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Family based association study with complex
survey data

Dewei She, Hong Zhang, Yan Li,

Barry I. Graubard, and Zhaohai Li
∗

Genetic data collected from the Third National Health
and Nutrition Examination Survey (NHANES III) provides
an opportunity to investigate associations between genetic
variations and health-related phenotypes for the US popula-
tion. Complex sample designs involving stratified multistage
cluster sampling and sample weighting are used to sample
families in household surveys such as the NHANES III. We
modified conditional likelihood score and trend tests used to
test the null hypothesis of no association between a candi-
date gene and a phenotype in simple random samples of nu-
clear families so that these tests are applicable to data from
complex sample designs. The finite sample properties of our
modified test procedures are evaluated via Monte Carlo sim-
ulation studies. We recommend using an F-version of the
trend test instead of a score test because the F-test shows
greater power. Our test statistics are applied to NHANES
III data to test for associations between the locus ADRB2
(rs1042713) and obesity, VDR (rs2239185) and high blood
lead level, and TGFB1 (rs1982073) and asthma.

Keywords and phrases: Complex sampling, Conditional
likelihood score test, Nuclear family, Survey data, Trend
test.

1. INTRODUCTION

Genetic association studies can be classified into two cate-
gories, i.e., population-based studies and family-based stud-
ies. Population-based studies use genetic information from
unrelated individuals while family-based studies employ in-
formation from nuclear families or pedigrees. Each of these
study designs has advantages and disadvantages. Generally
speaking, population-based study designs provide greater
power and are easier to implement when compared with
family-based studies; however, the population-based study
design can be subject to confounding such as population
stratification. When population substructure exists, i.e., the
allele frequencies vary across sub-populations, and in con-
junction with varying disease prevalence rates, a population-
based study design may lead to a spurious disease-gene as-
sociation (Li, 1969) (Lander and Schork, 1994) (Ewens and
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Spielman, 1995) (Cardon and Palmer, 2003) (Hattersley and
McCarthy, 2005) (Li et al., 2005) (Wang et al., 2005) (Evan-
gelou et al., 2006). Family-based study designs are more ro-
bust to population stratification, but they require more ef-
fort in terms of designing the study and collecting the sam-
ples.

Family-based designs use controls from the same family
as cases, as opposed to unrelated controls in a population-
based study design. Even though some family-based asso-
ciation tests do not require parental genetic information,
many test procedures are based on nuclear families with ge-
netic marker information from parents and their offspring
(Li et al., 2005) (Abecasis et al., 2000a) (Rakovski et al.,
2007) (Thornton and McPeek, 2010). A prime example of a
family-based association test is the transmission disequilib-
rium test (TDT) (Spielman et al., 1993) (Rabinowitz, 1997)
(Risch and Teng, 1998) (Abecasis et al., 2000b). The original
TDT test uses data on transmission of marker alleles from
heterozygous parents to affected offspring. Li et al. (2005)
proposed conditional likelihood score tests for association
studies in nuclear families with parental genotypes (The con-
ditional likelihood function is the conditional probability of
offspring genotypes given the disease status of offspring and
parental mating type. The conditional likelihood score test
was derived by taking the derivative of the log conditional
likelihood function). Under the additive model, the condi-
tional score test is equivalent to the TDT while this is not
the case for dominant or recessive models.

The Third National Health and Nutrition Examination
Survey (NHANES III) collected blood lymphocytes from
7,159 participants age 12 years and older in its second phase
(from October, 1991 to October, 1994) in anticipation of ad-
vances in genetic research (NCHS, 2008). Since NHANES III
is a nationally representative cross-sectional household sur-
vey that collects a multitude of health behavior and med-
ical examination measurements, linkage of the NHANES
III health-related phenotype data to its genetic information
provides an opportunity to investigate genetic associations
with a wide variety of health factors. However, household
surveys such as NHANES III usually have stratified multi-
stage cluster sample designs, which can add complexities
to data analyses. For the NHANES III at the first stage of
the sampling, the target population is partitioned into pri-
mary sampling units (PSU), e.g., counties. The PSUs are
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then grouped into strata. Within each stratum, PSUs are
sampled with probability proportional to the population
size. At the second stage of sampling the sampled PSUs
are subdivided into smaller geographic units, such as city
blocks, and a random sample of these units is selected. Ad-
ditional stages of sampling may be used in some surveys
where smaller units are sampled from the sampled units at
the second stage. For the NHANES III, at the third stage
of sampling, households (which are often approximately nu-
clear families) are sampled and finally individuals are sam-
pled from the sampled households. For each individual, the
inverse of the product of the selection probabilities across all
of the stages of sampling (along with adjustments for non-
response and for post-stratification to population totals) is
their sample weight. The disease status is ascertained in
the sampled offspring as well as among the sampled par-
ents.

Test procedures developed for simple random samples are
generally unsuitable for the analysis of data from these com-
plex sample designs such as used in NHANES III. Even
though family-based designs with corresponding analytic
methods such as TDT are robust to population stratifica-
tion, these procedures do not address within-family genetic
associations with phenotypes that vary across families as a
result of possible epigenetic processes or interactions with
unknown environmental variables. If the sample weights
for the households/families are correlated with the within-
family genetic associations, then sample weighted analyses
may differ from unweighted analyses. In such cases, sample
weighted analyses are preferable as they will provide consis-
tent estimates of genetic association for the target popula-
tion that will be reproducible across different sample designs
applied to the same target population. In addition, as shown
in this paper, family-based test statistics that are appro-
priate for simple random samples can have inflated Type
I error when applied to multistage cluster samples. This
occurs because of increased variances resulting from cor-
relation of within- family genetic associations among fami-
lies from the same sampled PSUs (intra-cluster correlation).
She et al. (2009a) modified several trend tests for genetic
association for population-based designs that can appropri-
ately use complex survey data. However, their methods ig-
nore possible family structure information where individ-
uals from the same sampled household are in the sample.
The objectives of this paper is to 1) modify test procedures
for complex sample designs that can be used to test for an
association between a candidate gene and a health related
phenotype using a family-based study design rather than
a population-based design and 2) use simulations to study
the performance of test procedures for family-based studies
and compare them to test procedures for population-based
studies when the samples are complex multistage strati-
fied cluster samples similar to those from household sur-
veys.

2. METHOD

2.1 Conditional likelihood score test

Under simple random sampling, let allele A be the allele
of high risk and allele a be any of the other alleles. Suppose
we have a sample of n nuclear families. For the ith family,
let the number of affected and unaffected sibs with 0, 1, and
2 alleles of A be (ji0, ji1, ji2) and (ki0, ki1, ki2) respectively
and ji0+ ji1+ ji2 = ri and ki0+ki1+ki2 = si. Denote K as
the disease prevalence, f = (f0, f1, f2)

T as the penetrances
of genotypes (aa, aA, AA), TG0 = p(aa|M), TG1 = p(Aa|M),
and TG2 = p(AA|M), where M = (ij) is the mating type
with i and j being the number of A alleles of the parents.
Note that K =

∑2
i=0 figi where g = (g0, g1, g2)

T are the
population genotype frequencies. The conditional likelihood
score test statistic for the null hypothesis of no association
between the candidate gene and the disease of interest, i.e.,
H0 : f0 = f1 = f2, given by Li et al. (2005) is: TCLS =

U√
V̂ ar(U)

or T 2
CLS , where U =

∑n
i=1 Ui is the conditional

likelihood score, and
(1)

Ui =
1

f0

2∑
m=0

xm(jim−riTGm)− 1

1− f0

2∑
m=0

xm(kim−siTGm).

The score vector x = (x0, x1, x2)
T assigned to genotypes

(aa, aA, AA) has the value (0, 0.5, 1)T for the additive
model, (0, 0, 1)T for the recessive model, and (0, 1, 1)T for
the dominant model.

Under complex sampling, the weighted conditional like-
lihood score is Uw =

∑n
i=1 wiUi, where wi is the sam-

ple weight associated with the ith family. (Throughout the
Methods Section we will assume that families are sampled
and all members of each sampled family are observed. In
the Discussion we will address sampling family members.)

Let z(hl) =
∑n

i=1 wiUiδ
(hl)
i be the weighted sum of Ui’s for

the lth sampled PSU of the hth stratum, where δ
(hl)
i = 1

if the ith family belongs to the lth sampled PSU of the hth

stratum and 0 otherwise. The variance of Uw can be esti-
mated by V̂ ar(Uw) =

∑H
h=1

mh

mh−1

∑mh

l=1(z
(hl)−z̄(h))2, where

z̄(h) =
∑mh

l=1
z(hl)

mh
, H is the total number of strata, and mh is

the number of sampled PSUs within the hth stratum (Korn
and Graubard, 1999). Under H0, TCLSw = Uw√

V̂ ar(Uw)
has an

asymptotic normal distribution with mean 0 and variance 1
and T 2

CLSw has an asymptotic χ2
1 distribution (Graubard

and Korn, 1993). When υ =
∑H

h=1 mh −H is not large, we
can use an F -version of the test statistic FT 2

CLSw = T 2
CLSw,

to take account of the variability of the denominator of
T 2
CLSw and approximate the distribution of FT 2

CLSw as a F
distribution with degrees of freedom 1 and ν underH0 (Korn
and Graubard, 1990) (Li and Graubard, 2009) (Equivalently
a t-distribution with ν degrees of freedom can be used as the
reference distribution for TCLSw to test H0).
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The unweighted or weighted conditional likelihood score
involves the population penetrance of genotype aa, f0, which
can either be obtained from another study or be estimated in
the current study. Under simple random sampling, f0 can be
estimated as the number of diseased subjects with genotype
aa divided by the total number of subjects with genotype
aa. Under complex sampling with sample weighting, f0 can
be estimated as the sample weighted number of diseased
subjects with genotype aa divided by total sample weighted
number of subjects with genotype aa. When f0 is estimated,
the variance estimator of the conditional score needs to be
modified to take this into account. This ratio estimator of
f0 is approximately unbiased under the complex sampling
design for the selection of parents and children that we con-
sidered because the ascertainment of disease status is deter-
mined after the sample is selected. Unlike in the case-control
study design, the disease status in the cross-sectional survey
design is random instead of fixed.

2.2 Trend test
For the ith family, let Xij(Yij) denote the number of A

alleles of the jth affected (unaffected) sib and Xif (Xim)
denote the number of A alleles of father (mother). δif =
1 (δim = 1) if the father (mother) is affected and 0 if un-
affected. Gif = 1 (Gim = 1) if the genotype of the fa-
ther (mother) is known and 0 otherwise. Under a simple
random sample of families a trend score can be defined as
ZTT =

∑n
i=1 Qi, where (for notational simplicity, the index

i is omitted when we discuss the trend score and its variance
for the ith family)

Q =
2∑

k=0

xk

(∑r
j=1 I{xj=k} + δfGf I{xf=k} + δmGmI{xm=k}

r + δfGf + δmGm

−
∑s

j=1 I{yj=k} + (1− δf )Gf I{xf=k} + (1− δm)GmI{xm=k}

s+ (1− δf )Gf + (1− δm)Gm

)
,

which is the weighted sum of the frequency difference of each
genotype between affected and unaffected family members.
Here the score vector x = (x0, x1, x2)

T assigned to geno-
types (aa, aA, AA) is defined the same way as in the pre-
vious section. Let D(D) be the number of affected (unaf-
fected) family members with available genetic information
and Dj(Dj) be the number of affected (unaffected) family
members with j number of allele A, j = 0, 1, or 2, then

Q =
∑2

j=0 xj(
Dj

D − Dj

D
). Let pj be the frequency of geno-

type with j number of allele A, j = 0, 1, or 2. Under the
null hypothesis,

EH0(Q) =
2∑

j=0

xj

(
rpj + δfGfpj + δmGmpj

r + δfGf + δmGm

− spj + (1− δf )Gfpj + (1− δm)Gmpj
s+ (1− δf )Gf + (1− δm)Gm

)
= 0

The EH0(ZTT ) = 0 and, assuming families are indepen-
dent of each other, the V arH0(ZTT ) =

∑n
i=1 V arH0(Qi).

Under H0, TTT = ZTT√
V arH0

(ZTT )
has an asymptotic normal

distribution with mean 0 and variance 1 which follows from
the central limit theorem (the Qi are independent with fi-
nite first and second moments) and T 2

TT has an asymptotic
χ2
1 distribution. The heuristic justification for using T 2

TT for
simple random cross-sectional samples follows from the use
of similar test statistics in case-control studies with sim-
ple random samples of families (Sasieni, 1997) (Slager and
Schaid, 2001) (Freidlin et al., 2002) (Zheng and Gastwirth,
2006). Next we extend T 2

TT to weighted cross-sectional sam-
ples with complex sample designs.

In a complex sampling setting, let wi be the sample
weight associated with the ith family.

The total weighted score would be ZTTw =
∑n

i=1 wiQi.
When cluster effects exist, the variance of ZTTw can be es-
timated using the same procedures described in section 2.1.
Under the null hypothesis, TTTw = ZTTw√

V̂ ar(ZTTw)
has an

asymptotic normal distribution with mean 0 and variance
1 and T 2

TTw has an asymptotic χ2
1 distribution (Graubard

and Korn, 1993). The variance estimate V̂ ar(zTTw) can
be derived using the similar Taylor linearization method
as discussed in the previous section for V̂ ar(Uw). When

υ =
∑H

h=1 mh − H is not large, we can use an F -version
of the test statistic FT 2

TTw = T 2
TTw, which has an asymp-

totic F distribution with degrees of freedom 1 and ν under
H0 (Korn and Graubard, 1990) (Li and Graubard, 2009)
(She et al., 2009b) (Equivalently a t-distribution with ν de-
grees of freedom can be used as the reference distribution
for TTTw to test H0).

The conditional likelihood score test requires that each
nuclear family has at least one child and has available ge-
netic information for parents and children. On the other
hand, the trend test requires that each nuclear family has
at least one unaffected member and one affected member
with available genetic information. To form the trend test,
we restrict to those families having at least one unaffected
member and one affected member with genetic information
available.

2.3 Simulation studies

The type I error rate and power of the modified test pro-
cedures are evaluated via Monte Carlo simulation with a
two-sided significance level of 0.05. The following param-
eters were controlled in the same manner used by She et
al. (2009a): 1) H, the number of strata; 2) L, the num-
ber of sampled PSUs per stratum; 3) x, the score vector
assigned to genotypes (aa, aA, AA); 4) K, the population
disease prevalence; 5) pA, the allele A frequency; and 6)
γ = (1, f1

f0
, f2
f0
)T = (1, γ1, γ2)

T , the relative risk. In addition

to these parameters, we also controlled 1) F , the inbreeding
coefficient for population substructure or cryptic related-
ness, in the same way as by She et al. (2009b); and 2) the
number of sampled nuclear families per PSU.

We set H = 23 and L = 2 with 60 families per PSU,
which is similar to the sample design of the second phase of
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NHANES III. The type I error rate and power are evaluated
with pA = 0.1, 0.3, or 0.5. Two different sets of sample
weights are considered, i.e., wj ’s are equal to one (equivalent
to using no weights) or each family is randomly assigned
the values {1, 2, 3, 4, 5}, in our simulations. Each family is
randomly set to have 0, 1, or 2 sibs. Three score vectors x =
(0, 0, 1)T , (0, 0.5, 1)T , and (0, 1, 1)T are used to generate
three different test statistics corresponding to three different
genetic models. The population disease prevalence K is set
to be 0.05 or 0.1. The relative risk γ is set to be (1, 1, 1)T to
evaluate the type I error rate and is set to be (1, 1, 1.5)T , (1,
1.25, 1.5)T , and (1, 1.5, 1.5)T for a recessive model, additive
model, and dominant model respectively to evaluate power
under alternative hypotheses. The inbreeding coefficient F
was set to be 0 or 0.02.

Genotype data for parents are generated using a two-step
procedure assuming observations within PSU are correlated
and PSUs are independent of each other. In step 1, the al-
lele A frequency p in each PSU was generated from the Beta
distribution Beta((1 − F )pA/F ; (1 − F )(1 − pA)/F ) for in-
breeding coefficient F > 0, and when F = 0 then p = pA.
In step 2, for each parent, two alleles were drawn at ran-
dom from the binomial distribution Bin(2; p) (Zheng et al.,
2005). Given parental genotypes, the genotype of a child was
randomly generated according to Mendelian law of inheri-
tance. This procedure results in intraclass correlation of the
alleles within PSUs, i.e., where the allele frequencies vary
across PSUs. We followed the method described in Huns-
berger et al. (2008) and She et al. (2009a), which is based
on the method of Oman and Zucker (2000), to generate cases
and controls that are correlated within each cluster (PSU)
with intra-cluster correlation coefficient of 0.09. To be spe-
cific, first we generate εi0 for all observations in cluster i
and generate εij for each observation j in cluster i, where
εi0 and εij are iid from a standard normal distribution. Then
we generate uij according to a Bernoulli distribution with
probability of the square root of intra-cluster correlation co-
efficient, i.e.

√
0.09 = 0.3. Let πij = f0G

0
j + f1G

1
j + f2G

2
j

be the probability of being a case where Gi
j = 1 if the jth

individual has i copies of A alleles at the locus of inter-
est. Observation j in cluster i will be defined as a case if
uijεi0 + (1 − uij)εij ≤ φ−1(π̂ij), otherwise it will be a con-
trol.

3. RESULT

3.1 Simulation studies

The type I error rate (level) and power of the test proce-
dures are estimated by the proportion of rejection of the
null hypothesis at the nominal level of 0.05 in 1,000 in-
dependent replications. The binomial standard error for
the simulated levels when the true level is α = 0.05 is√

0.05(1− 0.05)/1000 = 0.00689, levels that equal to or ex-
ceed 0.05 + 1.96 × 0.00689 = 0.064 are considered to be
inflated, otherwise the level is considered to be maintained.

Parameter settings where the nominal level is maintained in
Tables 1–5 are bolded. In our simulation, we calculate the
test statistics using the true f0 and TGm used for the data
generation.

Table 1 displays the type I error rates of the test statistics
assuming there is no population substructure and no intr-
aclass correlation in disease status. F-version test statistics
maintain the nominal level except for a couple of occasions.
Type I error rates are similar when there is population sub-
structure and disease status is correlated within each cluster
(table 2). In general, FT 2

CLSw test and FT 2
TTw test are su-

perior to their corresponding T 2
CLSw and T 2

TTw in terms of
maintaining the level of the test (data not shown).

Table 3 presents the power achieved by the test statistics
with sample weights when there is no population substruc-
ture and no intraclass correlation in disease status. Table 4
presents the power when there is population substructure
and disease status is correlated within each cluster where
the values of power are bolded for parameter settings in
which the nominal level is maintained (see table 2).

Tests are more powerful when the model is correctly spec-
ified than when it is incorrectly specified. When the data
are generated using recessive or dominant models and in-
correct genetic models are used for testing the association,
tests assuming an additive model, i.e., FT 2

CLSw(0.5) and
FT 2

TTw(0.5), are more powerful in general than tests that
assume incorrect genetic models. All tests tend to have less
power when there is population substructure and/or intra-
class correlation in disease status compared to when there is
no population structure and no intraclass correlation in dis-
ease status. The above discussion holds even if the analyses
were restricted to families with at least one child.

When analyses were restricted to those families with
at least one unaffected member and one affected member,
FT 2

TTw(0.5) has greater power than FT 2
CLSw(0.5) (in table 5

the values of power are bolded for parameter settings where
the nominal level is maintained).

Although not presented, we conducted simulations of the
power of the test statistics with no sample weights com-
pared to sample weighted tests when the sample weights are
randomly assigned i.e., noninformative weights. In general
we found the unweighted tests had greater power, which
would be expected since weighting tends to increase vari-
ances (Korn and Graubard, 1999).

3.2 Real data analysis

To illustrate our methods, we apply the test statistics
to the NHANES III genetic data for the same three can-
didate loci analyzed by She et al. (2009a), i.e., ADRB2
(rs1042713), TGFB1 (rs1982073), and VDR (rs2239185). In
this example we will assume that there is no sub-sampling
of family members. The NHANES III does not provide a
sample weight for each family. Instead, it provides a sam-
ple weight for each participant. We use the approach of
She et al. (2009b) to calculate a sample weight for each
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Table 1. Type I error rates given by test statistics: no population substructure and no intraclass correlation in disease status

w ≡ 1 w ∈ {1, 2, 3, 4, 5}
K pA ≡ 0.1 0.3 0.5 0.1 0.3 0.5

0.05 Score Test (1 d.f.) FT 2
CLSw(0) 0.092 0.065 0.056 0.070 0.057 0.050

FT 2
CLSw(0.5) 0.058 0.050 0.046 0.047 0.059 0.054

FT 2
CLSw(1) 0.048 0.051 0.051 0.046 0.048 0.050

Trend Test (1 d.f.) FT 2
TTw(0) 0.045 0.041 0.047 0.049 0.049 0.052

FT 2
TTw(0.5) 0.044 0.049 0.041 0.040 0.054 0.040

FT 2
TTw(1) 0.041 0.051 0.048 0.046 0.040 0.041

0.1 Score Test (1 d.f.) FT 2
CLSw(0) 0.068 0.059 0.051 0.075 0.048 0.038

FT 2
CLSw(0.5) 0.060 0.044 0.057 0.042 0.051 0.048

FT 2
CLSw(1) 0.057 0.033 0.048 0.042 0.052 0.060

Trend Test (1 d.f.) FT 2
TTw(0) 0.046 0.049 0.049 0.075 0.048 0.038

FT 2
TTw(0.5) 0.048 0.044 0.058 0.042 0.051 0.048

FT 2
TTw(1) 0.050 0.042 0.054 0.042 0.052 0.060

1. FT 2
CLSw(x1) and FT 2

TTw(x1) : x1 = 0 for recessive model; x1 = 0.5 for additive model; x1 = 1 for dominant model.
2. K: the disease prevalence.
3. The null hypothesis is that all penetrances are equal.
4. Simulated data have 23 strata with 2 PSUs per stratum and 60 families per cluster.
5. Relative risk (1, 1, 1)T is used.
6. w: the sample weight for each family.
7. Parameter settings where the nominal level is maintained are bolded.

Table 2. Type I error rates given by test statistics: population substructure exists and disease status is correlated within each
cluster

w ≡ 1 w ∈ {1, 2, 3, 4, 5}
K pA ≡ 0.1 0.3 0.5 0.1 0.3 0.5

0.05 Score Test (1 d.f.) FT 2
CLSw(0) 0.056 0.046 0.043 0.050 0.047 0.048

FT 2
CLSw(0.5) 0.045 0.044 0.036 0.040 0.054 0.047

FT 2
CLSw(1) 0.052 0.053 0.048 0.048 0.057 0.060

Trend Test (1 d.f.) FT 2
TTw(0) 0.040 0.052 0.049 0.047 0.047 0.044

FT 2
TTw(0.5) 0.051 0.045 0.052 0.041 0.048 0.059

FT 2
TTw(1) 0.054 0.045 0.050 0.036 0.060 0.051

0.1 Score Test (1 d.f.) FT 2
CLSw(0) 0.056 0.045 0.052 0.069 0.056 0.047

FT 2
CLSw(0.5) 0.047 0.046 0.054 0.058 0.056 0.040

FT 2
CLSw(1) 0.046 0.048 0.061 0.051 0.063 0.051

Trend Test (1 d.f.) FT 2
TTw(0) 0.036 0.046 0.045 0.044 0.053 0.049

FT 2
TTw(0.5) 0.052 0.048 0.038 0.055 0.053 0.052

FT 2
TTw(1) 0.055 0.051 0.054 0.050 0.049 0.059

1. FT 2
CLSw(x1)and FT 2

TTw(x1) : x1 = 0 for recessive model; x1 = 0.5 for additive model; x1 = 1 for dominant model.
2. K: the disease prevalence.
3. The null hypothesis is that all penetrances are equal.
4. Simulated data have 23 strata with 2 PSUs per stratum and 60 families per cluster.
5. Relative risk (1, 1, 1)T is used.
6. The inbreeding coefficient F is 0.02 and the intraclass correlation in disease status is 0.09.
7. w: the sample weight for each family.
8. Parameter settings where the nominal level is maintained are bolded.

family, i.e., the sample weight for a family is computed as
the sum of the individual sample weights from the family
members divided by family sample size. For example, for a
family of three family members sampled, the sample weight
for that family would be the sum of sample weights of the
three family members divided by three. The characteristics

of NHANES III data are summarized in Table 6. Exter-
nal f0’s (23% for obesity, 7.2% for asthma, and 2.2% for
BLL ≥ 10μg/dL), which are consistent with the f0’s es-
timated from NHANES III (She et al., 2009b), and TGm

based on parental genotype are used for conditional likeli-
hood score test.
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Table 3. Power given by test statistics: no population substructure, no intraclass correlation in disease status, and
w ∈ {1, 2, 3, 4, 5}

Genetic model used to generate the data
Recessive model Additive model Dominant model

K pA ≡ 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

0.05 Score Test (1 d.f.) FT 2
CLSw(0) 0.044 0.149 0.273 0.059 0.066 0.091 0.064 0.047 0.044

FT 2
CLSw(0.5) 0.052 0.092 0.197 0.102 0.163 0.180 0.213 0.251 0.156

FT 2
CLSw(1) 0.047 0.051 0.050 0.100 0.165 0.145 0.228 0.327 0.276

Trend Test (1 d.f.) FT 2
TTw(0) 0.073 0.430 0.740 0.058 0.164 0.283 0.046 0.058 0.058

FT 2
TTw(0.5) 0.050 0.216 0.535 0.236 0.431 0.477 0.571 0.635 0.402

FT 2
TTw(1) 0.045 0.070 0.073 0.219 0.354 0.349 0.631 0.805 0.669

0.1 Score Test (1 d.f.) FT 2
CLSw(0) 0.060 0.293 0.528 0.055 0.117 0.162 0.065 0.051 0.049

FT 2
CLSw(0.5) 0.061 0.162 0.367 0.174 0.312 0.319 0.410 0.485 0.293

FT 2
CLSw(1) 0.040 0.059 0.072 0.171 0.280 0.235 0.444 0.645 0.498

Trend Test (1 d.f.) FT 2
TTw(0) 0.151 0.760 0.972 0.086 0.346 0.552 0.060 0.084 0.081

FT 2
TTw(0.5) 0.070 0.407 0.849 0.454 0.751 0.785 0.881 0.934 0.727

FT 2
TTw(1) 0.055 0.079 0.116 0.423 0.648 0.594 0.913 0.982 0.924

1. FT 2
CLSw(x1)and FT 2

TTw(x1) : x1 = 0 for recessive model; x1 = 0.5 for additive model; x1 = 1 for dominant model.
2. K: the disease prevalence.
3. The null hypothesis is that all penetrances are equal.
4. The relative risk is set to be (1, 1, 1.5)T , (1, 1.25, 1.5)T , and (1, 1.5, 1.5)T for recessive model, additive model, and dominant

model respectively.
5. Simulated data have 23 strata with 2 PSUs per stratum and 60 families per cluster.
6. w: the sample weight for each family.
7. Parameter settings where the nominal level is maintained are bolded.

Table 4. Power given by test statistics: population substructure exists, disease status is correlated within each cluster, and
w ∈ {1, 2, 3, 4, 5}

Genetic model used to generate the data
Recessive model Additive model Dominant model

K pA ≡ 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

0.05 Score Test (1 d.f.) FT 2
CLSw(0) 0.035 0.129 0.233 0.047 0.070 0.090 0.052 0.045 0.054

FT 2
CLSw(0.5) 0.048 0.086 0.170 0.088 0.147 0.151 0.177 0.191 0.126

FT 2
CLSw(1) 0.046 0.046 0.072 0.084 0.120 0.138 0.191 0.263 0.220

Trend Test (1 d.f.) FT 2
TTw(0) 0.079 0.358 0.571 0.061 0.157 0.207 0.048 0.058 0.062

FT 2
TTw(0.5) 0.064 0.200 0.443 0.204 0.348 0.372 0.456 0.493 0.341

FT 2
TTw(1) 0.043 0.074 0.095 0.188 0.276 0.271 0.478 0.606 0.494

0.1 Score Test (1 d.f.) FT 2
CLSw(0) 0.049 0.265 0.469 0.038 0.105 0.150 0.047 0.054 0.052

FT 2
CLSw(0.5) 0.072 0.148 0.318 0.173 0.267 0.278 0.361 0.392 0.238

FT 2
CLSw(1) 0.058 0.065 0.061 0.162 0.215 0.209 0.401 0.503 0.414

Trend Test (1 d.f.) FT 2
TTw(0) 0.147 0.676 0.898 0.088 0.289 0.437 0.052 0.084 0.074

FT 2
TTw(0.5) 0.074 0.394 0.751 0.391 0.642 0.683 0.774 0.828 0.625

FT 2
TTw(1) 0.045 0.075 0.142 0.371 0.543 0.506 0.810 0.908 0.821

1. FT 2
CLSw(x1)and FT 2

TTw(x1) : x1 = 0 for recessive model; x1 = 0.5 for additive model; x1 = 1 for dominant model.
2. K: the disease prevalence.
3. The null hypothesis is that all penetrances are equal.
4. Simulated data have 23 strata with 2 PSUs per stratum and 60 families per cluster.
5. The relative risk is set to be (1, 1, 1.5)T , (1, 1.25, 1.5)T , and (1, 1.5, 1.5)T for recessive model, additive model, and dominant

model respectively.
6. The inbreeding coefficient F is 0.02 and the intraclass correlation in disease status is 0.09.
7. w: the sample weight for each family.
8. Parameter settings where the nominal level is maintained are bolded.
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Table 5. Power given by test statistics: restrict to families with both affected and unaffected, population substructure exists,
disease status is correlated within each cluster, and w ∈ {1, 2, 3, 4, 5}

Genetic model used to generate the data
Recessive model Additive model Dominant model

K pA ≡ 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

0.05 Score Test (1 d.f.) FT 2
CLSw(0) 0.038 0.129 0.230 0.052 0.063 0.088 0.056 0.055 0.053

FT 2
CLSw(0.5) 0.042 0.089 0.160 0.085 0.144 0.145 0.174 0.197 0.125

FT 2
CLSw(1) 0.040 0.045 0.066 0.085 0.123 0.130 0.180 0.265 0.223

Trend Test (1 d.f.) FT 2
TTw(0) 0.079 0.358 0.571 0.061 0.157 0.207 0.048 0.058 0.062

FT 2
TTw(0.5) 0.064 0.200 0.443 0.204 0.348 0.372 0.456 0.493 0.341

FT 2
TTw(1) 0.043 0.074 0.095 0.188 0.276 0.271 0.478 0.606 0.494

0.1 Score Test (1 d.f.) FT 2
CLSw(0) 0.056 0.251 0.445 0.052 0.102 0.164 0.054 0.047 0.038

FT 2
CLSw(0.5) 0.061 0.144 0.317 0.160 0.263 0.279 0.334 0.383 0.234

FT 2
CLSw(1) 0.047 0.061 0.070 0.149 0.215 0.214 0.374 0.497 0.400

Trend Test (1 d.f.) FT 2
TTw(0) 0.147 0.676 0.898 0.088 0.289 0.437 0.052 0.084 0.074

FT 2
TTw(0.5) 0.074 0.394 0.751 0.391 0.642 0.683 0.774 0.828 0.625

FT 2
TTw(1) 0.045 0.075 0.142 0.371 0.543 0.506 0.810 0.908 0.821

1. FT 2
CLSw(x1)and FT 2

TTw(x1) : x1 = 0 for recessive model; x1 = 0.5 for additive model; x1 = 1 for dominant model.
2. K: the disease prevalence.
3. The null hypothesis is that all penetrances are equal.
4. Simulated data have 23 strata with 2 PSUs per stratum and 60 families per cluster.
5. The relative risk is set to be (1, 1, 1.5)T , (1, 1.25, 1.5)T , and (1, 1.5, 1.5)T for recessive model, additive model, and dominant

model respectively.
6. The inbreeding coefficient F is 0.02 and the intraclass correlation in disease status is 0.09.
7. w: the sample weight for each family.
8. Parameter settings where the nominal level is maintained are bolded.

Table 6. Characteristics of NHANES III

ADRB2/Obesity TGFB1/Asthma VDR/BLL

Families with two parents & at least one child 150 154 142
Families with affected member 1534 478 188
Families with unaffected member 3656 4302 4368
Families with both affected and unaffected members 699 282 99

Table 7 displays the p-values of the F-version of the con-
ditional likelihood score and trend tests for associations be-
tween ADRB2 and obesity, between TGFB1 and asthma,
and between VDR and blood lead level. No significant as-
sociations are found for the conditional likelihood score
tests between ADRB2 (rs1042713) and obesity and between
TGFB1 (rs1982073) and asthma. Trend test assuming a re-
cessive model suggests that there is a significant association
between VDR (rs2239185) and higher blood lead level.

SAS computer code for computing the conditional likeli-
hood score and trend tests is available from the Dewei She
upon request.

4. DISCUSSION AND CONCLUSION

In this paper, we modified the conditional likelihood score
test and trend test, which are used to test the null hy-
pothesis of no association between a candidate gene and
a phenotype in simple random samples of nuclear fami-
lies, so that these tests can be applied to complex survey

data. The type I error rates and powers of all test statis-
tics are evaluated for finite samples via Monte Carlo sim-
ulations with nominal level of 0.05. Type I error rates are
well controlled for F-version test statistics (around 5% of the
type I errors). Test statistics with the correct genetic model
achieve greater power. When the wrong genetic model is
assumed, the FT 2

CLSw(0.5) and FT 2
TTw(0.5) tests, in gen-

eral, have greater power than tests based on recessive or
dominant models. Compared to the FT 2

CLSw(0.5) test, the
FT 2

TTw(0.5) test achieves much greater power, which may
partially be explained by the fact that the conditional like-
lihood score test requires that each family has at least one
child whereas about one-third of the families in our simu-
lations do not have any children and are not used in the
analyses. After restricting the analysis to families with at
least one child in our simulation study, the FT 2

TTw(0.5) test
is still more powerful than the FT 2

CLSw(0.5) test, which
might be due to the fact that the FT 2

CLSw(0.5) test does
not use parental disease information and it is conditioned
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Table 7. p-values for association test for loci ADRB2,
TGFB1, and VDR

ADRB2 TGFB1 VDR

Score Test (1 d.f.) FT 2
CLSw(0) 0.639 0.696 0.606

FT 2
CLSw(0.5) 0.754 0.820 0.778

FT 2
CLSw(1) 0.860 0.987 0.776

Trend Test (1 d.f.) FT 2
TTw(0) 0.092 0.467 0.014

FT 2
TTw(0.5) 0.125 0.401 0.058

FT 2
TTw(1) 0.400 0.539 0.305

on parental genetic information. Therefore, we recommend
using the FT 2

TTw(0.5) to test the association between a dis-
ease and a candidate gene in the complex sampling setting
with family data available when the genetic model is un-
known.

Unlike the tests considered in this paper, the test proce-
dures recommended by She et al. (2009a), i.e., FT 2

S1w(0.5)
and FT 2

Tw(0.5), ignore the family structure. In our simula-
tion study, FT 2

S1w(0.5) and FT 2
Tw(0.5) have greater power

than FT 2
TTw(0.5). Only when the analyses are restrict to

families with at least one unaffected member and one af-
fected member and when there is population substruc-
ture and intra-class correlation or the sample weights vary,
FT 2

TTw(0.5) has greater power than the FT 2
S1w(0.5) and

FT 2
Tw(0.5) tests (data not shown), in general.
The power of simulated studies depends on 1) pA, the

allele A frequency and 2) K, the population disease preva-
lence. When pA is small, very few family members have geno-
type of AA. When K is small, the vast majority of family
members are controls. The power for either case is small.

Risch and Teng (1998) proposed a test statistic of the
form TRT = p̂1−p̂2

σ̂ , in which the numerator is the difference
of the estimated allele A frequencies between the affected
and unaffected groups and the denominator is the estimated
standard deviation of the numerator. In the complex sam-
pling setting, p̂1 − p̂2 = 1∑n

i=1 wi

∑n
i=1 wiQi, where Qi is the

trend score for the ith family assuming an additive model. It
can be shown that this statistic is the same as the trend test
statistic assuming an additive model. Other family-based as-
sociation tests such as sibling-based transmission disequilib-
rium tests and reconstruction-combined TDT are used for
simple random samples. Extending these to complex sam-
ples is an area of future research.

When developing our testing procedures, we assumed
that all family members are sampled once a family is sam-
pled, which may not always be true. Define wq|i to be the
sample weight of sampled individual q conditional on fam-
ily i being sampled, i.e., the reciprocal of the probability of
sampling individual q from family i. For affected individuals
in sampled family i, let δmqi = 1 if the individual is affected
and = 0 otherwise, where m is the number of A alleles (0, 1,

or 2). Denote ĵim =
∑ni

q=1 wq|iδmqi and r̂i =
∑2

m=0 ĵim and

similarly denote k̂im and ŝi, the conditional likelihood score

test can be extended to the setting of differential weight-
ing within each family by replacing jim, kim, ri, and si
with ĵim, k̂im, r̂i, and ŝi respectively in equation 1. The
conditional likelihood score test requires that each family
has at least one child and has available genetic informa-
tion available for parents and children. Differential weight-
ing within each family is for children only. The Cochran-
Armitage trend test has been applied to analysis of genetic
data under simple random sampling without sample weights
(Slager and Schaid, 2001) (Freidlin et al., 2002) (Zheng and
Gastwirth, 2006). Properties of trend test for genetic analy-
sis, such as power, sample size, robustness, and estimation of
variance have been investigated and reported before (Slager
and Schaid, 2001) (Freidlin et al., 2002) (Zheng and Gast-
wirth, 2006). We adapted trend tests for family based asso-
ciation study with complex survey data. The trend test uses
parental genotypes and requires that each nuclear family
has both at least one unaffected member and one affected
member with available genetic information, which can be
extended to the setting of differential weighting within each
family in a similar fashion as described above. Even though
using parental genotypes in the trend test is not typically
done, it makes more complete use of the family data which
should result in greater statistical power.

For the purpose of illustration, the test statistics de-
scribed in this paper are applied to NHANES III data,
which is the only survey data with genetic information avail-
able that we are aware of, to test for associations between
the locus ADRB2 (rs1042713) and obesity, between TGFB1
(rs1982073) and asthma, and between VDR (rs2239185) and
high blood lead level. Unlike She et al. (2009a), no signifi-
cant association is found between TGFB1 (rs1982073) and
asthma. Trend test assuming a recessive model suggests that
there is a significant association between VDR (rs2239185)
and high blood lead level. Since familial relationships were
not collected in the NHANES III (the exact relationship
among household members is unknown), we inferred the re-
lationships based on age and gender of the surveyed individ-
uals. Families with more than two adult family members or
families having two adult family members of the same gen-
der were removed from the analysis. It should be noted that
Katki et al. (2010) has recently developed a more sophisti-
cated method to infer familial relationships in the NHANES,
which could potentially be utilized in family-based associa-
tion analyses.
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