. However
for RFs, this type of data augmentation can induce smaller
mean squared errors (MSEs) in regression, and lower mis-
classification rates in classification, when predicting outside
of the data used to develop the forest.

We introduce this phenomenon with an example involv-
ing simple regression. Consider a training sample of 100
iid observational pairs (X1, Y ) with X1 ∼ U(0, 1) and
Y |X1 ∼ N(X1, 0.3

2). Suppose that an independent test
case is drawn from the joint distribution of (X1, Y ), and
that we wish to predict the response Y using knowledge of
its X1 value and a RF built from the 100 training cases.
Applying the RF methodology, without using knowledge of
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the joint distribution of (X1, Y ), gives a prediction MSE of
0.132 (approximated from 1,000 simulations). When repeat-
ing this entire process with datasets obtained by augment-
ing (X1, Y ) with a second predictor variable X2 ∼ U(0, 1),
generated independently of (X1, Y ), the RF method using
bothX1 andX2 as predictors interestingly provides approxi-
mately a 12% reduction in MSE compared to the RF method
without X2.

The improvement in prediction by augmenting a dataset
with an independent predictor is not limited to regression
problems. As an example that a similar phenomenon can
occur in classification problems, consider a binary response
variable Z = I(Y > 0.5) defined in the context of our previ-
ous example. When predicting the class of Z (0 or 1) using
a RF, the average correct classification rate approximated
from 1000 simulations increased from 68% to 73% when the
single predictor X1 was augmented with the independent
predictor X2.

These simple examples have been constructed for illus-
tration purposes and are not meant to represent scenarios
where RFs would typically be applied. Nonetheless, the ex-
amples do show that augmentation can lead to substantial
improvement in prediction performance in some cases. Fur-
thermore, we have found that it is possible to obtain bet-
ter test case prediction by augmenting real datasets with
independent random predictors. Because better predictions
can result from including explanatory variables unrelated to
the response, not all variables that improve out-of-sample
RF predictions should be regarded as important. While no
universally accepted criterion of variable importance exists,
a commonly held belief is that a predictor variable is im-
portant if prediction performance can be improved by its
presence and harmed by its absence ([5], pp. 229–30; [14],
pp. 1644). Our results indicate that this variable importance
criterion may be misleading at times when RFs are used.
This is a key point that should be brought to the attention
of the increasing number of users of RF methodology. Fur-
thermore, the fact that such augmentation can improve RF
predictions also suggests potential for further improvements
to RF methodology.

The structure of this paper is as follows. In Section 2,
we explain the reasons behind the improvement of RFs by
predictor variable augmentation. We tie this feature to the
weight selection used by RFs to obtain weighted averages
of training responses and, more specifically, to the issues
of weight-spreading and overfitting. In Section 3 we provide
two real data examples, one for regression and one for classi-
fication, to illustrate the effect of predictor augmentation in
analyses by RFs. In Section 4, we discuss some implications
and generalizations of our findings and connect our work
to some other known results about RFs [12]. Section 5 pro-
vides some concluding and qualifying remarks about data
augmentation in RFs.

It is well known, and will be explained in the following,
that introducing certain types of randomness into the RF

procedure may improve predictions (e.g., defining each tree
from a bootstrap resample or defining a split in a tree by
a random selection of only a subset of predictor variables
[4]. The phenomenon that we discuss here is different. We
are not altering the RF procedure itself, but rather exam-
ining the impact of augmenting an initial data set with
meaningless predictor variables. It is statistically counter-
intuitive that such augmentation can improve the perfor-
mance of a serious prediction method, but nonetheless such
improvements are possible with RFs. Although we demon-
strate the phenomenon of prediction improvement with aug-
mentation, we do not attempt to develop a new machine
learning method (i.e., alter the RF procedure), nor do we
aim to suggest a practical way to improve the prediction
performance by RFs. Instead, by illustrating an effect of
data augmentation, we hope to again suggest some caution
in interpreting predictor variables which improve RF pre-
dictions.

2. IMPROVED PREDICTIONS VIA DATA
AUGMENTATION WITH INDEPENDENT

EXPLANATORY VARIABLES

2.1 Examination of a simulated example

To explain the improvements to RFs by independent pre-
dictor augmentation as alluded to in Section 1, we conducted
a more elaborate simulation study with 1,000 simulation
runs, where each run used the following data-generating
procedure. In each particular simulation, we generated a
training sample with 101 cases (X1, Y ), created from a non-
random explanatory variable, equally partitioning the in-
terval [0, 1] as X1 = i/100, i = 0, . . . , 100, and a response
variable Y generated as Y |X1 ∼ N(X1, 0.3

2). This original
dataset will be referred to as dataset-O. For the purpose
of comparison, we created another dataset by augmenting
dataset-O with an independent variable X2 ∼ U(0, 1) in
the same simulation run. We refer to this second dataset
as dataset-A. Two RFs were grown from the datasets with
or without the X2 variable (denoted as RF-A and RF-O,
respectively); each forest had 100 fully grown trees with a
maximal node size of 1. Note that the two datasets in each
simulation run shared exactly the same X1 values and Y
values, with the only difference between the datasets being
whether or not X2 was present. Additionally, a tree in RF-O
was grown using the same bootstrap index as a correspond-
ing tree in RF-A, which helped to reduce variability in the
simulation study induced by bootstrap resampling.

We used RF-O and RF-A to predict responses at four
values of X1 = 0, 0.25, 0.5, 0.75. To evaluate prediction per-
formance, within the same simulation run, we generated 10
independent response cases at each X1 value and, separately
for each X1 value, computed the average squared prediction
errors and biases between the RF predictions and actual
test responses. Averaging these (average) prediction errors
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Table 1. Predictions by the RFs grown from the original
(RF-O) and augmented (RF-A) datasets

Test case X1 values
Prediction MSE Estimated Bias

RF-O RF-A RF-O RF-A

X1 = 0 0.1323 0.1189 0.008 0.078

X1 = 0.25 0.1328 0.1112 0.003 0.017

X1 = 0.5 0.1320 0.1073 -0.001 -0.003

X1 = 0.75 0.1287 0.1081 -0.003 -0.012

and biases produced the MSEs and estimated biases listed
in Table 1. As Table 1 shows, augmenting with an irrelevant
explanatory variable X2 ∼ U(0, 1) reduced the prediction
MSE at each of the four test sample X1 values. The im-
provement was more obvious for the predictions with an X1

value in the middle of this variable’s range [0, 1], rather than
at the edges.

To begin to understand the results in Table 1, we recall
that, as mentioned for the regression case, a prediction by
a RF amounts to an average of the predictions produced by
the trees in the forest, where each tree is grown from an in-
dependent bootstrap resample of the original data. Because
each tree prediction corresponds to some average of the re-
sponses Y1, . . . , Yn observed in the original training data
(i.e., the average of responses in a node from the dataset
used to grow the tree), we can view the final prediction of
the RF (at some given level of explanatory variables x0) as
a convex combination of the training responses

Ŷ (x0) =

n∑
i=1

wi(x0)Yi(1)

involving nonnegative weights wi ≡ wi(x0) with
∑n

i=1 wi =
1. The weights wi are functions of the training sample and
the regressor value of the test case x0. A single tree in the
forest is grown by a series of partitions of the regressor space
(i.e., binary splits), which tend to pool data cases with sim-
ilar regressors in the same nodes. As a result, a RF predicts
a new case by selecting training cases over each tree that are
close in terms of the explanatory variables, essentially pro-
ducing a weighting scheme w1, . . . , wn that attempts to put
more weight on responses Y1, . . . , Yn in the training dataset
with explanatory variables that match those at which a pre-
diction is desired. RFs created with or without augmenta-
tion predictor variables (i.e., RF-A or -O) are attempting
to produce weights that achieve a good prediction of the
response Y0 ≡ Y0(x0) at some given level of the regres-
sors. Letting w = (w1, . . . , wn)

T and Y = (Y1, . . . , Yn)
T ,

the quality of a predictor Ŷ ≡ Ŷ (x0) =
∑n

i=1 wiYi = wTY
of an independent response Y0 in terms of MSE, given by

E(Y0 − Ŷ )2 = V ar(Y0) + V ar(Ŷ ) + [E(Ŷ )− E(Y0)]
2(2)

= V ar(Y0) + V ar(wTY ) + [E(wTY )− E(Y0)]
2,

depends on the weights w through the variance Var(Ŷ ) and
bias E(Ŷ )− E(Y0) of the predictor Ŷ = wTY . As in other

regression problems, a trade-off exists in the RF method
between prediction bias and variance, which are induced in
this case by the selection of weights.

For the same simulation study that produced the predic-
tion MSEs in Table 1, we can closely examine the weights
(1) assigned to the training cases in a RF construction. Re-
call that each of the 101 training observations in this study
corresponds to a unique value of a non-random explanatory
variable X1 = i/100, i = 0, . . . , 100, chosen to equally parti-
tion the interval [0, 1]. Hence, from 1,000 simulation runs,
we determined the average value of a weight wi assigned by
a RF to a response Yi corresponding to explanatory variable
X1 = i/100, i = 0, . . . , 100, when trying to predict a new re-
sponse Y generated at each of the X1 levels 0, 0.25, 0.5, and
0.75 listed in Table 1. The results are displayed in Figure 1
for both RF-O and RF-A. Again, this figure gives an idea of
how RFs with or without augmentation variables tend to se-
lect and weight training cases that are close in the regressor
space to the positions at which predictions are desired. Also
included in Figure 1 for comparison are the optimal weights
w0, . . . , w100 ≥ 0 with

∑100
i=0 wi = 1 which minimize the pre-

diction MSE (2); these values were computed numerically
based on knowledge of the true mean response E(Y |X1) and
variance σ2, so such weights could not be used in practice.
However, optimal weights are useful for comparison against
RF weighting schemes.

Figure 1 illustrates the reason for the improvement to
RF by independent predictor variable augmentation. When
predicting a test case, RF-O tended to concentrate weights
only on a few training cases with X1 values immediately
neighboring the X1 value of the test case; in contrast, RF-A
tended to spread nonzero weights on more training cases.
This often led to slightly more bias but substantially less
variance for RF-A predictions. For predictions of a new re-
sponse at X1 = 0, RF-A clearly led to more bias (see Ta-
ble 1) because the weights on training cases could be only
spread to training cases with a mean response greater than
the mean response at X1 = 0. But, in this study, bias cost
much less than the gains made in increased precision, and
hence a uniformly smaller MSE was obtained by RF-A. In
Figure 1, the inclusion of X2 dragged the weight assignment
in RF-A from the narrow assignment of RF-O towards the
optimal one. This weight-spreading effect helped to incor-
porate more training cases that were appropriately close to
a test case (in terms of the meaningful regressor X1) when
forming a weighted average prediction.

We also tried augmenting the dataset with different num-
bers of independent U(0, 1) predictors. When the number of
irrelevant predictor variables was not very large (2 to 5), the
prediction MSE for RF-A was smaller than for RF-O for test
cases with X1 values away from the 0 or 1 edges of this vari-
able’s range, but the degree of improvement was less than
that shown in Table 1. This further augmentation had a less
substantial effect in reducing the variance of predictions, as
balanced against the corresponding losses in predictor ac-
curacy. Furthermore, as the number of irrelevant predictors
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Figure 1. Average weights on responses in the training set (identified by their X1 values) that contribute to a prediction by
either RF-O (–) or RF-A (- -). The dotted line (· · · ) corresponds to the weights used by the best linear predictor of the form

(1) that minimizes prediction mean squared error given in (2).

further increased (e.g., larger than five), the weights on re-
sponses in the training sample used for prediction became
increasingly uniform. In these cases, bias increased and over-
whelmed potential reductions in variance, leading to poor
prediction performance except for predictions at X1 values
near the center of the [0, 1] interval, where a uniform weight-
ing is optimal (results not shown).

2.2 A simple analytical example

To further describe how augmenting the design matrix
affects weight-spreading in RF predictions, it is helpful to
recall some details on how trees in the forest are grown.
The description provided here is consistent with the default
settings of the R package randomForest [11]. In the RF pro-
cedure, a bootstrap resample of the training sample is used
to grow a tree by a series of node splits, where to deter-
mine a node split, the algorithm considers a series of binary
partitions composed from a set of randomly chosen predic-
tor variables and their values. Consistent with Breiman [4],
the number of randomly selected predictors considered for

each split is max{1, �p/3�} for regression, where p is the to-
tal number of predictors. For each selected predictor, the
distinct values observed in the bootstrap sample used for
tree construction are ordered, and the midpoints separating
consecutive distinct values are considered as candidate split
points. For a given predictor and a split point, two nodes are
subsequently defined by splitting the cases into two groups
depending on whether the value of the predictor is less or
greater than the split point.

The mean surface for each node/group is estimated by
the average response values over training cases in the node.
The tree growing procedure is a greedy one, in that it always
chooses the current best partition in each step in order to
minimize some loss criterion (i.e., squared error loss in re-
gression), though this immediate best partition may not be
the globally best one.

Consider the simulation of the last section, with two
predictor variables (X2 being the augmentation variable).
When growing both RF-O and RF-A, only one predictor
(either X1 or X2) is randomly selected for consideration at
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each split. Because the trees in RF-O construction must split
only on the right predictor X1, a narrow weighting scheme
is induced, and the training cases ultimately weighted to
predict a new test case are very close to each other in terms
of the distance between their X1 values. On the other hand,
with RF-A construction, bothX1 andX2 have equal chances
to be considered at a split. Splits based on the noninforma-
tiveX2 variable may often direct the test case to a node that
does not contain the training cases closest to the test case in
terms of distance between their X1 values. Subsequent splits
based on X1 will tend to place the test case with training
cases with similar X1 values, among those training cases
that have not already been split onto different branches of
the tree. In this way, splits on the noninformative X2 vari-
able tend to diversify the tree structures and spread weights
on more training cases in prediction, which are roughly close
to a new test case in terms of X1 values (even though splits
on the variable X2 are not necessarily meaningful).

As an extremely simple illustration, suppose there are
two training cases, C1 ≡ C1(Y1, X1 = 0, X2 = x21) and
C2 ≡ C2(Y2, X1 = 1, X2 = x22) available for predicting an
independent test case (Y3, X1 = 0, X2 = x23), where x21,
x22, and x23 are realizations of iid U(0, 1) random variables,
and Y |X1 ∼ N(X1, σ

2), similar to our previous simulation
example. Consider three different possibilities (a), (b) and
(c) below for predicting the test case response.

(a) A tree is grown on the right variable X1, with neither
bagging nor predictor augmentation, which produces a pre-
diction Y1 with prediction MSE (2) given by 2σ2; here the
prediction bias is zero and the prediction variance is 2σ2.

(b) The RF-O prediction (i.e., using only X1) as a boot-
strap expectation, based on bagging trees grown from the
following resamples {C1, C1}, {C2, C2} and {C1, C2} (with
probability 1/4, 1/4, and 1/2), is 3Y1/4+ Y2/4 with predic-
tion MSE given by 2/32+ 52σ2/32, where the first and sec-
ond terms in the sum correspond to squared prediction bias
and prediction variance, respectively. Note also here that
the RF prediction, as a bootstrap expectation, was com-
puted directly, without numerical approximation involving
resampled trees.

(c) The RF-A prediction as a bootstrap expectation,
based on bagging the same resampled trees as RF-O but
with X2 augmentation, is given by Y1/4+Y2/4+M/2, where
Y1, Y2 and M are the predictions from resamples {C1, C1},
{C2, C2} and {C1, C2}, respectively, with

M =

{
Y1 if |x23 − x21| ≤ |x23 − x22|
Y1/2 + Y2/2 if |x23 − x21| > |x23 − x22|.

Note that M takes the value Y1 whenever x23 is closer to x21

than to x22 because the test case will end up in the terminal
node containing C1 regardless of which variable (X1 or X2)
is chosen for splitting. On the other hand, when x23 is closer
to x22 than to x21, splitting on X1 will result in Y1 as the
predictor of Y3, while splitting on X2 will result in Y2 as
the predictor. Hence, in this case that x23 is closer to x22,
because the variables X1 and X2 are selected for splitting

with equal probability, the expectation is that 1/2 the trees
constructed from resample {C1, C2} will predict Y3 by Y1

and 1/2 will predict Y3 by Y2, yielding M = Y1/2 + Y2/2.
Because x21, x22, and x23 are iid U(0, 1) realizations, the
two potential values for M are equally likely. The end result
is that the RF-A prediction as a bootstrap expectation is
an equal mixture of the linear predictors 3Y1/4 + Y2/4 and
Y1/2 + Y2/2. The MSE for this mixture of linear predictors
is 5/32 + 50σ2/32.

We see that the RF procedure itself (RF-O) assigns more
weight on Y2, when compared to a single tree (no bagging),
because bagging leads to unavailability of C1 in some re-
samples. Augmenting the design matrix with an indepen-
dent U(0, 1) variable X2 further spreads the weights from
Y1 to Y2, because the possibility of splitting on X2 increases
the potential for Y2 to be used for prediction even when C1

is in the bootstrap resample. This example intuitively ex-
plains how predictor augmentation helps to spread weights
on training samples in prediction. As the noise level σ2 in-
creases, the RF-O method becomes preferred (with respect
to MSE) over a single tree, and RF with augmentation be-
comes preferred over RF-O. More specifically, in this simple
example, (a) has lowest MSE for σ2 < 1/6, (b) has low-
est MSE for σ2 ∈ (1/6, 3/2), and (c) has lowest MSE for
σ2 > 3/2. Note that we do compromise prediction accuracy
(larger squared prediction bias) by implementing RF and
additionally by predictor augmentation, but the pay-off in
reduced prediction variances improves the overall MSE for
larger σ2. We will discuss this issue in Subsection 4.2.

From the above argument, we also see that the weight-
ing scheme of training samples used for prediction crucially
influences the prediction MSE, and this perspective also
largely explains the prediction improvements made by RFs
over single trees in the first place. When the maximal node
size is one, a tree typically predicts a test case using only
one training case, and corresponds to the narrowest pos-
sible weighting scheme of the training responses. Bagging
then helps to broaden the spread of weights in a convex
combination of training responses as a predictor (1) based
on training responses as long as the number of structurally
different trees is not too small. In a sense, this diversification
of weights provides a different, though related, perspective
for understanding Breiman’s original argument that RFs im-
prove prediction by combining trees that are made less “cor-
related” (in Breiman’s words, [4]), or more diverse, by ran-
domly selecting subsets of predictors (instead of using them
all) to build trees. From a perspective of weight-spreading,
similarly structured trees, even if built by resampling, will
tend to narrowly focus weights on a few training responses,
while the prediction by more structurally diversified trees
(i.e., diversified by randomly choosing regressor variables
in resampled trees and, in our case, further diversified by
predictor variable augmentation) tend to positively weight
a wider range of appropriate training cases and thereby re-
duce prediction variance. This again intuitively explains how
RFs alleviate overfitting compared to an individual tree.
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In the standard Monte Carlo (MC)-based implementation
of a RF, where we numerically determine the RF prediction
from a group of trees grown by a finite set of bootstrap re-
samples, we also note that there is a separate issue of using
a sufficient number of trees (i.e., bootstrap resamples) to
obtain a reasonable MC approximation, and the number of
tree resamples can also impact the final weights used in a RF
prediction in practice. However, simply increasing the num-
ber of resamples (or trees in a MC-constructed forest) only
improves the MC-approximation to the weights assigned by
a given RF procedure, and this does not change the structure
of a RF-procedure itself (whether RF-O or RF-A). Our sim-
ulation study showed that the advantage of RF-A over RF-O
in terms of prediction MSE remained unchanged when the
number of resamples (trees per forest) increased from 100
to 10,000 (results not shown). We will further discuss this
issue of resample sizes in Sections 3 and 4.

3. IMPROVEMENT BY VARIABLE
AUGMENTATION IN REAL DATA

EXAMPLES

While the previous section considered simulated data,
improving test sample prediction performance of a RF by
augmenting the data matrix with independent explanatory
variables also occurs in real data analyses. For illustration,
we first present some results based on the concrete com-
pressive strength data of Yeh [18]. The dataset has 1,030
observations, with eight quantitative input variables and a
response variable, concrete compressive strength. We per-
formed regression analyses (predictions) by RFs based on
the original and augmented datasets, and we also examined
the effect of maximal node size in the trees. We created 1,000
independent partitions of the original data, where each time
we randomly divided the data into a training set (with 1,000
observations) and a test set (the remaining 30 observations)
and augmented the original data matrix with an indepen-
dent U(0, 1) predictor variable as in Section 2. RF-A and
RF-O were both grown with the maximal node size 1, 5, 10,
20 and 30 using the same 1,000 training cases. The perfor-
mance was evaluated based on prediction MSE of the test
samples, averaging over test samples across the 1000 gener-
ated partitions. The results in Table 2 indicate that predic-
tor augmentation reduced the prediction MSE, regardless
of node size and number of trees in a RF. In this example,
growing each tree to its largest possible form (maximal node
size 1) produced better predictions than the default setting
(maximal node size 5) in the R package randomForest.

RFs have been shown to particularly work well in many
prediction problems with a large number of predictors
[1, 12, 17]. There can also be benefit if RFs are applied
in some problems with a much lower dimension, potentially
producing better predictions than other procedures. Using
the concrete compressive strength data of Yeh as an ex-
ample [18], we considered a linear regression model on all

Table 2. Prediction MSEs in the concrete compressive
strength regression with (RF-A) and without (RF-O)

predictor augmentation

RF-O

Node size 1 5 10 20 30

10 trees/RF 34.99 37.15 41.14 57.07 68.37

100 trees/RF 29.05 31.55 36.21 51.57 62.97

1000 trees/RF 29.00 31.46 36.16 51.56 62.87

RF-A

Node size 1 5 10 20 30

10 trees/RF 34.44 35.39 38.69 50.49 60.24

100 trees/RF 28.24 29.85 33.39 45.96 55.84

1000 trees/RF 28.25 29.82 33.45 45.91 55.83

eight predictor variables and a linear regression model with
LASSO regularization [7] on all first and second order terms
involving the eight predictor variables (44 in total, includ-
ing 8 first order terms, 8 quadratic terms and 28 interac-
tion terms). The LASSO tuning parameter was selected by
10-fold cross validation. With the same data partitioning
scheme as for RFs, the prediction MSEs for the linear regres-
sion and LASSO model were 111.05 and 68.74, respectively,
much larger than any RF-A results shown in Table 2.

Lin and Jeon showed that controlling node size improved
prediction performance by RFs in some datasets [12]. Ta-
ble 2 shows that the relative performance of RF-O could
not be improved either by increasing the number of trees
per forest (resamples in the implementation of a RF), or
increasing node size. The effect of node size and number of
trees per RF will be further discussed in Subsection 4.1.

We also tested predictor augmentation in a classification
problem with a real data set. Haberman reported a dataset
on the survival of patients who had undergone breast can-
cer surgery at the University of Chicago’s Billings Hospital
between 1958 and 1970 [8]. The dataset has three explana-
tory variables: age of patient at time of operation, year of
operation, and number of positive axillary nodes detected.
The binary response variable is a patient’s survival status
five years after operation. There are 306 patients in this
dataset. Again we augmented the original data matrix with
an independent U(0, 1) random variable. The dataset was
randomly partitioned into a training set with 2/3 of the pa-
tients and a test set with the remaining 1/3 of the patients.
We grew both RF-O and RF-A with the same training set
and predicted the response in the test set with the maximal
node size 1, 5, 10, 20 and 30. This process was repeated
1,000 times, and the average correct classification rates are
shown in Table 3. Augmenting the data matrix with an in-
dependent U(0, 1) predictor improved classification except
when the maximal node size was 30. As in the previous re-
gression problem with the concrete dataset, increasing the
number of trees per forest led to little or no improvement.
The default maximal node size of the randomForest package
for classification problem is 1, which produced slightly worse
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Table 3. Classification rates for Haberman’s survival data
with (RF-A) and without (RF-O) data augmentation

RF-O

Node size 1 5 10 20 30

10 trees/RF 0.719 0.722 0.726 0.731 0.731

100 trees/RF 0.719 0.722 0.726 0.731 0.733

1000 trees/RF 0.721 0.724 0.728 0.733 0.735

RF-A

Node size 1 5 10 20 30

10 trees/RF 0.732 0.733 0.733 0.732 0.732

100 trees/RF 0.730 0.729 0.733 0.732 0.733

1000 trees/RF 0.732 0.733 0.734 0.735 0.735

predictions than the larger maximal node size considered for
this dataset. The effect of node size will be further discussed
in Section 4.1.

4. OTHER CONSIDERATIONS IMPACTING
THE EFFECT OF VARIABLE

AUGMENTATION

In Subsections 4.1 through 4.3, we briefly connect the ev-
idence of improved random forest (RF) predictions by pre-
dictor augmentation to several other aspects influencing the
performance of RFs, such as the number and size of individ-
ual trees in a forest, signal-to-noise issues, the dimensional-
ity of data, and the functional relationship between mean
response and explanatory variables. We also return to the
issue of interpreting variable importance in light of variable
augmentation in Section 4.4.

4.1 Number and size of trees

As described in Section 2, a RF grows an ensemble of trees
with bootstrap samples and thereby improves prediction
(over a single, less stable tree [3]) by averaging a series of tree
structures, and inducing a broader set of weights on train-
ing responses. We have seen that predictor augmentation
can further add to tree diversification and weight-spreading
in a RF predictor (1) and that, when such augmentation is
helpful, it is because this acts to reduce prediction variance
and mitigate overfitting. We have also illustrated that aug-
mentation can improve predictions regardless of the number
of trees.

Regarding tree size, the default maximal node size val-
ues in the R package randomForest are 5 for regression and
1 for classification problems. However, it is commonly be-
lieved that RFs work best with a maximal node size of 1.
Hastie et al. have also suggested that the overfitting of RFs
with fully grown trees (i.e., maximal node size of 1) seldom
costs much, especially in classification problems [9]. Segal
[15] and Lin and Jeon [12] demonstrated minor gains in RF
regression problems by controlling the node sizes of individ-
ual trees in a forest. In particular, Lin and Jeon [12] related
RFs to the adaptive k-nearest neighbor (k-NN) method, and
showed that tuning the maximal node size is advantageous

for the performance of RFs. There can be an advantage of
choosing a maximal node size larger than one for datasets
with many observations but relatively small dimension, be-
cause this also has the effect of weight-spreading to reduce
the variance of RF predictions. However, tuning the max-
imal node size of individual trees may not be enough to
avoid overfitting problems in RFs completely, and predictor
augmentation can still be beneficial with maximal node sizes
larger than one. Our real data analysis examples in Section 3
(Table 2 and 3) indicate that prediction performance can be
further improved by U(0, 1) predictor augmentation at dif-
ferent maximal node sizes. This suggests that, when such
predictor augmentation is helpful, there may yet be room
for improvement in RFs, including the choice of maximal
node size.

To better understand how the weight-spreading effect
of random predictor augmentation differs from that of in-
creasing maximal node size, it is helpful to consider the k-
potential nearest neighbors (k-PNN) concept introduced by
Lin and Jeon [12]. Based on Lin and Jeon’s Proposition 1, a
training case with predictor vector xi is among the set of k-
PNN of a target point x0 if and only if there are fewer than
k training cases with predictor vectors in the hyperrectangle
defined by xi and x0. Furthermore, when a tree with max-
imal terminal node side k is constructed for a particular
bootstrap resample, only bootstrap resample training cases
in the set of k-PNN of the target point x0 can end up in the
terminal node containing x0. Thus, the response for training
cases whose predictor vector is relatively far from x0 in all
dimensions will receive no weight in the tree prediction of
the response at x0 unless k is large.

Figure 2 provides a simple example to show how aug-
mentation can expand the set of k-PNN to include training
cases that would be considered far from x0 on the basis of
the original predictor variables. In this example, only cases 1
and 2 are 1-PNN of x0 based on the original univariate pre-
dictor. However, following augmentation, the set of 1-PNN
includes all cases except case 4 (which was a 3-PNN prior
to augmentation and becomes a 2-PNN following augmen-
tation). On the basis of the original predictor, case 5 could
contribute to the tree prediction of the response at x0 only
if the maximal terminal node size were set to 4 and only if
cases 2 through 4 were also used for prediction. Following
augmentation, case 5 may contribute to the tree prediction
regardless of the maximal terminal nodes size and regardless
of which other cases receive positive weight.

This example shows that the way trees spread weights
to additional training cases when maximal terminal node
size is increased is fundamentally different than the way
weights are spread following augmentation. Augmentation
places fewer restrictions on how weights can be spread than
increasing node size because augmentation allows training
cases initially considered far from the target point to be
considered relatively close. As our results show, this greater
flexibility to spread weights to cases has advantages, espe-
cially when the signal-to-noise ratio is low.
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Figure 2. hypothetical example involving five training cases
with original univariate predictor values x1, x2, x3, x4, and
x5. A prediction of the response at target value x0 is desired.
The dashed box shows that the hyperrectangle defined by the
target case and case 5 contains no training case other than
case 5 so that case 5 becomes a 1-PNN of the target after

augmentation.

4.2 Signal-to-noise issues and mean
response function

The prediction variance for a given test case is, of course,
related to the variance of the training data. More variability
in the training data often translates into larger variances for
RF predictions relative to their squared biases, and hence a
larger benefit by predictor augmentation and widening the
weights (1) on the training sample. In the simulation exper-
iment of Table 1, for example, if we generate the response
variable Y |X1 from N(X1, 0.5

2) instead of N(X1, 0.3
2), the

variance/MSE reducing effect is even more obvious by aug-
menting with an independent X2 from U(0, 1). In contrast,
if Y |X1 is from N(X1, 0.1

2), there is hardly any improve-
ment. That is to say, data sets with large signal to noise
ratios benefit less from predictor augmentation.

Our simulation example in Section 2 was admittedly and
intentionally simple in that the mean function of response
variable was linear in the only key predictor X1 equally
partitioning the unit interval [0, 1]. When the test sample
has regressor values that are not too extreme so that there
are training cases which approximately neighbor the test
case in regressor space, averaging or weighting more train-
ing responses, induced by independent predictor augmen-
tation, leads to better prediction precision without sacrific-
ing too much prediction accuracy. However situations can
arise where augmentation can hurt the overall prediction
MSE because the gains in reduced prediction variance from
weight-spreading cannot offset the damage in bias. This can

occur, for instance, when the mean function is highly non-
linear over small neighborhoods in the regressor space and
the underlying noise is low. Consider another simple simu-
lation study, similar to that in Section 2, where the mean
function is Y ∼ sin[N(X1, σ

2)], X1 ∼ U(0, 2π), and we ex-
amine the effect of augmenting with an independent U(0, 1)
predictor for predicting an independently drawn test case
(Y1, X1). When σ is 0.3, RF-A and RF-O give prediction
MSEs of 0.084 and 0.069, respectively. However, augmenta-
tion starts to help as the noise of responses rises, and when
σ is 0.5, the prediction MSEs become 0.157 (RF-A) vs. 0.164
(RF-O).

4.3 Number of predictor variables

The number of predictor variables is another factor that
affects the performance of a RF. In our experience, predic-
tor augmentation is more effective if the predictor dimen-
sion is low. When the original dataset has many predictors,
the weight-spreading effect by augmenting with independent
predictors is weakened for two reasons. First, the chance that
a noninformative augmentation predictor will be selected
decreases at each split. Second, when the original dataset
has some irrelevant or weak predictors already, the weights
in (1) can be sufficiently spread by these irrelevant predic-
tors, and an extra augmentation predictor may have little
impact. For these reasons, we may not obtain smaller pre-
diction error by augmenting a real dataset that already has
many predictors.

However, it is often possible to select a subset of predic-
tor variables and gain prediction improvement by predictor
augmentation (in both regression and classification prob-
lems). For instance, in the survival classification problem on
Haberman’s dataset in Section 3, suppose we choose a data
matrix with age of patient during operation and year of op-
eration, but excluding the number of positive axillary nodes
detected. For this reduced dataset, augmentation by an inde-
pendent U(0, 1) predictor increases the correct classification
rate from 0.673 to 0.733, about an 8% improvement (ap-
proximated by simulation), compared to the corresponding
1% improvement in Table 3. This aspect of RF performance
has some implications for interpreting variable importance,
as described in the next subsection.

Biau [2] argues for consistency of RFs with a convergence
rate that depends on the number of relevant predictors (re-
ferred to as strong features by Biau [2]) rather than the total
number of predictor variables. Consistency here means that
the expected squared difference between the RF prediction
and the conditional expectation of the response, given the
predictor variable values, converges to zero as the sample
size n grows. The results of Biau [2] suggest that augmen-
tation is asymptotically irrelevant. Furthermore, Proposi-
tion 2 of Biau [2] implies that the variance of RF predic-
tion from fully grown trees is of the order 1/(logn)(S/2d),
where S is the number of relevant predictor variables and
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d is the total number of predictor variables. This expres-
sion suggests that augmentation with independent predic-
tors (increasing d without increasing S) would slightly slow
the rate at which the variance decreases to zero. At first
glance, this may seem at odds with our examples of reduced
variability by augmentation with irrelevant variables. How-
ever, Biau’s results are for a stylized model of RFs, moti-
vated by Breiman [3], rather than for the standard RF algo-
rithm used in practice, because simplifying assumptions are
commonly necessary in mathematical studies of RFs ([16],
p. 12). In the model, bootstrap resampling is not used, and
all splits for the trees in a forest are selected independently
of the training data. Additionally, the mechanism for select-
ing variables on which to split is assumed to concentrate
probability of selection on only the relevant variables as n
grows. Given our focus on finite sample cases and the dif-
ferences between the RF model and the RF method used
in practice, the findings of Biau [2] do not rule out the im-
proved prediction performance following augmentation that
we have demonstrated in the previous sections of this pa-
per.

4.4 Variable importance

Variable importance may have different meanings in dif-
ferent contexts, with no generally accepted definition. Of-
ten, a predictor variable may be regarded as important if
the prediction on an independent test sample is more accu-
rate with it, and is less accurate without it (the rejoinder
of [5]; [14]). Our examples demonstrate that, in RFs, the
presence of predictors independent of the response variable
may reduce the prediction error, even though such variables
are obviously not important in any scientifically meaningful
sense. This illustrates a possible pitfall with this definition
of variable importance.

Breiman [5] also proposed a second way to define variable
importance as follows: if, within each resampled tree, ran-
domly permuting the values of a certain predictor variable
harms the prediction for cases not included in the given
tree construction, then this variable is deemed important.
This notion is embodied in the “variable importance mea-
sure” of the R package randomForest [11], which assigns
highest values to variables with the greatest discrepancy
between original prediction performance and prediction per-
formance after permutation. (In regression problems, such
prediction performance is computed by first tree-wise deter-
mining squared errors for predicting training cases left out
of the resampled tree construction and then averaging all
such errors over all trees. The resulting variable importance
values have no meaning on an absolute scale, but their rel-
ative sizes can be useful for comparing across different pre-
dictor variables). By its construction, this second variable
importance measure can distinguish independent augmen-
tation predictors from scientifically meaningful predictors
because permuting an independent augmentation variable
has no impact on the joint distribution of the variables in

the dataset. Consequently, permuting an augmentation vari-
able will not substantially change predictions and will typ-
ically result in a relatively low measure of variable impor-
tance. In the simple illustrative example we employed in Sec-
tion 1 with Y |X1 ∼ N(X1, 0.3

2), X1 and X2 iid ∼ U(0, 1),
the variable importance measures given by randomForest
(approximated from 1,000 simulations) for X1 and X2 are
20.85 and 0.24, respectively. This correctly indicates that
X1 is far more important than the irrelevant variable X2.
Thus, Breiman’s second criterion of variable importance is
more meaningful than the first notion of variable importance
when using RFs in variable selection and model building
problems.

5. CONCLUSIONS AND QUALIFICATIONS

This paper demonstrated and investigated a phenomenon
of RF methodology that is not well known to many users
of RFs: independent predictor variable augmentation some-
times improves out-of-sample RF predictions. As RF pre-
dictions have the form of convex combinations of training
responses, augmenting a dataset with an independent pre-
dictor variable can often induce a type of weight-spreading
which crucially reduces the variance of predictions compared
to the additional bias induced, and thereby improve the pre-
diction performance of RFs. While it is possible that other
variations of RFs may produce a similar effect, it is nonethe-
less important to make users of RFs aware of the impact of
independent predictor variable augmentation.

As part of this effort, we offer some warning that there
is a potential risk in assuming that only useful explana-
tory variables will contribute to better RF prediction, be-
cause augmentation with scientifically meaningless variables
demonstrates otherwise. To again qualify this work, our in-
tention here is not to suggest or recommend predictor aug-
mentation in practice for improving RFs. However, the fact
that such data augmentation can improve RF predictions
at all, despite maximal node size choices or numbers of re-
sampled trees used in numerical construction of forests, in-
dicates that there may exist further research potential to
achieve better implementations of RF methodology in prac-
tice.
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