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Marginal analysis of measurement agreement
among multiple raters with non-ignorable missing

ratings

7ZHEN CHEN*T AND YunLONG XIEf

In diagnostic medicine, several measurements have been
developed to evaluate the agreements among raters when
the data are complete. In practice, raters may not be able
to give definitive ratings to some participants because symp-
toms may not be clear-cut. Simply removing subjects with
missing ratings may produce biased estimates and result in
loss of efficiency. In this article, we propose a within-cluster
resampling (WCR) procedure and a marginal approach to
handle non-ignorable missing data in measurement agree-
ment data. Simulation studies show that both WCR and
marginal approach provide unbiased estimates and have cov-
erage probabilities close to the nominal level. The proposed
methods are applied to a data set from the Physician Reli-
ability Study in diagnosing endometriosis.

KEYWORDS AND PHRASES: Fleiss k, Scott w, Within-cluster
resampling, Marginal approach.

1. INTRODUCTION

Endometriosis is a gynecological disorder in women that
occurs when cells from the lining of the uterus grow in other
areas of the uterus. The cause of endometriosis is unknown
and a gold standard of diagnosing and staging does not ex-
ist. In order to better categorize the consistency and reliabil-
ity in diagnosing endometriosis, we conducted the Physician
Reliability Study (PRS) in collaboration with investigators
at the University of Utah [1]. In the PRS, 12 physicians in
obstetric and gynecology (OB/GYN) separately reviewed
participants’ clinical information (digital intra-uterus image
taken during laparoscopy, surgeon’s notes, magnetic reso-
nance imaging, and histopathology reports) and assessed
presence and staging of endometriosis. Among these physi-
cians, 4 are international experts, 4 are local experts and the
others are residents. Each physician conducted the review
in a sequence of four settings, with each successive setting
having an additional piece of clinical information. In this
article, we focus on the outcome of the absence/presence of

*Corresponding author.

TThe authors gratefully thank the Intramural Research Program of
the National Institutes of health, Eunice Kennedy Shriver National
Institute of Child Health and Human Development.

endometriosis, and to better reflect real clinical situation,
restrict to the 8 physicians (4 local experts and 4 residents)
who are practicing at the same medical center (Utah). Only
data from the first setting, where the physicians reviewed
the digital images only, were used.

An important scientific aim of the PRS is to estimate the
agreement parameter among the physicians in terms of di-
agnosing endometriosis. To this end, one can apply the com-
monly used Fleiss kappa [2] to estimate the inter-rater agree-
ment. Briefly speaking, Fleiss kappa is a chance-corrected
measure of agreement among more than 2 raters and ex-
tends Scott’s 7 [3] that measures the agreement between
two raters. Both Scott’s m and Fleiss kappa make the as-
sumption that each rater (physician) returns a positive rat-
ing with a common probability. The Scott’s © and Fleiss
kappa approach are also equivalent to the common corre-
lation model in Donner and Eliasziw (1992) [4]. However,
the PRS data pose a challenge in using the aforementioned
approach directly given that some physicians only returned
an “Indeterminant” diagnose for some participants. From
the perspective of endometriosis diagnosis, these “Indeter-
minant” ratings are missing data. Among the 148 partici-
pants with digital images in setting 1, 83 (59%) participants
have 1 or more of their 8 ratings missing. Section 4 provides
more detailed information on the missingness.

With missing ratings present, a naive approach is to com-
pute Fleiss kappa based on participants with complete data
and remove those with 1 or more missing ratings from anal-
ysis. For the PRS, this practice leaves 60 participants who
have all 8 ratings. Clearly, this naive approach is not desir-
able. First, throwing out participants with missing ratings
will result in a loss of efficiency since the available sample
size is reduced. Second and more importantly, by restricting
to those with complete ratings, one implicitly assumes that
the missing ratings are ignorable in the senses that the un-
derlying missing mechanism is not related to the observed
agreement. However, missing ratings in PRS could be non-
ignorable. This can happen, for example, if missing ratings
occur when the physicians are diagnosing a participant with-
out clear-cut symptoms (hence giving an “Indeterminant”
rating). In this situation, these physicians’ ratings will re-
semble the outcomes of tossing a fair coin, resulting in low
agreement. On the other hand, if the symptom is clear-cut,
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Figure 1. Relationship between average standard deviation
among non-missing ratings and the number of non-missing
ratings. Since there is only one participant having only 2
ratings, we remove that participant in this figure.

we would expect a high agreement on ratings. The PRS data
seem to suggest such a relationship between agreement and
missing ratings; see Figure 1 and Section 4 for more detailed
discussions.

As the raters in PRS are similar in training and practice
in the same medical center, and as the missing ratings are
more a feature of participants rather than of raters, we make
the assumption that the multiple ratings of the same partic-
ipant are exchangeable. We can then treat the missing data
in PRS as an informative cluster size problem [5-7]. The
literature on informative cluster size have long established
that the bias will be resulted if cluster size is not modeled
appropriately.

In this paper, we propose approaches that handle infor-
mative cluster size in agreement analysis. We first introduce
a resampling procedure similar to the within-cluster resam-
pling of Hoffman et al. (2001) [6]. In this procedure, we
randomly select 2 ratings from each participant and form a
2-rater data. We then compute Scott’s m measure for this 2-
rater data set. This procedure is then repeated many times
to obtain our estimates. Since this resampling procedure
is computation intensive, we also introduce a marginal ap-
proach similar to Lorenz et al. (2011) [8]. In essence, we
inversely reweight functionals in the Scott’s 7w formula and
hence account for the informative cluster size in measure-
ment agreement data. See Section 2.3 for details on how
the reweightings are implemented. It’s expected that these
two proposed approaches produce similar results. In Sec-
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tion 2, we introduce notations, present the naive method,
and propose the within-cluster resampling and the marginal
approaches. We conduct simulation studies to evaluate the
operating characteristics of the proposed methods in Sec-
tion 4. In Section 4, we apply our proposed methods to the
PRS data and summarize in Section 5.

2. METHODS

2.1 Notations and setup

Suppose there are N participants rated by J raters who
are exchangeable. Let ¢ = 1,..., N denote participants and
j=1,...,J denote raters. Let Y¥;; = 0/1 denote the binary
rating from the j-th rater for the i-th participant. Although
the case of ordinal Yj; can be similarly considered, we focus
on the binary rating situation for brevity in presentation.
When J = 2, there are several different chance-corrected
agreement measures that can be estimated when no missing
data are present; for example Scott’s w (1955) [3] and Co-
hen’s kappa (1960) [9]. Compared to Cohen’s kappa, Scott’s
7 makes the assumption that the probability of a positive
rating (i.e., prevalence) is the same for both raters. This
assumption also leads to the widely used common corre-
lation model [4]. Since the raters are exchangeable hence
have a common prevalence, we focus on Scott’s 7 and its
extensions. At population level, let Y7 and Y5 be random
variables corresponding to the ratings from the two raters
and Py = P(Y1 = k, Yy = 1) for I,k = 0,1. Further let
P,, be the common probability of a positive rating, i.e.
P, = P(Y; = 1), = 0,1. As a chance-corrected measure
of agreement, Scott’s 7 is defined as

_ Pa — Pe
=T
where p, = Py + Py is the total agreement and p, = P2 +
(1 — P,,)? is the agreement due to chance. Let EX denotes
the expectation of the random variable X. It is easy to show
that p, = 1—EZ, where Z = (Y1+Y32)(2—Y1 —Y>3) and that
pe = (EY1)? + (1 — EY7)?. Define w; = EY; and we = EZ.
Then we have
17(4]2 7&)% — (17&)1)2

1—&)%—(1—&11)2

y :pafpe _
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With a sample of ratings (Y;1, Yi2), ¢ = 1,..., N, Scott’s 7
can be estimated by the familiar formula (e.g., Donner and
Eliasziw 1992 [4])

~ :ﬁa_ﬁe
s ]_—ﬁe’

where p, =1 — % Zfil $:(2 —s;), with s; = Y31 + Y2 being
the number of positive ratings, and p. = 72 + (1 — )2,
with # = 7 Efil s;. For variance of 4., Gwet (2008) [10]
suggested:



Table 1. A simple illustration of the WCR procedure for agreement data

Raw data g-th WCR Pseudo data
participant Rater participant Pseudo rater
1 2 3 4 1 2
1 Y11 Yiz Y13 Y14 1 zf, =12 xy = Y13
2 Y21 Y22 NA  yo24 T3 = Y21 Ty = Yo2u
i yir NA NA  yis i zf =y Tl = Yia
N YN1  YN2 YN3  YN4 N TH1 = YN  Thy = Yna
o N denote that a missing rating is recorded. To apply within-
(2) var(yx) = Z (i = ) ? cluster resampling, we randomly select 2 ratings (bolded
pling, y g
i=1 from each participant. The resulted new data are collected
b o(] — A \Peli=Pe & _ Pali=Be s _ in the right panel of Table 1 where each of the N participants
where 'YW;V = i — 201 = %3\[ —*e » Tmi = T1=5. 0 Pe T now has 2 ratings. Since these two ratings may not be from
W[(Zizlu — 57)) + (Xizis 5i)°, Pali = J(Jl_l) [(/ = the same two raters for each participant, we term the corre-

$)(J —s;i—1)+5;(si — )] and pei = 5oz [(J —50) Sy (T —
si) + s ZZV=1 s;]. This variance estimate works in the pres-
ence of both high and low agreement.

2.2 Within-cluster resampling

When missing data are present, let Y;; = NA when rater
j did not give a definitive rating for participant i. In the
general case of J > 2, the naive method is to simply ignore
all the participants with any Y;; = NA for j =1,...,J and
compute Fleiss kappa (and its variance) based on the par-
ticipants with no missingness. For the reasons mentioned
in the Introduction, this approach is not desirable. Based
on the assumption that the multiple ratings given to the
same participant by the J raters are exchangeable, we treat
the missing data problem as one with informative cluster
size, and consequently propose the within-cluster resampling
(WCR) approach of Hoffman, Sen and Weinberg (2001) [6]
to measurement agreement data with missing ratings. In
short, WCR constructs a large number of datasets consist-
ing of a single observation (two observations for association
measures) from each and every participant (cluster) by ran-
dom sampling (with replacement). Since the resulted dataset
is free of repeated measurement, standard statistical tech-
niques can be applied directly. Moreover, since resampling is
done with replacement, observations from participants (clus-
ters) with a smaller number of observations are weighted
upward while those from clusters with a larger number of
observations weighted downward. Here we propose to use
WCR for estimating agreement when ratings are missing
non-ignorably. Given that we are dealing with association
measures, we only consider those participants with at least
two definitive ratings.

Table 1 shows a simple illustration of the WCR proce-
dure: in the left panel, we list the raw data that consist of
N participants, each rated by 4 raters. An “NA” is used to

sponding raters “pseudo-raters”. This blending of raters is
one of the reasons that we focused on Scott’s 7 instead of
Cohen’s kappa and its multi-rater extensions, since the lat-
ters are not compatible with such a blending of raters. This
“new pseudo” data can then be used to estimate Scott’s m,
4. Repeating this process a large number (say @) times will
produce @ 4.’s, and a summarizing step will then be used to
produce the WCR estimator of measurement agreement for
the multi-rater data. To be more specific, let 4,(q) be the
Scott’s m computed from the g-th round of WCR; 4 (¢q) can
be obtained as in Section 2.1. The WCR estimator is then

=Q ! 25:1 4= (q). Following the argument of Hoffman,
Sen and Weinberg (2001) [6], we have the limiting distribu-
tion of the WCR. estimator: VN (3, — ) ~ N(0, Zwcr),
where

Swer = var(VN(r — 7x))
Q Q
Q> var(x(9) — Q'Y _(3x(9) = 37|
q=1 qg=1

and var(%,(q)) is given in (2). As such, our WCR proce-
dure converts the task of estimating the agreement from a
dataset with multiple raters into one that involves repeat-
edly computing Scott’s 7w from a dataset with 2 raters. By
random resampling with replacement, this procedure makes
use of all data available while at the same time accounts for
non-ignorable missingness by reweighting.

=N

2.3 Marginal approach

Although straightforward, the WCR, procedure can be
computationally intensive. Williamson, Datta and Satten
(2003) [7] proposed a marginal approach for clustered data
with informative cluster size and showed that the marginal
approach is asymptotically equivalent to a within-cluster re-
sampling method. Specifically for estimating an agreement
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measure for multiple raters, the marginal approach would
inversely reweight each of the functionals in the Scott’s
7w formula with the cluster size and thus is equivalent to
the within-cluster resampling method. Lorenz, Datta and
Harkema (2011) [8] used this marginal approach to estimate
correlations. Here, we propose a marginal approach to esti-
mate measurements of agreement.

We consider ratings (Y;1,...,Y;s,) for subject ¢ where
i=1,...,N,and J; € {2,...,J}. To introduce our marginal
approach for these agreement data, we first define F'(y1,y2)
to be the distribution function of a randomly chosen pair
of ratings for a randomly chosen participant. This defini-
tion can be specified in the same spirit as in Lorenz, Datta
and Harkema (2011) [8], as (Y;1,...,Yis,) can be used to
create (‘é) pairs of correlated data within a participant.
Since F(y1,y2) corresponds to a marginal bivariate distri-
bution of the original ratings and implicitly defines a joint
distribution F'(yi,z), where Z is defined in Section 2.1, we
can use (1) to define a population-level agreement mea-
sure. We then define our estimator for ~, by replacing
the population quantities in (1) with their sample coun-
terparts. More specifically, the sample quantity correspond-
ing to wy is Wy = % Zfil Ji Zj‘zl Y;; and that to ws is
Wy = %205, ﬁ S S sigi (2 = sijj), where
Sijj = Y;j +Yvij/ fOI‘j = ].,...,JZ‘ - ].,j/ :]+ 1,,J1
Heuristically speaking, the overall average of all the rat-
ing data (W7) is used to estimate wy; = EY; since all the
marginal means are the same. To obtain W5, we first create
a participant-specific average of (Y;; +Y;;/)(2—Y;; —Y;j/) in
the form of -~ Z;’;ll Z}']’i:j—s-l Si ;i (2—si ;). The combi-

()
nation formula (JQ‘) and the double summation come from
the realization that the rating data (Y;1,...,Y;,) can form
(%) pairs (Yi,Yio), (Yi1,Yis), ..., (Yi,z—1,Yis,) that can
then be used to estimate wy. As a result, the point estima-
tor by our marginal approach can be expressed as

Rmar =

1— Wy — W2—(1—W;)?

w9 )

Note that from (1) v, = g(wy,ws). Given that we have in-
dependent data between participants, we can apply the cen-
tral limit theorem and multivariate delta method to obtain
a variance estimator of &,,q.. We omit the details of those
derivations to save space.

3. SIMULATION

In this section, we conduct simulation to evaluate the per-
formance of the methods introduced in Section 2 in terms of
biases and coverage probabilities. We first generate measure-
ment agreement data for J raters and then introduce various
missing data mechanisms. The naive, WCR and marginal
approaches are then applied to the data with missing rat-
ings. The idea is to see which of the three approaches pro-
duces estimates that are close to the true values and have
good coverage probabilities.
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Table 2. Point estimates of agreement and coverage
probabilities when there is no missingness

True Kappa 0.2 0.5 0.8

. Point est 0.196 0.495 0.795
Naive

Coverage 93.3% | 95.3% | 95.5%

Proposed Point est 0.197 | 0.493 0.795

P Coverage | 94.3% | 94.1% | 94.3%

Marginal Point est 0.196 0.495 0.795

& Coverage | 93.3% | 95.3% | 95.5%

3.1 Generate rating data

We consider three levels of agreement in terms of Fleiss
kappa: high (k = 0.8), median (k = 0.5) and low (k = 0.2).
Given ~, we find a set of values of p and p; where
(i) the marginal probabilities for all raters are the same:
P(Y;=1)=pforj=1,...,J, and
(ii) Y1 ~ Bernoulli(p) and Y;|¥Y; = 1 ~ Bernoulli(p,) for
some pre-specified p; = P(Y; =1|Yy =1) for j=2,...,J.
In (i), the common p is needed since we are operating under
the assumption of a common prevalence; see the discussion
in Section 2.2; and by (ii), we assume that Y}, and Y}, are
conditional independent given Y; for j; # jo > 2. To choose
the set of (p,p;), we make use of the Fleiss Kappa formula
as presented in equation (4a) of Warrens (2010) [14] and the
following identities:

PYi1=1Y,=1)=pp;,j=2,...,J
PY1=0Y;,=0=1-2p+pp;,j=2,...,J
2

p
P(le = 1Y}, :1)=pj1pj2p—|— 1—p

(1 _pjl)(l _pjz)a

for j1,jo =2,...,J

and

P(Y;, =0,Y), =0)

(1 —2p+ppj,)(1 — 2p + ppjs)
1-p

)

:(1 _pjl)(l _pjz)p"'_
forjl,jg :27...,J.

Given p and p;’s, we can then simulate data Y31, Yo, ..., Yis.
More specifically, for each i, we generate Y;; ~ Bernoulli(p),
Y;;1Yi1 = 1 ~ Bernoulli(p;), ¥;;|Y;1 = 0 ~ Bernoulli(P(Y; =
11Y: =0)) for j = 2,...,J. The probability P(Y; = 1|Y; =
0) can be determined as:

_ p(1—p))

3.2 Introduce missing data

For completeness, we applied the three approaches to the
simulated data before introducing missingness. As shown in
Table 2, all point estimates of agreement are nearly unbiased
and all coverage probabilities are close to 0.95. To introduce



Table 3. Percentages of participants with missing ratings in different scenarios. In scenario 1, the missingness is completely at
random and the percentage of the missing rate are the same for different values of true Fleiss kappa. For this reason, we list

the case of Kk = 0.2 only. In scenario 3, a = —4 is used for all b and k values
Scenario Parameter Number of missing ratings per participant Overall
0 1 2 3 4 5 6
K q1
0.2 0.1 | 53.0% 35.5% 10.0% 1.5% 0.1% 0.0% 0.0% 7.5%
1 0.2 0.2 | 26.2% 39.5% 24.5% 8.2% 1.5% 0.2% 0.0% 15.0%
0.2 0.3 | 11.8% 30.3% 32.3% 185% 5.9% 1.1% 0.1% 22.5%
True K q2
0.2 0.1 | 65.1% 28.4% 5.8% 0.6% 0.0% 0.0% 0.0% 5.3%
0.2 0.2 | 41.9% 37.6% 16.1% 3.9% 0.5% 0.0% 0.0% 10.5%
0.2 0.3 | 26.8% 36.1% 24.5% 9.9% 2.3% 0.3% 0.0% 15.7%
0.5 0.1 | 68.2% 25.4% 5.7% 0.7% 0.0% 0.0% 0.0% 4.9%
9 0.5 0.2 | 47.7% 32.6% 14.9% 4.2% 0.6% 0.1% 0.0% 9.7%
0.5 0.3 | 34.6% 30.7% 21.5% 10.0% 2.8% 0.4% 0.0% 14.6%
0.8 0.1 | 83.1% 13.4% 3.0% 0.4% 0.0% 0.0% 0.0% 2.6%
0.8 0.2 | 72.3% 16.8% 8.0% 2.4% 0.4% 0.0% 0.0% 5.3%
0.8 0.3 | 65.6% 15.5% 11.2% 5.7% 1.7% 0.3% 0.0% 7.9%
True s b
0.2 13 | 60.2% 18.7% 11.9% 6.4% 2.3% 0.5% 0.0% 9.2%
0.2 15 | 50.0% 14.6% 12.5% 10.6% 7.9% 3.6% 0.8% 15.7%
0.5 13 | 80.2% 11.8% 5.1% 2.1% 0.6% 0.1% 0.0% 3.9%
3 0.5 15 | 72.7% 11.9% 7.4% 4.5% 2.4% 1.0% 0.2% 7.0%
0.8 13 | 95.6% 3.4% 0.8% 0.2% 0.0% 0.0% 0.0% 0.7%
0.8 15 | 92.9%  4.5% 1.6% 0.7% 0.3% 0.1% 0.0% 1.4%

missingness, let R;; = I(Y;; = NA) be the missing indicator.
For each participant i, we randomly select J — 2 ratings and
assign missingness according to these mechanisms:

1. P(R;; = 1) = ¢ for some pre-specified ¢1;

2. P(R;; = 1|Y;; = 1) = go for some pre-specified ¢o;

3. P(Rij = 1) = a+ bvar(Yj1,...,Y;) for some pre-
specified a and b.

Scenario 1 corresponds to ignorable missingness since the
probability of missing does not depend on the observed or
unobserved agreement. In contrast, scenarios 2 and 3 cor-
respond to nonignorable missingness since the probability
of missing depends on the prevalence (scenario 2) or the
agreement through the variability among the J ratings (sce-
nario 3). In Table 3, we present the average percentage of
participants with missing ratings based on the 1,000 simu-
lated data sets for different values of ¢, ¢2, and b (a = —4
in scenario 3). More specifically, in the middle columns of
the table, we list the average percentage of the participants
who have 0,1,. .., 6 ratings missing respectively for each sce-
nario; in the rightmost column, we list the average percent-
age of the missing ratings per simulated data set. Since the
missing data mechanism is free of agreement in scenario 1,
the percent of participants with missingness is the same for
different kappa values. For this reason, we only present the
missing percentages when the true x = 0.2 in scenario 1.
In all three scenarios, for any given true agreement level,
the degree of missingness, both in terms of the distribution

of number of missing ratings per participant and in over-
all missing ratings, increases as the design parameter (g1,
@2, and b for scenarios 1, 2 and 3 respectively) increases. For
example, in scenario 1, when ¢; increases from 0.1 to 0.2, the
percentage of participants with no missing rating decreases
from 53.0% to 26.2%, while the percentage of participants
with one missing rating increases from 35.5% to 39.5%.

3.3 Simulation results

For each generated data, we apply the naive, WCR, and
marginal approach to obtain the estimated agreement mea-
sure. In implementing WCR, we choose to use ) = 10,000
iterations. We summarize these estimates with their cov-
erage probabilities in Table 4 with missingness subject to
scenarios 1, 2 and 3, respectively. For ignorable missingness
(scenario 1), all three methods work well, with no discern-
able differences in point estimates and coverage probabili-
ties. This is expected as the missingness does not depend
on the ratings or the agreement. However, when the miss-
ingness is non-ignorable (scenarios 2 and 3) the proposed
resampling and marginal methods perform better than the
naive method. More specifically, for scenario 2, when the
missing probability and the true agreement are both high,
the estimates by the naive method are biased and have low
coverage probabilities. For example, when g» = 0.3 and true
Fleiss k = 0.8, the point estimate by naive method is 0.603
with coverage probability 0.425. For scenario 3, when the
true Fleiss « is 0.5, the naive method works poorly since
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Table 4. Estimated measurements of agreement and the coverage probabilities based on 1,000 simulated data sets with
missingness according to scenarios 1, 2 and 3

Estimate Coverage
True & q1/q2/b'| Naive WOCR  Marginal | Naive WCR  Marginal
Scenario 1
0.1 0.197  0.196 0.197 0.930 0.934 0.953
0.2 0.2 0.193  0.197 0.199 0.916  0.931 0.943
0.3 0.180 0.195 0.197 0.862  0.932 0.943
0.1 0.498  0.500 0.501 0.941  0.958 0.959
0.5 0.2 0.493  0.498 0.499 0.944  0.947 0.951
0.3 0.482  0.499 0.499 0.923  0.937 0.937
0.1 0.797  0.798 0.798 0.951  0.941 0.944
0.8 0.2 0.795 0.799 0.799 0.933  0.951 0.953
0.3 0.790 0.798 0.798 0.930 0.954 0.957
Scenario 2
0.1 0.208  0.197 0.199 0.954  0.933 0.944
0.2 0.2 0.212  0.201 0.202 0.931  0.935 0.937
0.3 0.204  0.200 0.201 0.953  0.958 0.961
0.1 0.509  0.500 0.501 0.953  0.954 0.956
0.5 0.2 0.494  0.498 0.499 0.959 0.952 0.957
0.3 0.444  0.497 0.497 0.868  0.943 0.943
0.1 0.772  0.797 0.797 0.905 0.946 0.951
0.8 0.2 0.716  0.796 0.797 0.747  0.962 0.963
0.3 0.603  0.793 0.793 0.425 0.959 0.957
Scenario 3
0.2 13 0.277  0.195 0.197 0.706  0.929 0.941
15 0.295 0.195 0.196 0.713  0.932 0.943
05 13 0.599  0.500 0.501 0.208 0.954 0.956
15 0.642  0.499 0.499 0.058 0.948 0.945
0.8 13 0.826  0.798 0.798 0.774  0.940 0.941
’ 15 0.841  0.799 0.799 0.537  0.934 0.934

! Parameters used to generate missing data probability in the

three scenarios. See Section 3.2.

Table 5. Distribution of number of missing ratings in PRS data

Number of Missing Overall
0 1 2 3 4 5 6 7 8
n 60 25 28 20 9 4 1 1 0 210
% 40.82% 17.01% 19.05% 13.61% 6.12% 2.72% 0.68% 0.68% 0% 17.74%

the estimates are seriously biased and the coverage proba-
bilities extremely low. In contrast, the WCR and marginal
method both work well for scenarios 2 and 3: the estimates
by both methods are close to the true values and the cov-
erage probabilities close to 0.95. In summary, the proposed
resampling method and the marginal method are asymptot-
ically equivalent and robust with respect to different types
of missingness. In addition, both perform better than the
naive approach when missingness is not ignorable and as
good as the naive one when missingness is ignorable.

4. ANALYSIS OF THE PRS DATA

We conducted the PRS with the aim to understand how
physicians agree with each other in diagnosing endometrio-
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sis. More detailed descriptions of the PRS are provided else-
where (Schliep et al. 2012). [1] In this paper, we sought
to examine how the 8 physicians who are practising at the
University of Utah medical center agree with each other
(inter-rater agreement) when they review the intra-uterus
digital images of the participants (setting 1). In the PRS,
the physicians were expected to determine whether a par-
ticipant has endometriosis after reviewing the clinical in-
formation. However, they were also allowed to assign an
“indeterminant” answer when they felt unsure whether en-
dometriosis is present. For this reason, missing ratings oc-
cured in some participants. Among the 148 participants
with digital images at setting 1, only 60 have all 8 rat-
ings. The majority of those with missing ratings have ei-
ther one or two ratings missing (Table 5). Only one par-



ticipant has seven or more missing ratings. She was re-
moved from the analysis because the minimum number of
available ratings has to be 2 for the proposed methods to
work.

There is a reason to think that the missing ratings may
be related to the agreement so that the missingness is non-
ignorable. When the symptoms of endometriosis are clear-
cut, physicians are less likely to give “indeterminant” and
more likely to give similar ratings, resulting in a higher
agreement for participants with fewer non-missing ratings.
The PRS data as plotted in Figure 1 seems to confirm this
negative relationship between agreement (as approximated
by the variability among the non-missing ratings) and num-
ber of available ratings. Among those with 4 or fewer ratings,
the average variability (standard deviation of the ratings) is
0.36 while among those with 5 or more ratings, it is 0.22. If
missingness is ignorable, then the two groups, fewer/more
ratings, should have about the same variability.

The naive approach only uses participants with all 8 rat-
ings available. As a result, we use the 60 qualified partic-
ipants to estimate the Fleiss kappa in R (function “kap-
pam.fleiss” in package “irr”; Gamer et al. 2012 [12]). The ob-
tained point estimate is 0.586 with a 95% confidence interval
(0.466,0.705). This indicates a moderate inter-rater agree-
ment in diagnosing endometriosis among the eight physi-
cians (Landis and Koch, 1977 [13]).

In applying the WCR approach to the PRS study, we
use data from 147 participants with at least 2 ratings. Us-
ing @ = 10,000, we obtain a point estimate of 0.536, with
95% confidence interval (0.454, 0.617). The marginal ap-
proach produces very similar results, as expected, with a
point estimate 0.537, with 95% confidence interval (0.455,
0.619). This suggests that the naive approach can inflate the
agreement by about 10%. In addition, the 95% confidence
interval of the estimate from the naive approach is wider
than those from the proposed approaches (0.24 versus 0.17
in width), suggesting that the proposed approaches are more
efficient.

5. DISCUSSIONS

In this article, we proposed new methods to estimate
agreement measures for multi-rater data when missing rat-
ings are present. In the WCR procedure, we randomly select
2 ratings from each participant, form a 2-rater data and
then compute Scott’s m measure for this 2-rater data set.
We repeat this step many times to obtain our estimates.
The estimate obtained by this procedure is asymptotically
equivalent to a marginal approach and has smaller biases
and closer to correct coverage probabilities than the naive
method which simply ignores all the participants with miss-
ing ratings. In the PRS, the estimates of agreement obtained
by WCR and the marginal approach are smaller than the
estimate obtained by the naive method, suggesting that the
estimates from the naive method might be biased. More-
over, the estimates from the proposed methods appear to

be more efficient than those from the naive approach. This
is due to the fact that the proposed approaches make use
of all available data while the naive approach only uses a
subset.

Although we only considered binary rating in this
manuscript, the extension to categorical ratings are sim-
ilar and straightforward. To obtain the estimate, we just
compute Scott’s 7 for categorical ratings for each resampled
2-rater data set and then conduct a summary step if WCR is
to be used, or reweight each of the functionals in the agree-
ment formula for categorical ratings if the original approach
is to be used. This will also work when weighted kappas are
to be estimated.

We have focused on Scott’s 7w and Fleiss kappa in this
manuscript. These agreement measures make the common
prevalence assumption, which enables us to propose the
WCR and marginal approach. The extension to Cohen’s
kappa, which assumes heterogeneous prevalence among
raters, warrants further research.

In this manuscript, we have made the assumption that
the multiple ratings given to the same participant in PRS
are exchangeable so that the cluster-weighted estimation ap-
proach can be applicable. The exchangeability assumption
is reasonable in PRS data because raters in PRS are similar
to each other and because missing diagnoses in PRS occur
when symptoms of endometriosis are not clear-cut so that
missing diagnoses arise as a result of participant-specific
rather than rater-specific characteristics. While reasonable
for the PRS, the exchangeability assumption may not be
appropriate for other situations where raters are inherently
different and missing data are more a feature of the raters
than the participants. As an example of this rater-specific
missingness, consider a case where one rater tends to dis-
agree with the other raters who are generally in agreement,
and where the probability of missingness is associated with
the disagreement. In this example, one cannot reasonably
assume that the ratings are exchangeable and therefore can-
not treat the problem as one with informative cluster size.
One appropriate approach would be to treat it as a non-
ignorable missing data problem and to specify models with
explicit assumptions on the missing data mechanism.
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