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Cancer surveillance includes the monitoring of popula-
tion levels and trends in incidence, survival, mortality, and
prevalence. In addition, data are collected on the factors that
influence these basic statistics across the entire cancer con-
trol continuum, such as healthy populations at risk of can-
cer, new diagnosis of cancer, treatment of cancer, living with
cancer, and dying of cancer or other causes. To interpret the
cancer statistics that are collected, an entire area of statis-
tical methodology has been developed at the U.S. National
Cancer Institute (NCI) and other institutions throughout
the world. Most of these developments took place in the last
20 years, and the field is still evolving. In this review, we pro-
vide an overview of these methods, including the motivation
for their development and how the methods compare with
more general mainstream statistical methodology; available
software; and relevant literature references.
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1. INTRODUCTION

Cancer surveillance is the final phase of cancer research.
The first phase includes basic research in cancer biology, ge-
nomics, imaging, biomarkers, and other areas. In the second
phase, basic research discoveries are translated into specific
technologies (e.g., a new screening test) that can be applied
in the population. Cancer control, the third phase, is the
scientific study of mechanisms to gain full implementation
of proven technologies. Cancer surveillance is the monitor-
ing of population levels and trends in incidence, survival,
mortality, and prevalence (the so-called “big four” cancer
statistics).

Two of the “big four” statistics (incidence and survival)
are estimated from data collected from population-based
cancer registries, which in the U.S. include the National
Cancer Institute’s Surveillance Epidemiology and End Re-
sults Program (NCI-SEER) and the Centers for Disease
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Control and Prevention’s National Program of Cancer Reg-
istries (CDC-NPCR). Together, these sets of cancer reg-
istries provide almost complete coverage of the U.S., and
SEER has registries that cover a long period of time but
not for the entire U.S. The North American Association of
Central Cancer Registries (NAACCR) is a member organi-
zation to which all U.S. registries belong. In the U.S., mor-
tality data are collected from state reporting agencies by the
National Center for Health Statistics. The final “big four”
statistic, prevalence, is derived from incidence, survival, and
sometimes also mortality data, depending on the model used
for estimation.

Trends in cancer mortality reflect the ultimate success
or failure of all the prior steps of cancer research. How-
ever, for cancer surveillance to be successful, it should en-
able feedback to all of the earlier stages of cancer research
to help the entire cancer research enterprise optimize its
chance of having the largest population impact. To do this,
data are collected beyond the “big four” cancer statis-
tics, including information on those factors that influence
these basic statistics across the cancer control continuum,
i.e., healthy populations at risk of cancer, new diagnosis of
cancer, cancer treatment, living with cancer, and dying of
cancer or other causes (Figure 1) [1, 2]. These data ele-
ments (e.g., cancer screening rates, dissemination of new
treatments, and risk factors in the population) often must
be collected through nationally representative sample sur-
veys.

To interpret the cancer statistics that are collected, an
entire area of statistical methodology has been developed.
Much of this methodology has been developed in the last
20 years, and the field is still evolving. While these methods
share some similarities and a common purpose with more
general statistical methodology, they have been tuned to
the needs of the cancer surveillance community. Many of
these methods have been developed in the NCI’s Surveil-
lance Research Program, although there have been extensive
developments outside of NCI as well (especially in Europe).
In addition to the temporal trends of the “big four” can-
cer statistics, the analysis and interpretation of geograph-
ical and spatial patterns of cancer trends are also critical.
Figure 2 highlights five areas where statistical methods and
associated software have been developed by NCI. The pur-
pose of this review is to provide an overview of these meth-
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Figure 1. A flow chart of cancer surveillance.

Figure 2. A diagram of methods and software developed by NCI for cancer surveillance.

ods, including the motivation for their development and an
explanation of how the methods compare to more general
mainstream statistical methodology; available software; and

relevant literature references. Statistical details are not pro-
vided, and the interested reader should refer to the refer-
enced articles for additional information.
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2. ANALYSIS OF INCIDENCE AND
MORTALITY TRENDS

2.1 Joinpoint modeling – is the trend
changing?

The most frequently asked question in the analysis of
cancer trends is, “Is the trend changing?” This seemingly
simple question is surprisingly difficult to answer using stan-
dard statistical methods. In the past, various methods were
employed, but these methods had distinct disadvantages. A
polynomial fit to the data has a continuously changing slope,
which makes it difficult to answer the question. In addition,
polynomials sometimes fit poorly at the ends of the data. A
test of the difference in slopes of a linear model fit to the log
of age-adjusted rates over two fixed periods (e.g., the last
five years and the five years prior to that), yields an annual
percent change (APC) for each interval. However, the choice
of the intervals is pre-specified rather than determined by
the data, and the model assumes linearity (on a log scale)
over each interval.

To describe changes in cancer trends, Kim et al. [3] used
a segmented linear model and proposed a method to select
the number of segments and estimate the model parameters.
More formally, the following model is considered to describe
cancer rates or more specifically, the log of rates (y) over
time (x):

y = β0 + β1x+ δ1(x− τ1)
+ + · · ·+ δκ (x− τκ)

+
+ error,

where a+ = max (a, 0), the τ ’s are unknown locations of
change-points where segment mean functions change, and
the number of change-points, κ, is assumed to be unknown.
Such a segmented line regression model in which linear seg-
ments are assumed to be continuous is called a joinpoint
regression model, and the points where the regression mean
functions change are called joinpoints [3]. The least squares
method was used to fit the model with a given number of
joinpoints, κ = k. To estimate the locations of k unknown
joinpoints, τ1, · · · , τk, the grid search method described by
Lerman [4] was used. Later, a continuous fitting method pro-
posed by Hudson [5] was implemented into the model [6].
Hudson’s approach allows the estimated joinpoints to be
anywhere in the data range. The overall least squares esti-
mates of the regression coefficients are then obtained based
on the estimated joinpoints. Once the least squares fit is
obtained for a model with κ = k, it is tested to deter-
mine whether addition of joinpoints significantly reduces the
residual sum of squares. Starting with testing the null hy-
pothesis that there are k0 joinpoints against the alternative
hypothesis that there are k1 joinpoints where k1 > k0, tests
are repeatedly conducted until for some k, the testing of
H0 : κ = k versus H1 : κ = k+1 is performed. Motivated by
the fact that classical asymptotic theory does not work in
this situation, a Monte Carlo method is used to estimate the

p-value of each test. Because the procedure is based on mul-
tiple testing, the significance level of each test is adjusted to
maintain the overall level under α, which is the probability
of over-fitting the model.

Since Joinpoint software, which implements the method
proposed in Kim et al. [3], was first released in 1998, a num-
ber of improvements have been made (http://surveillance.
cancer.gov/joinpoint/). For example, the computational ef-
ficiency of the permutation procedure, which requires a
lengthy computation to resample data points, was improved
by using a sequential stopping rule. The main idea of sequen-
tial stopping is to stop resampling if the early replications
of data indicate the p-value with the entire resampling to be
large or small enough to draw a conclusion. Sequential stop-
ping methods based on a truncated sequential probability
test [7] as well as a simple curtailed test were implemented
to perform the permutation test more efficiently. Model se-
lection methods based on the Bayes Information Criterion
(BIC) and a modified BIC, which work as faster alternatives
to the permutation procedure, were also included. Detailed
comparisons of these model selection procedures and user
guidelines on which model selection method to use will be
provided in a future paper.

After the number of segments is determined, asymptotic
inference on regression parameters, including slope parame-
ters and joinpoint locations, is performed. The p-values and
confidence intervals for the regression slopes or equivalently
for the APC rates are based on asymptotic normality, orig-
inally proved by Feder [8] and later by others ([9], [10]).
Due to a slow convergence of the distribution of the esti-
mated joinpoint to a normal distribution, however, a like-
lihood method was used to construct confidence intervals
for the joinpoint locations. Kim et al. [11] conducted ex-
tensive simulations to examine the accuracy of asymptotic
inference under various conditions and validated empirical
recommendations to omit data points that coincide with the
estimated joinpoints and to use standard errors estimated
without continuity constraints.

When reporting and comparing a large number of differ-
ent cancer types in tabular form, it used to be common prac-
tice to present the APC and statistical significance of the fi-
nal joinpoint segment. However, this approach was problem-
atic because these segments all have different lengths, and
the power of the statistical test that determines whether the
APC differs from zero is dependent on the length of the seg-
ment. When comparing the final segment for two different
cancers (with approximately equivalent underlying variabil-
ity over time), one could have a final segment increasing at
1% per year for many years that is statistically significant,
while the other could have a relatively short segment increas-
ing at 4% per year that is not significant. A measure called
average annual percent change (AAPC) was developed so
that comparable recent trends of two or more series could
be compared. The AAPC, which is estimated as a weighted
geometric mean of the APC’s over a fixed pre-specified seg-
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ment, was developed by Clegg et al. [12]. The Annual Report
to the Nation on the Status of Cancer, an annual publica-
tion summarizing trends in cancer rates, started reporting
five-year AAPC’s in 2009 [13]. Simulation work has shown
that the original derivation of the AAPC confidence inter-
val, which is based on asymptotic normality conditional on
the estimated joinpoints, is generally quite conservative, and
work on improvements is ongoing.

Another enhancement to the Joinpoint software was the
addition of features that enable comparison of different
groups (e.g., males and females) when trends for each group
are modeled as a joinpoint regression model. Kim et al. [14]
considered the problem of comparing two groups of trend
data with similar characteristics. A permutation test was
proposed to compare two segmented line regression func-
tions to test whether two mean functions are (i) identical
or (ii) parallel. The two-group comparability test is being
extended to a multi-group situation in which the goal is
to cluster groups with similar characteristics. The multi-
group problem has two distinct sub-problems: (i) ordered
groups (e.g., age) that should be contiguously clustered and
(ii) unordered groups. The ordered group problem is espe-
cially important when decomposing trends in age-adjusted
rates into clustered sub-groups. To cluster similar groups,
either the permutation test or the BIC method is used to
select the common number of joinpoints for each possible
cluster and then search for the cluster breaking points that
minimize the overall sum of squared errors. To determine
the number of clusters, the BIC method is used based on
our recent simulation study, which will be discussed in a
future paper.

The Joinpoint model has been adopted by registries
throughout the world to characterize population-based
trends in cancer rates, and its use in characterizing other
health indices is growing. The original Kim et al. paper [3]
has been cited more than 800 times. MJ Schell [15] used the
Joinpoint model to project the number of applied papers
that cite a source paper 20 years after publication and used
this approach to rank the top 50 applied statistics papers
published between 1985 and 2003. The Kim et al. paper [3]
was ranked 40th on that list.

2.2 Modeling reporting delays in cancer
incidence

NCI-SEER collects cancer incidence data across U.S. reg-
istries. The registries submit their reporting of new diag-
noses to the SEER Program, normally within a 22-month
window. However, some newly diagnosed cancer cases may
be reported after the 22-month required period. The dis-
crepancy between the time of diagnosis and the first time
reporting to NCI, called delay time, can lead to underre-
porting if not accounted for. Additionally, reporting correc-
tions may occur during the reporting process. For example,
recording of race may be corrected in subsequent years, or

whether a cancer is primary or metastatic may be deter-
mined at a later date after first reporting. As records from
various health care facilities are consolidated, it takes some
time to ensure that they are from the same person and refer
to the same cancer. The cases in a given diagnosis year are
updated annually in subsequent data submissions. Updates
include adding new but previously unreported cases, as well
as deletion of existing cases due to corrections of race, can-
cer site, sex, and age at diagnosis. Other reasons that con-
tribute to delay time and error include systematic changes of
registry operations and sporadic and unpredictable changes
from certain facilities that report cases, among others. All of
these factors make monitoring cancer trends more difficult.
In particular, interpretation of recent cancer trend changes
becomes less reliable.

The statistical problem of delay adjustment is how to pre-
dict the true underlying cancer incidence given the incom-
plete data. The delay-adjustment problem in cancer statis-
tics is similar to those encountered in many other applica-
tions, including HIV/AIDS studies in which time from HIV
infection to AIDS must be predicted or AIDS must be pre-
dicted from reported cases [16–18] and in other contexts
[19, 20]. However, the reporting corrections caused by re-
classifying a reported cancer site to another site is unique
to the cancer surveillance field and requires special atten-
tion.

To address the delay time problem, NCI adopted the de-
lay adjustment model of Midthune [21] in 2003. Application
of this model to estimate cancer incidence rates for nine
SEER registries is described in Clegg [22]. The model con-
siders both the observed added cases that were first reported
to SEER and the dropped cases that were reported earlier
and dropped due to correction. The added cases were as-
sumed to follow a Poisson distribution, and the dropped
cases were assumed to have a conditional binomial distribu-
tion given the past history of adds and drops. Specifically,
if aj is the added case reported at time j, dj is the dropped
case reported at time j, and nj is the net count at time j,
then

aj ∼ Poisson (λpj)

and

(dj | ak, dk, k = 1, . . . , j − 1) ∼ (dj | nj−1)

∼ Binomial (nj−1, gj) ,

where λ is the expected number of cancers eventually re-
ported, pj is the probability that a case is reported at delay
time j, and gj is the conditional probability of a reported
case being removed at delay time j given that the case was
reported and not removed before delay time j.

There are several options for parameterization of pj . A
simple model assumes a geometric distribution for pj such

that pj ∼ ρ (1− ρ)
j−1

, j = 1, . . . ,∞. However, this may
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Figure 3. Joinpoint models for delay-adjusted incidence and observed incidence data of prostate cancer by race. Graphs were
adapted from the SEER Cancer Statistics Review [30].

be impractical, assuming that the cases diagnosed in a cer-
tain year continued to be added thereafter infinitely, albeit
rather slowly. A truncated delay distribution assumes that
adding can only occur up to the longest reporting delay time
among all the subpopulations considered. For the SEER 9
registries, this truncation point is not a problem because
this set of registries has over 20 years of maximum report-
ing delay time, after which it is reasonable to assume that
very few changes are made to the data.

Several factors can contribute to the variability of de-
lay time distribution. These factors include diagnosis year,
race, reporting resource, and registry. The delay time distri-
bution is thus modeled as a function of these factors, either
as a covariate or by stratification, depending on whether
the proportional hazard assumption holds. Figure 3 shows
an example of delay-adjusted prostate cancer incidence data
for blacks and whites. The observed and delay-adjusted inci-
dence rates of prostate cancer are shown in both panels. The
dots are modeled by joinpoint regression models. The right
panel shows that for blacks, the incidence rate is decreasing
for both observed and delay-adjusted data, although delay-
adjusted data decrease at a slower rate. The APC is −1.1 for
the delay-adjusted rate and −1.7 for the observed data from
1995 to 2009. It also indicates that a trend change occurred

around 1986 and then around 1992. The rapid rise and fall of
the incidence trends are associated with the dissemination of
new screening technology, in this case, the prostate-specific
antigen (PSA) screening [23, 24].

The SEER 9 registries were expanded to SEER 13 in 1992
with the addition of the Los Angeles, San Jose-Monterey,
Rural Georgia, and Alaska Native tumor registries. SEER 9
registries cover approximately 10% of the U.S. population,
while SEER 13 registries cover approximately 17% of the
U.S. population. SEER 9 has archived submission data back
to diagnosis year 1981, which is 11 years more than the four
registries added in 1992. This presented a problem because
the original SEER 9 registries and the four new registries
have different truncation points, making them difficult to
compare. Statistically, the main concern is that the delay
model assumes a truncated distribution, i.e., the probabil-
ity of adding a new case is zero when the delay time is be-
yond the maximum length of the reporting years. To address
this issue, we assumed that the data has two sets of maxi-
mum duration such that J1 > J2. For the data with shorter
duration fitted by the delay-adjusted model, the probabil-
ity of adding new cases (or percent missing) is zero when
t > J2, while data with longer duration fitted by its own
delay-adjusted model can still find new cases when t > J2.
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To remedy this, Huang et al. assumed that after J2 years,
the percentage missing in the four expansion registries is the
same as that in the original SEER 9 registries. Technical de-
tails are described in [25].

The problem of developing comparable delay adjustment
factors across registries became even more complicated when
SEER added four additional registries starting in 2000, and
CDC-NPCR starting working to bring registries from the re-
mainder of the country up to reporting standards, with some
registries reporting cases diagnosed in 1999. With a large
range of starting dates across registries, different registries
having missing reporting years if their data did not meet
certain quality standards, and different groups of registries
potentially having different reporting delays, the modeling
approach that had been applied to the expansion from SEER
9 to SEER 13 registries would be difficult to apply to reg-
istries across the U.S. A coordinated effort by NCI, CDC,
and NAACCR is now under way to produce comparable
delay-adjusted incidence rates for registries across the en-
tire U.S. The approach to be employed will use data that
have been reported to NAACCR for cases diagnosed as early
as 1997. Groups of registries will be modeled together with
those registries starting in later years or missing specific
years borrowing information from registries that have com-
plete data. The goals of this joint effort will be as follows:
(i) Delay factors (and standard errors) for every (or almost
every) U.S. registry will be produced; (ii) These factors
should be easily combinable across registries so that ana-
lysts can obtain delay-adjusted incidence rates using any
combination of registries; (iii) All delay adjustment factors
across registries should be adjusted to the same truncation
point; and (iv) Every case should have a delay factor at-
tached to it. Ideally, computations for delay adjustment will
be added to SEER∗Stat (see Figure 2).

2.3 Incidence-based mortality (IBM)

Although U.S. mortality data derived from death certifi-
cates are often viewed as the ultimate indicator of cancer
progress (because mortality is less influenced by biases than
survival and incidence), these data lack information per-
taining to the onset of disease, such as year of diagnosis,
age at diagnosis, stage of disease at diagnosis, and histol-
ogy of the tumor. For example, esophageal cancer has two
major subtypes based on the histology of the tumor (ade-
nocarcinoma and squamous cell carcinoma) with very dif-
ferent etiologies and population trends. It is not possible
to estimate mortality trends for either of these subtypes
of disease using U.S. mortality data because the histology
of a cancer is not recorded on the death certificate. How-
ever, population-based cancer registries collect these types
of data and allow the calculation of an incidence-based mor-
tality rate [26]. This IBM rate allows a partitioning of mor-
tality by variables associated with the cancer onset. IBM
requires high-quality population-based cancer registry data

and high-quality follow-up of cancer patients for vital status
including cause of death.

If dijk is the number of deaths for age group i, calen-
dar year j, and group k (e.g., histology), nij is the as-
sociated population, and wi is the weight associated with
a standard population, then the age-adjusted estimate of
incidence-based mortality is

IBMjk =

∑
i wi

dijk

nij∑
i wi

.

The sum of IBM across all levels of the factor k is the total
estimate of incidence-based mortality, i.e.,

IBMj,Total =

∑
i wi

∑
k dijk

nij∑
i wi

=
∑
k

IBMjk

IBMj,Total may approximate death certificate mortality
(DCMj) but will not equal it exactly. Death certificate mor-
tality comes from death certificates collected by states and
represents all of the deaths which occur for residents of the
state, regardless of where the person lived when they were
diagnosed with the disease. On the other hand, Incidence-
based mortality represents death certificates for everyone
who was a resident of a registry catchment area (usually a
state) when they were diagnosed with the cancer regardless
of where they lived when they died.

If a registry reports cases from calendar year y onward (y
≤ j), then IBMj,Total only includes deaths that occurred
from cases diagnosed in year y or after, while DCMj in-
cludes all deaths regardless of when they were diagnosed.
Thus, one must allow a “burn-in” period during which the
hazard of death from cancer becomes sufficiently small so
that very few cases that were diagnosed before year y die in
year j. For example, most people diagnosed with esophageal
cancer die within three to four years of diagnosis. In this
case, even though the cancer registries started in 1975, in-
cidence based-mortality can only be estimated in 1978 and
after. Secondly, there are differences between cases eligible
to be captured by a cancer registry and the death certifi-
cates in a particular geographic area. Cancer registries cap-
ture every case diagnosed in their catchment area and follow
them to death no matter where they live or when they die.
Death certificates from the same catchment area are col-
lected if someone dies in the area, regardless of where they
lived or when they were diagnosed. As a practical matter,
these biases (the out-migration after diagnosis and the in-
migration prior to death) are relatively small, although in
most cases DC mortality will be slightly larger than IB Mor-
tality [26]. IBM can be estimated using SEER∗Stat [27]. In
analyzing IBM, one must be cautious in interpreting the re-
sults, because factors such as lead-time bias can influence
these analyses (especially when partitioning IBM by year of
diagnosis), whereas they generally will not influence overall
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Figure 4. SEER 9 esophageal adenocarcinoma incidence and incidence-based mortality, 1975 to 2009. From 1975 to 1997,
EAC incidence increased at an annual percentage change (APC) of 8.4 (95% confidence interval [CI] = 7.7–9.1), whereas the
APC was 1.6 (95% CI = 0.0–3.3) from 1997 to 2009. For incidence-based mortality, the APC was 8.0 from 1978 to 1998
(95% CI = 7.2–8.8) and 1.1 from 1998 to 2009 (95% CI = −0.7 to 2.9). All rates were age-adjusted to the 2000 Standard

population using 19 age groups. The graph was adapted from Figure 2 of Hur et al. [29].

death certificate mortality. Examples of IBM analyses in-
clude those for breast cancer [26], prostate cancer [28], and
esophageal cancer [29]. Figure 4 shows trends in incidence
and mortality for esophageal adenocarcinoma. Mortality is
not shown for the first three years to allow for the burn-in
period for IBM. A minimum three year burn-in period was
considered sufficient in this case because three to four-year
survival is so poor that very few cases diagnosed prior to
1975 would die of esophageal adenocarcinoma in 1978 or
after.

3. SURVIVAL

3.1 Relative survival: not relying on cause of
death information

The most frequently reported population-based survival
statistic is relative survival as defined below [30], which is
the measure used in comparisons of population-based cancer
survival [31]. For most cancer registries, cause of death in-
formation obtained from death certificates is either unavail-
able or unreliable due to misclassification errors or intrinsic
difficulties in identifying an underlying cause of death. For
example, a metastasis site, rather than the original site of
disease, might be reported as the cause of death. Relative
survival was developed to estimate survival associated with
a cancer diagnosis and does not rely on cause of death in-
formation. Relative survival R(t) is defined as the ratio of
observed survival (all-cause survival) of a cohort of cancer

patients S(t) to the expected survival of a comparable set
of cancer-free individuals S∗(t),

R(t) =
S(t)

S∗(t)
.

Thus, on the hazard scale, the overall hazard h(t) is given
by

h(t) = h∗(t) + λ(t),

where h∗(t) is the expected mortality hazard and λ(t) is the
excess hazard associated with the disease of interest. Be-
cause a cohort of cancer-free individuals is difficult to obtain,
life tables representing the survival of the general popula-
tion are used to estimate expected survival/mortality. The
underlying assumption is that the cancer deaths are a neg-
ligible proportion of all deaths [32]. Relative survival is usu-
ally estimated by using the actuarial method and dividing
the time scale into intervals. Expected survival is calculated
by averaging survival probabilities by age, sex, time period,
and race from national life tables to individuals in the study
population. Different methods have been developed (Ederer
I [32], Ederer II [33], and Hakulinen [34]) to estimate ex-
pected survival. These methods differ regarding how long
individuals from the study population are considered to be
at risk to be matched and to enter expected survival calcula-
tions. A technical report [35] provides comparison of relative
survival calculations by different methods. In practice, es-
pecially if the analysis is stratified by age, when estimating
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short-term relative survival or calculating age-adjusted rel-
ative survival, the different methods do not make much dif-
ference and provide similar relative survival estimates [35].
However, in some particular situations, for example, for can-
cer sites diagnosed over a wide range of ages (e.g., thyroid),
long-term relative survival for all ages combined may vary
depending on the method used to estimate expected sur-
vival (see [35]). The Ederer II method has been shown to
align well with the concept of net cancer survival [36] and is
the default for calculation of relative survival in SEER∗Stat.
The standard error of relative survival can be estimated as
the standard error of observed survival divided by the ex-
pected survival rate [32]. The standard error of observed
survival can be estimated by Greenwood’s formula [37].

3.1.1 Regression models for relative survival

The vast majority of work on survival modeling relates to
cause-specific survival, i.e., survival calculated using cause of
death. Recently, several methods have been developed and
adapted to relative survival. Relative survival models may
be classified into two broad groups: regression relative sur-
vival without cure and relative survival models with cure.
Regression relative survival models (without cure) are used
to estimate the effect of covariates on survival but also to
project survival on both calendar time and follow-up time.
Cure survival models aim to estimate the proportion of in-
dividuals who will eventually be cured and will not die of
their cancer.

Most relative survival regression methods model the ex-
cess hazard λ(t) of a cancer diagnosis [31, 38, 39]. Hakuli-
nen and Tekanen [31] extended the grouped survival bino-
mial regression model using a complementary log-log link
to grouped relative survival data. Methods to estimate rel-
ative survival using individual data and the full likelihood
approach have been developed by Dickman et al. [38] and
Esteve et al. [39]. More recently, flexible parametric models
[40, 41] have been developed to model relative survival by
fitting restricted cubic splines on the log cumulative excess
hazard scale. The main advantages of these models are the
ability to model time on a continuous scale and the possi-
bility to incorporate time-varying covariates. Other methods
have been recently developed to model relative survival with
time-dependent effects [40, 42–44].

3.1.2 Providing up-to-date estimates of survival

Survival data lag behind the current calendar year for two
reasons: (i) the most recent year of diagnosis is usually three
to four years behind the calendar year and (ii) typically only
one year of follow-up information is available for patients
diagnosed in the most recently reported year. Thus, five-year
survival is usually estimated for patients diagnosed eight
to nine years before the calendar year. However, there is
interest in estimates that reflect the survival experience of
the most recently diagnosed patients. The period method
is a non-parametric method similar to cross-sectional life

tables that uses the most recent follow-up information for
each cancer patient to estimate survival [45].

In addition, regression models [31] that allow extrapola-
tion of survival to the current calendar year and projection
of survival into the future [46] have been used to model cal-
endar year at diagnosis. Survival can be projected in two
ways: (i) a flat projection extrapolates the fitted estimate
of the last year of data to the current calendar year and
(ii) a trend projection extrapolates the fitted trend to the
current calendar year. Validation studies have shown that
these models provide more accurate estimates of recently
diagnosed patients than the period non-parametric method
[45], [46].

3.1.3 Joinpoint survival analysis

Joinpoint models have recently been extended to model
the progress of and trends in cancer survival rates [3], [47].
The survival joinpoint models fit linear segments to the haz-
ard of dying and estimate changes in survival. In population-
based surveillance, cancer survival trends are often charac-
terized as a function of the year of diagnosis and projected
into the current year. Under the proportional hazards as-
sumption with joinpoints, the hazard function at t years
after cancer diagnosis for a person who is diagnosed with
cancer at calendar year x can be expressed as

(1) λ(t | x, z) = λ0(t) exp

{
βx+

K∑
k=1

δk(x− τk)
+ + γtz

}
,

where x is the calendar year of cancer diagnosis, z is the vec-
tor of covariates, τ = (τ1, · · · , τk) are the joinpoints, λ0(t)
is the baseline hazard, and β, δ, γ are the parameters. Ad-
vances in early diagnosis and treatment often impact the
survival of patients at a specific time point and then level off
after those advances have been fully incorporated on a pop-
ulation level [48]. Therefore, Modeling survival trends and
projecting up-to-date survival in the presence of a change
point may facilitate understanding of the relationship be-
tween medical improvements and the survival experience for
the patient population at large.

Yu et al. [47] extended the joinpoint survival model in
equation (1) to population-based grouped survival data.
They assumed that the number of deaths follows a bino-
mial distribution; in relative survival analysis, the number
of patients dying from all causes follows a binomial distri-
bution. The joinpoint relative survival model can be fitted
using SAS PROC GENMOD with a user-defined link func-
tion. An R package based on an iteratively reweighted least
squares algorithm is currently being implemented and will
be available to the public in the future.

A Bayesian approach to joinpoint survival models for
population-based survival data has also been developed
based on a Poisson distribution for the number of deaths
and a Dirichlet process mixture for the regression slopes [49].
The Bayesian approach relaxes distributional assumption of
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the regression coefficient by using a mixture of normal distri-
butions. It can be applied to modeling rare cancers by using
the Poisson distribution for the number of death. However,
it is computationally more demanding with large datasets.

3.1.4 Cure survival models

Cure survival models for relative survival developed by
Yu et al. [50] have been implemented in the CANSURV
software. CANSURV software was developed to analyze
grouped relative survival data, although some of the meth-
ods are available for individual data [50, 51]. CANSURV can
fit parametric survival models with and without cure, and fit
semi-parametric Cox proportional hazards method [50]. The
CANSURV program implements parametric mixture cure
survival models to analyze population-based cancer survival
data:

S(t) = c+ (1− c)G(t | μ, σ),
where c represents the proportion that will be cured and
die of other causes, and (1 − c) represents the proportion
uncured whose cancer-specific survival follows the G(t) dis-
tribution with mean μ and variance σ2. In the CANSURV
software, G(t) can be a log-normal, log-logistic, or Weibull
distribution. The model is described in detail in Yu et al.
[50]. Recently, a cure survival model using a flexible para-
metric model for relative survival was developed [52]. The
flexible parametric survival model use splines to model the
underlying hazard, and therefore no parametric distribution
has to be specified.

3.2 Cause-specific survival: improving cause
of death information reported by cancer
registries

The major advantage of relative survival (excess mortal-
ity) is that information on cause of death is not required.
However, the method relies on accurately estimating ex-
pected survival using population life tables. If life tables
are not representative of patients’ survival in the absence
of cancer then relative survival will be biased. For exam-
ple, patients with smoking related cancers may experience
excess mortality, compared to the general population, due
to both the cancer and other smoking-related conditions.
Thus their expected survival could be lower than that es-
timated from life tables and consequently, relative survival
could be slightly overestimated [53]. On the other hand, rel-
ative survival of individuals diagnosed with localized breast
or prostate cancer through screening, has shown to be higher
than 100 percent [54], indicating that expected survival from
life tables underestimate their survival due to other causes.
These individuals probably go more frequently to clinicians
indicating either a better access to care or healthier behav-
ior than the general population (healthy screening effect).
In addition, life tables are not available for all races and
ethnicities, and the general population life tables may not
be a good representation of their life expectancies. For these

reasons NCI developed and improved an algorithm [54] to
measure more accurately cause of death information. This
algorithm considers causes of death that are likely to be re-
lated to the particular cancer or consequence of a cancer di-
agnosis and the fact that an individual may or may not have
more than the particular cancer. In validation studies, the
cause-specific survival using the new cause of death variable
was similar to relative survival. It allows reporting of the
most up-to-date cancer survival statistics on U.S. minori-
ties such as Hispanics and Asians (e.g., Chinese, Japanese,
Filipino, and Vietnamese) as well as Native Americans and
Alaska Natives. More information of the cause of death al-
gorithm can be found in [22, 54] and on the SEER website
(http://seer.cancer.gov/causespecific/).

3.3 Competing risks

Cumulative mortality from cancer may be represented in
the presence or absence of other causes of death using the
theory of competing risks. Net measures of survival (survival
in the absence of other causes of death) are more commonly
reported from cancer registry data because this measure
is useful in tracking the progress of cancer control efforts,
since it is not influenced by changes in mortality from other
causes. However only cumulative mortality in the presence
of other causes is useful in estimating the actual survival
patterns observed in a cohort of cancer patients.

Cronin and Feuer [55] developed a method for estimat-
ing crude cumulative mortality using a relative survival ap-
proach. Based on the theory of competing risks, for discrete
time intervals, define the cumulative probabilities of death
through time interval M from cancer, GcM , and from other
causes, GoM , can be estimated as

GcM =

M∑
k=1

(
k−1∏
i=1

P̂i

) [(
1−Rk

)
− 1

2

(
1−Rk

) (
1− Ek

)]

GoM =

M∑
k=1

(
k−1∏
i=1

P̂i

) [(
1− Ek

)
− 1

2

(
1−Rk

) (
1− Ek

)]

where P̂i is the life table estimate of the observed survival
rate in interval i, Ei is the expected survival rate in interval i
for the patient group as obtained from US Life Tables based
on the age, race, sex, and calendar year of diagnosis mix of

the group, and Ri = P̂i

Ei
is the estimated relative survival

rate in interval i. This estimate assumes independence of the
competing risks and that the conditional risk of dying from
cancer and other causes follows a uniform distribution over
each time interval. Figure 5 shows an example comparing
net and crude cumulative mortality for localized prostate
cancer for men age 70 and over. In the presence of other
cause mortality (which is quite high for men 70 and over),
the chance of death from prostate cancer is considerably
reduced.

Feuer et al. [56] extended Cronin and Feuer [55] to the
case of a specific cancer patient j with characteristics zj
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Figure 5. Cumulative probability of death in men with localized prostate cancer over the age of 70. The graphs were adapted
from Figure 1 of Cronin and Feuer et al. [55].

which influences net cancer-specific survival, and charac-
teristics wj which influence net other cause survival [56,
57]. Generally zj and wj will have some factors in com-
mon (e.g. age). Generally cancer registries have many factors
(zj) available to characterize net cancer survival, but very
few or no factors (wj) besides age to characterize net other
cause survival. Although independence of competing risks
is a strong assumption, one advantage of operating under
this assumption is that it is possible to estimate net other
cause survival from alternative data sources other than the
registry data.

Work is continuing at NCI on a Cancer Survival Query
System [56], which will allow health care providers access to
competing risks survival based on a large population-based
cancer registry data base (i.e. SEER). If factors wj char-
acterizing other cause survival are not readily available in
the cancer registry data, a potentially rich range of inde-
pendent alternative data sources can be used. Of course, in
using independent sources, one must assume that survival
from other causes conditional on the available covariates is
the same for the cancer and alternative data source. Based
on SEER-Medicare linked data, Mariotto et al. [58] have
developed estimates of co-morbidity based on claims in the
year prior to diagnosis, but also included a non-cancer sam-
ple to help provide more stable estimates. Efforts are also
underway to develop lifetables based on mortality follow-up
from National Health Interview Surveys based on covariates
such as self assessed overall health status, smoking, activities
of daily living, etc.

Lee et al. [59] applied a more traditional approach de-
veloped by Cheng et al. [60] to cancer registry data which
does not assume independence of competing risks. In this
approach, cause of death is used and the chance of death
from cancer and other causes are both estimated from a
single data cancer registry data set.

4. CANCER PREVALENCE ESTIMATION

Prevalence is defined as the number or percentage of
people alive on a certain date who were previously diag-
nosed with cancer. It includes new (incidence) and pre-
existing cases and is a function of both past incidence and
survival. Because it includes all prior diagnoses of can-
cer, prevalence is sometimes denoted “complete prevalence.”
“Limited-duration prevalence” refers to prevalence that in-
cludes survivors diagnosed a limited number of years prior
to the prevalence date. Information on prevalence is crucial
for health planning and resource allocation, and prevalence
can serve as an estimate of cancer survivorship.

For the past 38 years, NCI has provided the nation’s can-
cer prevalence estimates based on data from the SEER Pro-
gram. However, the methods and data used to produce these
estimates have evolved over time.

4.1 Limited-duration prevalence

The first national estimate of U.S. cancer prevalence used
cancers diagnosed from 1935 through 1981 and follow-up
through 1983 from the Connecticut registry [61]. This esti-
mate represented 46-year limited-duration prevalence, i.e.,
people alive on January 1, 1982, who were diagnosed with
cancer during the previous 46 years (1935–1981). This es-
timate did not represent complete prevalence, and because
it was based on data from only the Connecticut tumor reg-
istry, it was not representative of the entire U.S. population.
However, the method was adjusted for cases lost to follow-up
by estimating their chance of being alive at the prevalence
date and has been implemented in SEER∗Stat software to
estimate limited-duration prevalence. This method has also
been used to estimate U.S. prevalence using data from the
SEER 9 registries, which are more representative of the U.S.
population.
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Figure 6. The percentage of the US population alive on January 1, 2009 with a prior diagnosis with cancer.

4.2 Complete prevalence

Complete prevalence is a more desirable statistic that in-
cludes survivors ever diagnosed with cancer. A method de-
veloped to estimate complete prevalence applies incidence
and survival models [62, 63] to estimate the proportion of
prevalent cases diagnosed prior to registration. This method
has been used since 2002 to estimate complete prevalence
in the U.S. and is implemented in COMPREV software
[64]. Figure 6 shows the percentage of the U.S. population
alive on January 1, 2009, with a prior diagnosis with can-
cer.

The complete prevalence at age x, N(x), representing the
proportion of individuals with cancer and aged x at the
prevalence date, can be calculated as a convolution of in-
cidence and survival as [65],

(2) N(x) =

∫ x

0

I(t)S(t, x− t)dt

where I(t) is the incidence hazard at age t and S(t, x −
t) the probability that individuals diagnosed with can-
cer at age t are still alive at age x. If we base our
estimation on a registry that has been operating for l
years, we can only estimate l years limited duration preva-
lence, i.e., the prevalence at age x of people diagnosed
between ages x − l and x, N̂0(x;x − l, x). The COM-
PREV method [65], [66] uses the l-year limited dura-
tion prevalence N̂0(x;x − l, x) and an adjustment fac-
tor based on estimates of modeled prevalence as specified
in (2).

More specifically, complete prevalence is estimated by
estimating parametric incidence and survival models, Î
and Ŝ and an adjustment factor based on the ratio of
modeled complete prevalence and modeled observed preva-
lence, i.e.,

N̂(x) = N̂0(x;x− l, x)
N̂(x)

N̂(x;x− l, x)

= N̂0(x;x− l, x)

∫ x

0
Î(t)Ŝ(x− t, t)dt∫ x

x−l
Î(t)Ŝ(x− t, t)dt

.

Standard errors of a complete prevalence estimate can be
calculated using the delta method [67]. This method has
been extended to estimate complete prevalence for patients
diagnosed during childhood (ages 0–19) [68, 69].

4.3 Projections of prevalence estimates

Usually, cancer registries do not cover the entire na-
tional population. In the U.S., the complete prevalence is
estimated by extrapolation. Using SEER registry data, the
prevalence proportion controlling for age, sex, and race
(white, black and other races) is extrapolated to the respec-
tive national population [70].

However, two other relevant modeling methods exist:
(i) the Prevalence-Incidence Aproach MODel (PIAMOD)
based on equation (2) [71] and (ii) the Mortality-Incidence
Approach MODel (MIAMOD) [72] method based on a back-
calculation mortality equation. The MIAMOD method esti-
mates prevalence from cancer mortality data, which is avail-
able nationally. The method models mortality and survival
data to back-calculate incidence and then forward-calculate
prevalence using equation (2). This method has been ap-
plied to estimate breast cancer prevalence at the state level
in the U.S. [73].

Because prevalence is valuable in health planning and
resource allocation, it is important to have future projec-
tions of prevalence. The PIAMOD method [74] is based on
equation (2) and directly models incidence and survival to
forward-calculate prevalence. This method has been used
to project prevalence into the future and to investigate the
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Figure 7. Overall process of the incidence spatial/temporal projection.

impact of changes in population, incidence, and survival in
prevalence projections [71, 75]. It has also been used to es-
timate costs of care [71, 76].

5. SPATIO-TEMPORAL MODELING AND
CLUSTER DETECTION

For more than half a century, the American Cancer So-
ciety has published the estimated cancer mortality and new
cancer incidence in the current calendar year in the U.S.
overall and in each state [77–79]. Cancer mortality and in-
cidence cases diagnosed in the current calendar year in the
U.S. overall and in each state are not known because the
most recent year for which data are available lags three years
(for mortality) or four years (for incidence) behind due to
the time required for data collection, compilation, and dis-
semination. Furthermore, high quality incidence data have
not yet been achieved in all states, and the total cases for the
most recent one to three data years are incomplete because
of delays in reporting. Until 2010, these estimates project
three years (for mortality) [80] or four years (for incidence)
[81] ahead of the most recent data year to the current cal-
endar year.

However, in the past few years, because of delays in the re-
lease of the final mortality data for the most recent data year
from the National Center for Health Statistics, it became
necessary to develop a four-year-ahead projection method
for mortality. The cancer mortality data are available over
a long time period (since 1969) and cover all the states in
the U.S.; in contrast, the cancer incidence data are available
over a shorter time period (since 1995), do not fully cover
all states in the U.S., and thus need a method to first fill in
the “holes” in the data and then project four years ahead to
the current calendar year. Beginning in 2010, a NCI work
group was formed to evaluate projection methods for U.S.-

and state-level cancer mortality and incidence. The details

of the evaluation procedure and results were published in

2012 ([82, 83]).

In this section, a spatio-temporal projection method for

incidence estimates will be described. The process used to

estimate the numbers of new cancer cases expected in the

current calendar year consists of three steps (see Figure 7):

I. Spatio-temporal prediction: A hierarchical Poisson

mixed effects model [81] is applied to observed data

from high quality cancer registries, as certified by

NAACCR, to provide estimates of annual case counts

over the available time period for every U.S. county.

This step can fill in “holes” in a state’s time series be-

fore the state became a certified high quality registry

or fill in “holes” in the map for a year when some states

did not report their data.

II. Delay adjustment: The predicted case counts from Step

I are summed to the state level and then inflated to

account for expected delay in case reporting.

III. Temporal projection: The delay-adjusted predicted case

counts from Step II are projected ahead four years to

the upcoming calendar year. For this validation test,

the model projects ahead to the latest year for which

observed data are available.

Because of the complexity of this process, validation of the

spatio-temporal prediction and temporal projection steps

are done separately. A residual analysis is performed on the

results of Step I to determine whether additional covariates

or interaction terms are needed. The temporal projection is

validated by projecting delay-adjusted observed case counts

four years ahead, comparing alternative methods by several

fit statistics.
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5.1 Data and methods for spatio-temporal
predictions

An updated version of the CINA Deluxe incidence data
from NAACCR described in Pickle et al. [81] was used in the
spatio-temporal prediction validation. The data were com-
piled by NAACCR with the permission of its member reg-
istry and released to researchers for cancer surveillance re-
search (see http://www.naaccr.org/Research/CINADeluxe.
aspx). The updated dataset contains data from 1995 through
2007 and includes 46 states and the District of Columbia,
covering 95% of the U.S. population [84].

The covariates for the spatio-temporal model are con-
structed from various sources. The only information avail-
able on the individual cases is age, gender, race, county of
residence, cancer site, and year of diagnosis. Approximately
30 other ecologic covariates are available at the county level,
including categories of socio-economic status available in the
census data, availability of health services [85], behavior and
risk factors [86], and the mortality data of the correspond-
ing cancer site in the specific population [87]. A hierarchical
Poisson regression model was used to estimate the number
of cases for all U.S. counties by socio-economic and other
ecological covariates. The number of new cancer cases in
county i, age group j, and year t, denoted by yijt, was as-
sumed to be distributed as a Poisson random variable, with
mean nijtλijt, where nijt is the corresponding population at
risk and λijt is the incidence rate. Assume a log-linear rate
structure with

log(λijt | α,β, γ, δ) = αr + f(aj)β

+ log(mijt)γ +Xiδ + θs + φt,

where αr is the intercept for census region, aj is the mid-
point of a particular age group, f(·) is a cubic function of
age groups that accounts for the non-linearity of some can-
cer rates among age groups,mijt is the age-specific mortality
rate, and Xi is the vector of socio-demographic and lifestyle
covariates. θs and φt account for spatial and temporal ran-
dom effects, respectively. The spatial and temporal random
effects would typically be specified in a fully Bayesian ap-
proach with conditional auto-regressive and auto-regressive
priors, but the intensive computing and labor involved
makes it infeasible to run the program for the many can-
cer sites that NCI projects. As a result, a low-rank smooth-
ing (the number of smoothers is considerably less than the
number of observations) in SAS Glimmix procedure [88] was
used, which constructs the “knots” of both spatial and tem-
poral random effects so that the knots are equally spaced
and cover the whole U.S. for the study period.

5.2 Data and methods for temporal
projections

To date, not enough incidence data are available from ev-
ery registry to test a projection four years ahead for the en-
tire country. The latest CINA Deluxe dataset now includes

incidence data for 1995 through 2008, a 14-year span. Be-
cause one of the test methods (Nordpred) requires that time
be specified in five-year blocks, the required observed data
time span was extended to 15 years. Thus, 19 years of ob-
served data are required for this projection: 15 years (1990–
2004) for model input plus four years for projection ahead
(to 2008). Only the older SEER 9 registries can provide suf-
ficient data for this projection. In addition, the rest of Cal-
ifornia and the state of New Jersey have available data and
gave permission for their use. The aggregate of the SEER
9 registries plus these two additional areas were used as a
proxy for the entire U.S. The selection of cancer sites in-
cludes both very common and very rare cancers and is the
same set of sites used for the original model development.

A more thorough search was conducted for a better tem-
poral projection method to project four years ahead for
cancer incidence counts, the third step of the three-step
prediction process. In this search, five projection methods
were evaluated and compared: the Nordpred method [89],
(a special version of the Age-Period-Cohort method [90],
Joinpoint method (the method previously used [81]), State-
Space model which used a local quadratic function to ob-
tain projections of the time series [80], Bayesian State-Space
(BSS) method, and Vector Autoregressive (VAR) model.
BSS used a dynamic generalized linear model fitted in the
Bayesian paradigm. It first modeled the logarithm of the
parameter (state) of the assumed Poisson distribution for
the incidence counts for the initial year, and then combined
the amount of variation from year to year to put together
the likelihood. VAR applied the empirical mode decompo-
sition [91] method to decompose the data and then applied
multivariate time-series technique for projections. At the
U.S. level, on average, the Bayesian State-Space method
produced projections that are closer to the observed counts
than the other projections. But for the most common cancer
sites, Vector Autoregressive model outperforms the Bayesian
State-Space method. At the state level, the Vector Autore-
gressive model produces projections that are closest to the
observed counts. Although two methods could be recom-
mended – the Bayesian State-Space method at the U.S. level
and the Vector Autoregressive model at the state level – the
decision was made to use a single model, the Vector Autore-
gressive model, at both the U.S. and the state levels starting
with the Cancer Facts & Figures 2012 and Cancer Statistics
2012.

5.3 Cluster detection using scan statistics

Cancer registries and public health investigators may
be interested in emerging spatial patterns and/or temporal
trends of cancer rates when new cancer data become avail-
able every year. Cluster detection methods using spatial and
space-time scan statistics have become very popular in re-
cent years, largely due to the open-source software SaTScan
[92]. In such methods, a variably shaped and sized candi-
date area (scan window) scans across a study region and
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period. For each window, a likelihood ratio is calculated, and
the window with the maximum likelihood ratio is selected
as the most likely cluster. This is the cluster that is least
likely to have occurred by chance. The likelihood ratio for
this window constitutes the maximum likelihood ratio test
statistic. Its distribution and p-value are obtained through
the Monte Carlo hypothesis testing method. Several meth-
ods have been proposed in this field, including Kulldorff’s
scan statistics [92, 93], flexible-shaped [94], upper-level set
[95], and other likelihood-based methods [96].

A purely spatial scan statistic imposes a circular or ellip-
tic (with different shapes and angles) window over the study
area in searching for clusters. Extended to the time dimen-
sion, a space-time scan statistic is defined by a cylindrical
window with a circular or elliptic spatial base and height
corresponding to time, which denotes the time period of
potential clusters. In the equation below, Z represents the
collection of all the possible clusters z in study region S.
A zone (z) consists of neighboring geographic units hav-
ing their centroids in circles (or ellipses) of various radii
(and orientation). The variables cz and nz represent the ob-
served number of cases and the expected number of cases
(or population) in zone z, respectively. Thus, C =

∑
z cz

and N =
∑

z nz represent the total number of cases and the
total number of expected cases (or population) in S, respec-
tively. For cancer incidence and mortality, a Poisson model
is typically chosen. The likelihood ratio of a zone (z) is then
given by

LR(z) =

{(
cz
nz

)cz (
C − cz
N − nz

)C−cz
}
I(cz > nz).

The most likely cluster is the scanning window z ∈ Z, which
maximizes the log likelihood ratio. A closed form of the null
distribution of the test statistics T = maxz log(LR(z)) =
maxz LLR(z) does not exist, so statistical significance is
evaluated using Monte Carlo hypothesis testing.

The SaTScan website (http://satscan.org) lists a large
number of publications in the methodology and applications
by field of study in cluster detection. Of special interest to
cancer cluster detection are investigation into breast cancer
in the northeastern U.S. [97], prostate cancer mortality in
the U.S. [98], and brain cancer in the U.S. [99].

6. DISCUSSION

Cancer statistics derived from population-based cancer
registries can be classified into two general categories. The
first category includes statistics that are derived for policy
purposes and are generally normalized or adjusted in some
manner to control for confounding factors. For example, age-
adjusted rates allow comparisons across years without the
confounding effects of changes in the age distribution of the
U.S. population. Trends in the five-year net relative survival
over time reflect only the impact of changes in the hazard

of cancer death without the confounding effects of changes
in the hazard of death from other causes. The second cate-
gory of statistics is developed to be more applicable to indi-
viduals or to show the population burden of disease. Com-
peting risks estimates of survival are applicable to actual
patients’ survival experiences. Lifetime and age-conditional
risks of disease convert incidence rates and mortality from
other causes into risk estimates applicable to individuals.
Prevalence estimates show the population burden of disease.
Over the last twenty years, new measures have been refined
to estimate both types of statistics, and methods have been
developed to estimate and/or characterize them.

Communicating cancer statistics is important for surveil-
lance research. Various approaches are required to dissem-
inate statistics to different audiences, such as the general
public, reporters, policy makers, and researchers. Addition-
ally, different considerations need to be taken into account
when reporting large tables of cancer statistics or individ-
ual analyses. In particular, summary tables across all ages
tend to hide age-specific trends. A new SEER portal with
visual presentations that could increase understanding and
absorption for different audiences is currently being devel-
oped.

Additional developments in statistical methodology in
cancer surveillance are also under way. For example, NCI
recently developed a new method called CI∗Rank to con-
struct confidence intervals for ranking age-adjusted rates
across geographic units (usually states or counties). Rank-
ing of health indices provides useful information, but ranks
are often viewed as fixed, which may be misleading because
the ranking is based on random data. The novel CI∗Rank
method uses Monte Carlo simulation to find the individual
and simultaneous confidence intervals of ranks for health in-
dices data. This software will be available on the NCI web-
site soon.

This review does not include all statistical methods used
in cancer surveillance, and other methods are available. For
example, life table methods are used to compute the life-
time and age-conditional probability of developing and dy-
ing of cancer. The associated software is implemented in
DEVCAN (http://surveillance.cancer.gov/devcan/; see Fig-
ure 2). The Multiple Primary-Standardized Incidence Ra-
tio (MP-SIR; http://seer.cancer.gov/seerstat/mp-sir.html)
methodology is used to perform multiple primary analy-
ses and to test hypotheses that explore theoretical links
in the etiologies of two cancers. A defined cohort of per-
sons previously diagnosed with cancer is followed through
time to compare their subsequent cancer experience to the
number of cancers that would be expected based on inci-
dence rates for the general population. These calculations
are available in SEER∗Stat. Simulation policy modeling de-
veloped by the Cancer Intervention and Surveillance Mod-
eling Network (CISNET; http://cisnet.cancer.gov/) can be
used to project future trends and aid in the development of
optimal cancer control strategies.
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Cancer surveillance data and statistical inferences play
important roles in cancer research. The statistical methods
used to analyze cancer data are somewhat different from
the general mainstream statistical methodology. Often, they
are tailored to fit the specific aims of the cancer surveil-
lance framework. In this review, we provide an overview of
these data and methods, available software, and references.
There is still great need for development of new methods, as
data collected from surveillance are expanding and statisti-
cal methods are evolving around the needs to analyze and
interpret different types of data.
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