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Linear mixed models for multiple outcomes using
extended multivariate skew-t distributions
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Multivariate outcomes with heavy skewness and thick
tails often arise from clustered experiments or longitudi-
nal studies. Linear mixed models with multivariate skew-t
(MST) distributions for the random effects and the error
terms is a popular tool of robust modeling for such out-
comes. However the usual MST distribution only allows a
common degree of freedom for all marginal distributions,
which is only appropriate when each marginal has the same
amount of tail heaviness. In this paper, we introduce a new
class of extended MST distributions, which allow differ-
ent degrees of freedom and thereby can accommodate het-
erogeneity in tail-heaviness across outcomes. The extended
MST distributions yield a flexible family of models for mul-
tivariate outcomes. The hierarchical representation of the
MST distribution allows MCMC methods to be easily ap-
plied to compute the parameter estimates. The proposed
model is applied to data from two biomedical studies: one
on bivariate markers of AIDS progression and the other on
sexual behavior from a longitudinal study.

Keywords and phrases: Multivariate skew-t, Robust
method, Scale-mixture representation.

1. INTRODUCTION

Skew-normal and skew-t distributions were originally pro-
posed by Azzalini and Capitanio (1999, 2003) for modeling
data with heavy tails and strong skewness without trans-
formation. Since then, the statistical properties of the skew
distributions and their extensions have been further stud-
ied by many other researchers. The multivariate skew-t
(MST) distributions, including the multivariate skew nor-
mal (MSN) distributions as a special case, have become in-
creasingly popular. Branco and Dey (2001) discussed a gen-
eral class of multivariate skew-elliptical distributions. Lin
(2010) presented a robust mixture modeling framework us-
ing the MST distribution. Fruhwirth-Schnatter and Pyne
(2010) developed Bayesian inference for finite mixtures
of univariate and MSN and MST distributions. Appli-
cations and case studies using multivariate skew dis-
tributions can be found in many research areas, in-
cluding economics, engineering, epidemiology and envi-
ronmental sciences. For example, Panagiotelis and Smith
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(2008) used the MST in the forecasting of intraday
electricity prices; Wang, Ng and McLachlan (2009) ap-
plied the MST to fluorescence-activated cell sorting data;
Ghosh, Branco and Chakraborty (2006) developed a bivari-
ate MSN random-effects model to model the CD4 counts and
the viral RNA in an HIV-RNA study. The estimation of the
MST parameters has been implemented in the R package
sn (Azzalini and Genton, 2008).

Linear mixed models (LMM) are a popular tool for an-
alyzing continuous outcome variables with repeated mea-
surements or clustering (Verbeke and Molenberghs, 2001).
Correlations among repeated observations are taken into ac-
count through random effects. In standard LMM, both the
random effects and the errors are assumed to be normally
distributed. In many situations, the normality assump-
tions may be questionable or totally incorrect. Misspecifi-
cation of the random-effects distributions may introduce bi-
ases to parameter estimates and lead to incorrect inference
(Verbeke and Lesaffre, 1996) or may increase or decrease the
power of statistical tests (Litiere, Alonso and Molenberghs,
2007). Transformation of the outcome variables is often used
as a remedy to improve normality. For example, Gurka et al.
(2006) extended the use of Box-Cox transformation to
LMM. O’Malley and Zou (2006) proposed a Bayesian mul-
tivariate hierarchical transformation model to estimate the
ROC curves for two prostate cancer markers, where the Box-
Cox transformation was applied to clustered marker values.
Although the transformation methods provide a better fit to
the data, the assumption of joint normality is rarely satisfied
and the transformed variables are usually difficult to inter-
pret. Thus, statistical models without transformation that
are less sensitive to departures from normality and related
assumptions are of practical interest.

Several extensions of the standard LMM have been de-
veloped by replacing the normal distributions of the random
effects and errors with more general distributions. See Laird
(1978); Müller and Rosner (1997); Zhang and Davidian
(2001), among others. Recently, Ho and Lin (2010);
Jara, Quintana and San Martin (2008); Lin and Lee (2008)
and Lachos, Ghosh and Arellano-Valle (2010) proposed to
use various multivariate skew distributions to model the
random-effects and the error terms in the LMMs. Bayesian
approaches or EM-type algorithms were used to obtain pa-
rameter estimates and to draw inferences (Wang and Fan,
2010, 2011, 2012). The MSN or MST distributions are more
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flexible parametric families with capability of accommodat-
ing various departures from normality. By using the skew
distributions, we avoid the need of ad hoc transformations
and the models remain robust to outliers.

To date, most models only considered a univari-
ate outcome or multiple outcomes of the same type
(Sammel, Lin and Ryan, 1999; Shah, Laird and Schoenfeld,
1997). Therefore all marginal distributions of the mul-
tiple outcomes are univariate skew-t with the same de-
grees of freedom (DF). When multiple outcomes are con-
sidered simultaneously (Boscardin, Taylor and Law, 1998;
Pantazis et al., 2005), their marginal distributions should
have different DF because they are different in nature. Fur-
thermore, when both intercept and slope are considered as
random effects, it is expected that the random intercepts
and the random slopes should have different tail heaviness.
The objective of this paper is to extend the MST to ac-
commodate multiple outcomes with different skewnesses and
tails. The special case of bivariate t distributions with vari-
able marginal DF has been considered by Jones (2002) and
Shaw and Lee (2008). The extended MST distributions are
used for random effects to create a more general LMM for
multiple outcomes. Markov chain Monte Carlo (MCMC)
method are used for parameter estimation and inferences.
The proposed method can be implemented in the freely
available software WinBUGS or OpenBUGS (Lunn et al.,
2009).

The rest of the paper is organized as follows. We describe
the statistical models and the estimation method in Sec-
tion 2. Simulation results are presented in Section 3. Two
applications, a longitudinal HIV marker study and a sexual
behavior study, are presented in Section 4. Other potential
applications and suggestions for additional research are dis-
cussed in Section 5.

2. LINEAR MIXED MODEL WITH
EXTENDED MULTIVARIATE SKEW-t

DISTRIBUTIONS

We consider K correlated outcomes with different skew-
nesses and tails for N subjects. This could occur in longi-
tudinal studies, for example, multiple markers are assessed
at the follow-up visits for each subject. It could also arise in
clinical settings, for example, several cognitive tests are per-
formed at different locations for each individual. We assume
that all K outcomes are measured ni times for the ith sub-
ject. In general, each outcome variable may have a different
number of observations or may be measured at irregular and
a different number of occasions. In the notations hereafter,
vectors of parameters or observations are denoted as bold

symbols. Let y
(k)
i = (y

(k)
i1 , . . . , y

(k)
ini

)
′
be a column vector of

ni continuous measurements of the kth outcome for the ith
subject, i = 1, . . . , N, k = 1, . . . ,K. We assume that y

(k)
i

follows an LMM:

(1) y
(k)
i = X

(k)
i β(k) +Z

(k)
i b

(k)
i + e

(k)
i ,

where X
(k)
i and Z

(k)
i are pre-specified ni×pk and ni×qk full

rank design matrices corresponding to the pk dimensional
fixed-effects vector β(k) and the qk-dimensional random-

effects vector b
(k)
i , respectively, and e

(k)
i is an ni-dimensional

vector for the within-subject errors.
Jara, Quintana and San Martin (2008) proposed to use

multivariate skew elliptical distributions to model the error
terms and the random effects. Specifically, they considered
the MST distributions for one outcome with repeated mea-
surements (K = 1). We assume that the error terms and the
random effects for the kth outcome

e
(k)
i ∼ MST (μ(k)

ei ,Σ(k)
ei ,Λ(k)

ei , ν(k)e ),(2)

b
(k)
i ∼ MST (μ

(k)
b ,Σ

(k)
b ,Λ

(k)
b , ν

(k)
b ),(3)

where MST (μ,Σ,Λ, ν) denotes a MST distribution with
location vector μ, scale matrix Σ, diagonal matrix Λ for
skewness and scale parameter ν for DF. When ν → ∞, the
skew-t distribution converges to the skew-normal distribu-

tion. The DF parameters ν
(k)
e and ν

(k)
b are the same for

different individuals. The scale matrix Λ
(k)
b and the skew-

ness matrixΣ
(k)
b for the random effects b

(k)
i have dimensions

qk × qk. The matrices Λ(k)
ei and Σ(k)

ei for the error terms e
(k)
i

have dimensions ni × ni. Therefore, the dimensions of Λ
(k)
b

and Σ
(k)
b only depend on the number of random effects qk.

On the other hand, the dimensions of Λ(k)
ei and Σ(k)

ei depend
on the cluster size ni for the ith subject. If the matrices
Λ(k)

ei and Σ(k)
ei are totally unspecified, the number of un-

known parameters increases with the cluster size ni. Unlike
the Generalized Estimating Equation (GEE) where the cor-
relation matrices are treated as nuisance parameters, the
correlation matrices of an LMM should be estimated based
on observed data. Over-parametrization may cause estima-
tion problems for the correlation matrices. Therefore, more
parsimonious parameterizations have been used. For exam-
ple, Jara, Quintana and San Martin (2008) assumed that

Λ(k)
ei = λ

(k)
e Ini and Σ(k)

ei = (σ
(k)
e )2Ini , where Ini is an ni×ni

identity matrix. More generally, one can assume Σ(k)
ei to be

ni × ni dimensional AR(1) or compound symmetry matri-
ces. By using these formulations, the number of unknown
parameters do not increase with the number of subjects or
outcomes.

When multiple outcomes are considered simultaneously,
the correlation may be taken into account by incorporating

the random effects b
(1)
i , . . . , b

(K)
i . In the analysis, we rely on

the random effects to provide correlations among multiple

outcomes, so that we assume that e
(1)
i , . . . , e

(K)
i are mu-

tually independent across different outcomes and individu-

als. Therefore, the conditional distributions y
(k)
i |b(k)i , k =

1, . . . ,K, in (1) are independent for different outcomes.
Thus,

(4)

y
(k)
i |b(k)i

ind∼ MST (X
(k)
i β(k) +Z

(k)
i b

(k)
i ,Σ(k)

e ,Λ(k)
e , ν(k)e ).
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Meanwhile, the random effects b
(1)
i , . . . , b

(K)
i should be cor-

related in order to introduce correlations among multiple
outcomes. In addition, the distributions of the random ef-
fects for different outcomes should be allowed to have unique
DF.

2.1 Extended MST for random effects

To solve this problem, we propose an extended MST
(EMST) distribution with different marginal DFs for the

random effects. Let bi = (b
(1)
i , . . . , b

(k)
i ) be the q dimensional

vector of combined random effects for the ith subject, where

b
(k)
i is the vector of random effects of the kth outcome and

q = q1 + q2 + · · ·+ qK . Instead of a single scale parameter ν
for the MST distribution, we use a vector ν = (ν1, . . . , νq).
The q-dimensional random vector of the extended MST r,
denoted by r ∼ EMST (μ,Σ,Λ,ν) can be generated hierar-
chically (Lin, 2010),

r|γ, τ ∼ MVN q(μ+Λγ, τ− 1
2Στ− 1

2 ),

γ|τ ∼ HN q(0, τ
−1),

τ = Diag(τ1, . . . , τq),

τl ∼ Γ(νl/2, νl/2), l = 1, . . . , q,

where MVN q(μ,Σ) stands for a multivariate normal dis-
tribution with mean vector μ and covariance matrix Σ,
HN q stands for a q-dimensional half-normal distribution
and Γ(a, b) denotes a Gamma distribution with mean a/b.
The extended MST distribution has the following proper-
ties:

• The marginal distributions are univariate skew-t with
νl DF.

• When ν1 = · · · = νq ≡ ν, the extended MST reduces
to a regular MST distribution with common DF. Fur-
thermore, if Λ = 0, it is a symmetric multivariate t
distribution with ν DF.

• When min(ν1, . . . , νq) → ∞, this reduces to a MSN
distribution.

For the proposed LMM for multiple outcomes, we may
assume that the random effects

(5) bi ∼ EMST (μb,Σb,Λb,νb),

where the location parameters μb = (μ
(1)′

b , . . . ,μ
(K)′

b )
′

with μ
(k)
b defined in Section 2.2, Σb is the covari-

ance matrix with block diagonal elements Σ
(k)
b , Λb =

Diag(Λ
(1)
b , . . . ,Λ

(K)
b ) with diagonal matrices Λ

(k)
b , and νb =

(ν
(1)
b , . . . ,ν

(K)
b )

′
is the vector of DF. The DF parameters

ν
(k)
b = (ν

(k)
b1

, . . . , ν
(k)
bqk

), k = 1, . . . ,K. One typical example

is that b
(k)
i = (b

(k)
i1 , b

(k)
i2 )

′
is the vector of random intercept

and random slope for the kth outcome. This formulation al-
lows different DFs for the random intercepts and the random
slopes.

2.2 Bayesian estimation

The usual estimation method for MST is based on the
likelihood function, which could be very cumbersome. Based
on the hierarchical representation in Section 2.1, one can use
the MCMC method to obtain parameter estimates. Follow-
ing Jara, Quintana and San Martin (2008), we assume that
the error terms follow MST distributions as specified in (2)

with μ
(k)
ei = μ

(k)
e 1ni ,Σ

(k)
ei = (σ

(k)
e )2Ini and Λ(k)

ei = λ
(k)
e Ini ,

where 1ni is a column vector of 1’s and Ini is an ni × ni

identity matrix. The random effects bi follow extended MST
distributions as specified in (5).

We set the restrictions that

μ(k)
e = −

√
ν
(k)
e

π

Γ[(ν
(k)
e − 1)/2]

Γ(ν
(k)
e /2)

λ(k)
e , and

(μ
(k)
b )

′
=

⎛
⎝−

√
ν
(k)
b1

π

Γ[(ν
(k)
b1

− 1)/2]

Γ(ν
(k)
b1

/2)
λ
(k)
b1

, . . . ,

−

√
ν
(k)
bqk

π

Γ[(ν
(k)
bqk

− 1)/2]

Γ(ν
(k)
bqk

/2)
λ
(k)
bqk

⎞
⎟⎠ .

By this parametrization, the marginal expectation

E(e
(1)
i ) = · · · = E(e

(K)
i ) = E(bi) = 0 and hence the

unconditional expectation of y
(k)
i is E(y

(k)
i ) = X

(k)
i β

(k)
i .

In this way, the parameters β control the expectation
(location) of outcomes and the parameters Λ and ν
controls the skewness and tails of the random effects
and the error terms, avoiding confounding between the

location and skewness parameters. However, as y
(k)
i is a

linear combination of two skew-t variables, the marginal

distribution of y
(k)
i does not have a close form.

As described by Lin (2010), the outcome y
(k)
i can be gen-

erated as a hierarchical mixture of normal distributions:

E
(
y
(k)
i |b(k)i ) = X

(k)
i β(k) +Z

(k)
i b

(k)
i + μ(k)

ei +Λ(k)
ei γ(k)

ei ,

y
(k)
i |b(k)i ∼ MVN pk

(
E(y

(k)
i |bki ),Σ(k)

ei /τ (k)ei ),(6)

γ(k)
ei |τ (k)ei ∼ MVN ni

(
0, Ini/τ

(k)
ei )I

(
γ(k)
ei > 0),(7)

τ (k)ei ∼ Γ
(
ν(k)e /2, ν(k)e /2),(8)

for k = 1, . . . ,K. Similarly, the random effects bi can be
generated as

bi|γb, τ b ∼ MVN q

(
μb +Λbγb, τ

− 1
2

b Σbτ
− 1

2

b ),(9)

γb|τ b ∼ MVN q

(
0, τ−1

b )I(γb > 0),(10)

τ
(k)
bi

∼ Γ
(
ν
(k)
bi

/2, ν
(k)
bi

/2), i = 1, . . . , qk,(11)

where τ b = Diag(τ
(1)
b1

, . . . , τ
(1)
bq1

, . . . , τ
(K)
b1

, . . . , τ
(K)
bqK

).

To complete specification of a Bayesian model it is nec-
essary to choose prior distributions for parameters in the
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model that do not have a distribution assigned to them (re-
ferred to as fixed effects in frequentist inference). Fixed ef-
fects are usually modeled using a MVN distribution. Usually
vague priors are specified by taking the covariance matrix
to be a diagonal matrix with large elements. Prior distri-
butions for the DF can be discrete as in Albert and Chib
(1993) and Besag et al. (1995), or continuous as in Geweke
(1993). When a discrete prior with too coarse a grid is used,
there may be numerical problems or poor mixing, unless
good initial values are provided. Spiegelhalter et al. (2003)
advised to either use a continuous prior or a discrete prior
on a fine grid.

Following Jara, Quintana and San Martin (2008), we
used the independent truncated exponential distributions.
The truncation point was chosen to ensure that the
third-order moment associated with the skewness of the
MST distribution was finite. Specifically, the parame-

ters of the error terms included {((σ(k)
e )2, λ

(k)
e , ν

(k)
e ), k =

1, . . . ,K} and the parameters for the random-effects were

{(Σ(k)
b ,Λ

(k)
b , ν

(k)
b ), k = 1, . . . ,K}. Note that Λ

(k)
b was a di-

agonal matrix. Let λ
(k)
b be the vector of the diagonal ele-

ments of Λ
(k)
b . We assumed mutual independence across the

parameters. The priors for the parameters were specified as:

βk ∼ MVN (0,Σβ),(12)

λ(k)
e ∼ N(0, σ2

λe
),(13)

ν(k)e ∼ exp(mνe)I(ν
(k)
e > 3),(14)

λ
(k)
b ∼ MVN (0,Σλb

),(15)

ν
(k)
bi

∼ exp(mνb
)I(ν

(k)
b > 3), i = 1, . . . , qk,(16)

for k = 1, . . . ,K. Besides the truncated exponential dis-
tribution for the DF parameters, (Gelman and Hill, 2006,
pp. 372) suggested to use uniform distributions for the in-
verse of the DF parameters. Specifically, we may use the pri-

ors ν
(k)
e ∼ Uniform(0, 1/3) and ν

(k)
bi

∼ Uniform(0, 1/3). As
a sensitivity analysis on prior distributions, we tried both
types of priors for the DF parameters. The hyperparame-
ters were chosen such that the priors are weakly informa-
tive. For example, we let the variances for each component

of βk, λ
(k)
e ,λ

(k)
b be 1,000 and the mean be mνe = mνb

= 100.
Inverted gamma distributions were used for the vari-

ance parameters (σ
(k)
e )2 and inverted Wishart distributions

(Odell and Feiveson, 1966) were used for the covariance ma-
trix Σb:

1/(σ(k)
e )2 ∼ Γ(ae, be), k = 1, . . . ,K,(17)

(Σb)
−1 ∼ Wishart(db,Ωb),(18)

where Wishart(d,Ω) is a Wishart distribution with d de-
grees of freedom and mean dΩ. The augmented joint pos-
terior density of the unknown parameters can be found by
combining expressions (6)–(18). The full conditional distri-
butions for the MCMC were straightforward to derive and

sample from except for ν and γ, for which the Metropolis-
Hastings algorithm (Chib and Greenberg, 1995) was used.

After a sufficient number of burn-in iterations, we used
the remaining samples to estimate any function of the pa-
rameters of interest. In order to see how stable the final es-
timates are, two independent MCMC chains were run with
different initial values and starting points. The convergence
of the MCMC samples of the parameters after excluding the
initial burn-in samples were monitored using the R pack-
age CODA. For example, Gelman (2006) used a ‘potential
scale reduction factor’ (PSRF) for each parameter in θ, to-
gether with upper and lower confidence limits. Approximate
convergence was achieved when the upper limits were close
to 1.

3. SIMULATION

Simulation studies were conducted to assess the perfor-
mance of the proposed method. We considered bivariate out-
comes y = (y(1), y(2)) from 200 subjects and each subject

had 5 measurements for both outcomes. Let y
(k)
ij denote the

jth measurement of the kth outcome for the ith individual,
i = 1, . . . , 200, j = 1, . . . , 5 and k = 1, 2. Two covariates were
used, i.e., tij = j and xi = I(i > 100). We considered two
scenarios. In Scenario 1, a bivariate LMM with correlated
random intercepts was given as:

y
(k)
ij = β

(k)
1 + β

(k)
2 tij + β

(k)
3 xi + b

(k)
i + e

(k)
ij .

The vector of correlated random intercepts were denoted

by bi = (b
(1)
i , b

(2)
i ). In Scenario 2, the two outcomes were

independent and each outcome followed an LMM with both
random intercepts and random slopes for tij :

y
(k)
ij = β

(k)
1 + β

(k)
2 tij + β

(k)
3 xi + b

(k)
i1 + b

(k)
i2 tij + e

(k)
ij .

Let b
(1)
i = (b

(1)
i1 , b

(1)
i2 ) and b

(2)
i = (b

(2)
i1 , b

(2)
i2 ) be the random

effects for the two outcomes. We assumed that b
(1)
i and b

(2)
i

were independent but for each outcome the random inter-
cept and random slope were correlated.

In both scenarios, the regression coefficients were β(1) =

(β
(1)
1 , β

(1)
2 , β

(1)
3 ) = (2, 0, 1) and β(2) = (β

(2)
1 , β

(2)
2 , β

(2)
3 ) =

(0, 1, 1). The parameter β
(k)
2 measured the effect of time and

the parameter β
(k)
3 measured the effect of the individual-

level covariate. To demonstrate the advantage of using a
MST distribution for the random effects, we assumed the

error terms e
(k)
ij were independent normal N(0, 0.25) across

different outcomes and individuals, but generated the ran-

dom effects bi, b
(1)
i and b

(2)
i from three bivariate distribu-

tions with different skewnesses and tails. The three bivariate
distributions for the random effects were the McKay’s bivari-
ate Gamma, the bivariate t3 distribution and the bivariate
normal. All three distributions were standardized such that
the marginal distributions had mean 0 and standard devia-
tion 2. The correlation between the two marginals was 0.5.
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Figure 1. Distributions of random effects used in simulation.

The normal distribution was used as the benchmark. The
density functions of the three bivariate functions were plot-
ted in Figure 1. The t3 distribution had heavier tails and the
Gamma distribution presented a certain degrees of skewness.
After the multivariate outcomes were generated from the
LMM with random effects from various distributions, the
LMMs with normal or MST random effects were fit to the
data. The two methods were referred to as LMM-NOR and
LMM-MST hereafter. Here we focused on the fixed param-

eters of regression coefficients β
(k)
i and the standard devia-

tion (SD) of the random effects. The results were based on
250 simulated datasets for each case. For the LMM-MST,
the estimates were based on 10,000 MCMC samples after
the initial 10,000 runs were discarded. Converge diagnostics
showed good mixing of the MCMC simulation as the PSRF
values were close to 1 for all fixed parameters. We tried both
truncated Exponential and Uniform prior distributions for
the DF parameters. The resulting summary statistics for
the regression coefficients and the SD of the random effects
from both priors were very close. Therefore, the posterior
inference with regard to the regression parameters were in-
sensitive to the prior specifications of the DF parameters.
We reported the results based on the truncated Exponential
priors only. Summary of the parameter estimates for scenar-
ios 1 and 2 were shown in Table 1 and Table 2, respectively.

In Table 1, we present the bias and empirical standard de-
viation (ESD) of the posterior estimates for each parameter
from the bivariate LMM with correlated random intercepts.
The ESD is defined as the standard error of the posterior
estimates from the 250 simulations. We see that the biases
of the fixed parameters β

(k)
i from both types of LMM are

very close to 0 and are comparable. This shows that the
estimates of the fixed effect from the LMM-NOR are ro-
bust when the errors are non-gaussian. Using the criterion
of the actual coverage rate of the 95% confidence interval,
the robustness of the LMM-NOR has been confirmed by
Jacqmin-Gadda et al. (2007) when the errors are indepen-
dent. Although the estimates of fixed effects are unbiased
and maintain the nominal coverage rate, incorrect specifica-

Table 1. Summary of the parameter estimates for bivariate
random-intercept model (Scenario 1)

Normal Gamma t3
Parameter Bias ESD† Bias ESD Bias ESD

LMM with normal random effects

β
(1)
1 0.010 0.190 0.003 0.210 0.004 0.207

β
(1)
2 0.000 0.012 −0.001 0.011 −0.001 0.011

β
(1)
3 0.007 0.280 0.016 0.270 0.003 0.283

β
(2)
1 0.001 0.206 0.018 0.224 −0.011 0.194

β
(2)
2 0.000 0.011 0.001 0.012 0.001 0.010

β
(2)
3 0.014 0.310 0.018 0.300 0.022 0.269

SD(b
(1)
i ) −0.021 0.105 −0.039 0.134 −0.108 0.320

SD(b
(2)
i ) −0.016 0.097 −0.022 0.114 −0.092 0.304

LMM with MST random effects

β
(1)
1 0.010 0.195 0.003 0.201 0.002 0.180

β
(1)
2 0.000 0.012 −0.001 0.011 −0.001 0.011

β
(1)
3 0.004 0.289 0.018 0.252 0.016 0.219

β
(2)
1 0.003 0.210 0.010 0.215 −0.007 0.169

β
(2)
2 0.000 0.011 0.001 0.012 0.001 0.010

β
(2)
3 0.025 0.313 0.022 0.279 0.021 0.203

SD(b
(1)
i ) −0.003 0.105 −0.022 0.134 −0.091 0.319

SD(b
(2)
i ) 0.002 0.097 −0.005 0.114 −0.074 0.303

† ESD is defined as the standard deviation of the posterior esti-
mates from the 250 simulations.

tion of the distributions of random effects and error terms
may lead to efficiency loss. When the underlying true dis-
tribution for the random effects is normal, the ESD of the
fixed parameters from the two methods are close. The ESDs
from the LMM-MST are slightly larger than those from the
LMM-NOR. The differences are all within 0.01. When the
underlying distributions for random effects are Gamma or
t3, the ESD for the fixed parameters from both methods

are close for the most part. However, the efficiencies of β
(k)
1

and β
(k)
3 , k = 1, 2, are degraded when LMM-NOR is used.

For example, in the last column for the t3 distribution, the

ESDs for β
(1)
3 and β

(2)
3 are 0.283 and 0.269, respectively.

The corresponding ESDs from the LMM-MST are 0.219
and 0.203, which is a reduction of more than 0.06. This
suggests that using LMM-NOR routinely may lead to inef-
ficient inferences on fixed effects of primary interest, such
as the treatment effects. Using simulations with a logistic
random-intercept model, Litiere, Alonso and Molenberghs
(2007, 2011) reached a similar conclusion that the misspeci-
fication of random-effects may distort the power calculation.
In addition, we present the estimates of the SD of the ran-
dom effects in the bottom of Table 1. The estimated SD
for random-effects from the LMM-MST have smaller biases
than those from the LMM-NOR, even when the true under-
lying distribution is normal. This is in part due to the joint
simultaneous estimation of bivariate outcomes.

In Table 2, we present the summary statistics of the pa-
rameter estimates for Scenario 2, where the LMMs with both
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Table 2. Summary of the parameter estimates for LMM with
random intercepts and random slopes (Scenario 2)

Normal Gamma t3
Parameter Bias ESD† Bias ESD Bias ESD

LMM with normal random effects

β
(1)
1 −0.016 0.184 −0.003 0.201 0.002 0.192

β
(1)
2 −0.008 0.135 0.006 0.151 −0.002 0.138

β
(1)
3 0.022 0.248 −0.002 0.244 0.002 0.251

β
(2)
1 −0.008 0.188 0.016 0.194 −0.012 0.187

β
(2)
2 0.009 0.139 −0.003 0.143 −0.008 0.131

β
(2)
3 0.029 0.243 −0.003 0.242 0.007 0.260

SD(b
(1)
i1 ) −0.066 0.112 −0.092 0.142 −0.161 0.327

SD(b
(1)
i2 ) −0.073 0.112 −0.054 0.136 −0.096 0.530

SD(b
(2)
i1 ) −0.004 0.098 −0.010 0.112 −0.080 0.302

SD(b
(2)
i2 ) −0.017 0.105 0.000 0.106 −0.101 0.341

LMM with MST random effects

β
(1)
1 −0.014 0.190 −0.013 0.195 0.003 0.176

β
(1)
2 −0.003 0.145 0.005 0.156 0.006 0.137

β
(1)
3 0.024 0.250 −0.007 0.228 0.012 0.208

β
(2)
1 −0.005 0.193 −0.016 0.197 −0.012 0.162

β
(2)
2 0.012 0.145 −0.004 0.149 −0.005 0.125

β
(2)
3 0.027 0.253 −0.008 0.225 0.009 0.202

SD(b
(1)
i1 ) −0.001 0.109 −0.024 0.138 −0.091 0.320

SD(b
(1)
i2 ) −0.008 0.109 0.013 0.134 −0.028 0.522

SD(b
(2)
i1 ) 0.002 0.097 −0.003 0.112 −0.073 0.301

SD(b
(2)
i2 ) −0.011 0.105 0.007 0.106 −0.095 0.340

† ESD is defined as the standard deviation of the posterior esti-
mates from the 250 simulations.

random intercepts and random slopes are used for two in-
dependent outcomes. We see similar results as shown in Ta-

ble 1, except that the ESDs for parameters β
(1)
2 and β

(2)
2

from Table 2 are larger. This is because random slopes are
added in Scenario 2. Based on the simulation, we have the
following findings:

• The estimates of regression coefficients β(k) from the
LMM-NOR are unbiased and robust to departure of
normality of random effects. As a generalization, the es-
timates of β(k) from the LMM-MST are also unbiased.

• The estimates of the SD of the random effects tend to
have negative bias. Gelman (2006) found that using a
uniform prior for the variance parameter lead to pos-
itive biases. The negative bias of the SD parameter in
the simulation is probably due to the inverted Gamma
prior specification of the variance parameter. However,
the underlying relationship between the direction of
bias and prior specifications is not clear and requires
further investigation. Again, we see that the estimates
from the LMM-MST have smaller negative bias than
those from the LMM-NOR.

• When the underlying true distribution of random-
effects is indeed normal, using the LMM-MST may
result in a slight efficiency loss. When the normality

assumption is violated, for example, the random effects
are skewed or have heavy tails, the LMM-NOR may
lead to inefficient inference of the fixed parameters.
The loss of efficiency is more pronounced for the re-
gression coefficient associated with the individual-level
covariate.

• The LMM-MST lead to more accurate estimates of
the SD of the random effects, even when the true
underlying distribution is normal.

Indeed, impact of misspecification of random effects may
vary, depending on both the underlying distribution and
model structure (Neuhaus, McCulloch and Boylan, 2011).
However, the LMM-MST maintain high efficiency and are
more robust to distributions with heavy skewness and thick
tails.

4. APPLICATIONS

4.1 Bivariate modeling for AIDS marker
data

Longitudinal modeling for bivariate AIDS markers have
been considered by Boscardin, Taylor and Law (1998),
Thiebaut et al. (2002) and Thiebaut et al. (2005). Most
LMM have used normal random effects. Ghosh and Hanson
(2010) proposed a semiparametric Bayesian approach to
multivariate longitudinal data when the random effects were
assumed to follow a mixture of Polya trees prior distribution.
They considered two markers of AIDS, i.e., CD4 and CD8
cell counts, from a large clinical trial on HIV-AIDS, ACTG
398. There were two treatment options for patients in the
trial, that was double protease inhibitor (PI) arms or single-
PI arm. The subjects in the trial were either NNRTI-naive,
that is, they had not previously received drugs from the
NNRTI class, or NNRTI-experienced, that is, they had pre-
viously received NNRTIs as part of their treatment. NNRTI-
naive subjects had a better virologic response in the trial.
The primary objective of the study was to compare the pro-
portion of subjects who had virologic failure after 24 weeks
on study between the double-PI arms and the single-PI arm.
The CD4 and CD8 counts were measured at weeks 0 (base-
line), 2, 4, 8, 16, 24, 32, 40, and 48 for all subjects. Some
subjects had repeated observation at the same week. We
considered two outcomes, i.e., CD4 and CD8 cell counts. In
the analyzed dataset, there were 479 subjects, 3,664 CD4
and CD8 observations, 2–13 per subject. In the analysis, we
found that both markers are highly skewed. Thus, we consid-
ered the two transformed outcomes y(1) = log(1+CD4) and
y(2) = log(1+CD8). The covariates of interest were time af-
ter baseline (weeks), treatment (binary covariate, the three
dual PI arms combined versus placebo), NNRTI experience,
and baseline log10 viral load (VL).

The bivariate LMM was specified as

y
(k)
ij = β

(k)
1 + β

(k)
2 week+ β

(k)
3 NNRTI+ β

(k)
4 treatment

+ β
(k)
5 log10(VL) + b

(k)
i1 + b

(k)
i2 week+ e

(k)
ij ,
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Figure 2. Distributions of the random effects and residuals from the normal LMM for the HIV study.

for k = 1, 2; i = 1, . . . , 479; j = 1, . . . , ni, and y
(k)
ij the

value of the kth marker for the ith subject at the jth time
point tij (in weeks). Figure 2 shows the empirical density
functions of the residuals, random intercepts and random
slopes for Y (1) and Y (2) from the normal LMM. The den-
sities of the fitted normal and skew-t distributions are also
presented. We can see that the residuals and random ef-
fects still present certain skewness and heavy tails, even af-
ter the log-transformation. The skew-t distributions show
remarkably better fit than the normal distribution, which
motivated us to use the MST distributions for random in-
tercepts and slopes. As the random effects for the two out-
comes are obviously correlated and may have different DFs,
we considered the extended MST for the random effects
bi = (b

(1)
i1 , b

(1)
i2 , b

(2)
i1 , b

(2)
i2 ) and used univariate skew-t distri-

butions for the error terms for each outcome. Prior values
were fixed as follows: the regression coefficients β(k) were
zero vectors; the skewness parameters were zeros; the scale
parameters were generated from a gamma distribution with
mean 1 and standard deviation 100; the DFs were gener-
ated from a uniform distribution U(3, 100) and the inverse

of covariance matrices (Σ(k)
e )−1 and (Σb)

−1 were Diag(1, 1).
Reasonable MCMCmixing occurred well after 100,000 itera-
tions. Based on the criterion by Gelman and Rubin (1992),
the convergence of the MCMC sample was achieved. The
posterior estimates were based on 10,000 samples from

the additional 100,000 iterations with thinning interval of
10.

The parameter estimates with standard deviation (SD)
and 95% credible intervals (CIs) of the LMM-MST are
shown in Table 3. The estimates of regression coefficients are
presented in the top section. The results based on the regres-
sion coefficients are similar to those by Ghosh and Hanson
(2010). For example, as seen by the negative coefficients on
the week term, the number of CD4 and CD8 decrease in-
significantly with respect to time after baseline. The esti-
mates of treatment effects and NNRTI experience are in-
significant for both markers. The baseline HIV-RNA viral
load is a significant covariate for both CD4 and CD8. By
using the LMM with extended MST, we are able to exam-
ine the distributions of the residuals and random effects.
The residuals from the LMM are strongly skewed and have
heavy tails. For example, the skewness and DF for the resid-
uals for Y (1) are −0.236 with 95% CI (−0.261,−0.212) and
3.047 with 95% CI (3.001, 3.170). The random intercepts for
both markers also present certain skewness. The skewness

parameters for the random intercepts are ν
(1)
b1 = −0.587 with

95% CI (−0.750,−0.411) for log(1+CD4) and ν
(1)
b1 = 0.128

with 95% CI (−0.341, 0.149) for log(1+CD8), respectively.
The distributions of random slopes are approximately nor-
mal with skewness parameters close to 0 and DFs greater
than 35.
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Table 3. Parameter estimates of the LMM with extended MST for the HIV biomarker study

Y (1) = log(1 + CD4) Y (2) = log(1 + CD8)
Variable Mean SD (95% CI) Mean SD (95% CI)

Intercept β
(k)
1 7.060 0.194 (6.685, 7.455) 7.152 0.154 (6.857, 7.451)

Week β
(k)
2 −0.001 0.002 (−0.006, 0.004) −0.004 0.002 (−0.008, 0.001)

log10(Viral load) β
(k)
3 −0.359 0.041 (−0.441, −0.282) −0.093 0.032 (−0.156, −0.031)

Treatment β
(k)
4 −0.064 0.061 (−0.194, 0.052) 0.015 0.049 (−0.080, 0.112)

NNRTI β
(k)
5 −0.101 0.058 (−0.212, 0.017) −0.041 0.048 (−0.134, 0.054)

Parameters of skew-t distributions for random errors

Skewness λ
(k)
e −0.236 0.012 (−0.261, −0.212) −0.192 0.014 (−0.220, −0.164)

DF ν
(1)
e 3.047 0.046 (3.001, 3.170) 3.243 0.174 (3.011, 3.654)

Scale σ
(k)
e 0.099 0.005 (0.089, 0.110) 0.128 0.006 (0.116, 0.141)

Parameters of extended MST for random effects (intercepts and slopes)

Skewness (intercept) λ
(k)
b1 −0.587 0.086 (−0.750, −0.411) −0.112 0.128 (−0.341, 0.149)

DF (intercept) ν
(k)
b1 7.607 3.004 (4.179, 15.190) 16.740 7.977 (6.988, 38.610)

Scale (intercept) σ
(k)
b1 0.431 0.035 (0.366, 0.502) 0.451 0.026 (0.398, 0.500)

Skewness (slope) λ
(k)
b2 −0.000 0.004 (−0.008, 0.008) 0.000 0.004 (−0.008, 0.008)

DF (slope) ν
(k)
b2 35.30 8.365 (19.06, 49.06) 35.20 8.407 (18.91, 49.07)

Scale (slope) σ
(k)
b2 0.051 0.002 (0.048, 0.055) 0.049 0.002 (0.046, 0.053)

Table 4. Correlations between the random effects

Correlation Mean SD (95% CI)

Corr(b
(1)
i1 , b

(1)
i2 ) −0.031 0.050 (−0.128, 0.068)

Corr(b
(2)
i1 , b

(2)
i2 ) −0.073 0.049 (−0.168, 0.024)

Corr(b
(1)
i1 , b

(2)
i1 ) 0.707 0.049 (0.604, 0.797)

Corr(b
(1)
i2 , b

(2)
i2 ) 0.057 0.047 (−0.034, 0.148)

In addition, we present the correlations between the ran-
dom effects in Table 4. The first two rows are the correla-
tions between the random intercept and random slope for
the two outcomes. We see that for both CD4 and CD8, the
random intercepts and random slopes are negatively corre-
lated, meaning that the subjects with higher cell counts at
baseline tend to have a faster decreasing rate of cell counts,
although the effect is not significant at the 0.05 level. The
third row shows the correlation of random intercepts for
the two outcomes, which is highly significant with 95% CI
(0.604, 0.797). This means that the number of baseline CD4
and CD8 cell counts are strongly correlated. The last row
shows the correlation of the two random slopes, which is not
significant. This indicates that the decreasing rates for CD4
and CD8 cell counts are not highly correlated.

4.2 Behavioral factors related to sexually
transmitted infections

Understanding human sexual behaviors is essential for
the effective prevention of sexually transmitted infections
(STI). Young women were recruited for participation in a
behavioral epidemiological study from three urban primary
care clinics. The overall objective of the study was to exam-
ine the behavioral factors related to STIs. Eligibility criteria

included that the women aged between 14 and 17 years, be
able to understand English, have no serious psychiatric dis-
turbances or mental handicaps, and attend one of the three
recruiting clinics. All participating subjects had quarterly
clinic visits for the duration of the study period and they
also completed daily behavioral diaries, which provided de-
tailed records of the subject’s sexual behaviors in their orig-
inal time sequence. Specifically, the diary was a structured
minisurvey in which the subject reported sexual intercourse,
condom protection, STI symptoms, and daily mood and
sexual interest. For details of the study, see Ghosh and Tu
(2009).

In this analysis, we used a subset of 282 subjects who had
been enrolled into the study for at least 6 months (24 weeks).
We considered a bivariate outcome Yij = (MOODij , SIij)

T ,
where MOODij and SIij were, respectively, the weekly av-
erage mood and sexual interest (SI) scores reported by the
ith subject in the jth week. The subject characteristics that
we considered in this analysis included age, lifetime number
of partners, and history of STI, all measured at enrollment.
The STI history is thought to be a marker of the more risky
sexual behaviors in young women, and the lifetime number
of partners to be a marker of a subject’s sexual experience
and partner availability.

As an initial analysis, we fit a normal LMM to the two
outcomes using covariates, time, number of partners in life
(NP), age, status of having sexually transmitted disease
(STD) and previous outcomes. Thus, the model for mood
and sexual interest is:

y
(k)
ij = β

(k)
1 + β

(k)
2 time+ β

(k)
3 NP+ β

(k)
4 Age+ β

(k)
5 STD

+ β
(k)
6 y

(k)
i,j−1 + b

(k)
i + e

(k)
ij , k = 1, 2.
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Figure 3. Distributions of the random effects and residuals from the normal LMM for the STI study.

The autoregressive structures embedded in the model al-
lowed us to examine the strength of the autocorrelation
within the outcomes. This was not only of scientific interest
to the investigation, but also helpful for the exploration of
the modeling structure. For example, a very strong autocor-
relation in mood would not only counter the speculation of
a mood swing in adolescents, but also render it unnecessary
to collect mood measurements so frequently. The specifica-
tion implied a first order autoregressive model. We chose
the AR(1) model in part due to its simplicity. In general,
the order of an autoregressive model can be selected using
the AIC or BIC criteria (Shibata, 1976). Under the Bayesian
framework, one can use the Deviance information criterion.

Figure 3 shows the empirical distributions of the random
effects and residuals errors for sexual interest and mood from
the normal LMM. The densities of the fitted normal and
skew-t distributions are also presented. We see clearly that
the fit from the skew-t distributions is much better than
that from the normal distributions, indicating that use of a
skewed distribution is warranted.

The priors for the parameters are specified as in the ap-
plication for HIV markers. The parameter estimates of the
LMM using extended MST are shown in Table 5. Again, the
estimates of regression coefficients are presented in the top
section. We see that follow-up time and the number of part-
ners are positively associated with mood. Age and having an

STD are negatively associated with mood. But none of the
associations are statistically significant. The most significant
factor that is associated with current mood is the mood in
previous interview. For sexual interest, we see a similar pat-
tern. Previous observation of sexual interest is the most sig-
nificant predictor of current sexual interest. The other four
variables, i.e., time, number of partners, age and having an
STD, are not statistically significant. The parameters of the
MST distributions for random errors and random effects are
shown in the bottom. We see that both the random errors
and random effects present various degrees of skewness. For
example, the skewness parameter of the random effect for
mood is 2.824 with 95% CI (1.781, 3.748). In addition, both
random errors and random effects show heavier tails than
the normal distribution. The correlation parameter between
mood and sexual interest is positive but not significant.

5. DISCUSSION

We proposed an LMM with extended MST distributions,
which is more computationally intensive compared to the
normal LMM. However, the proposed model enhances mod-
eling flexibility and allows applied researchers to analyze
correlated outcomes with a wide range of choices. It is a use-
ful tool to handle longitudinal or clustered outcomes with
asymmetric or heavy-tailed distributions. In this paper, we
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Table 5. Parameter estimates of the LMM with extended MST for the STI study

Y (1) = Mood Y (2) = Sexual Interest
Variable Mean SD (95% CI) Mean SD (95% CI)

Intercept β
(k)
1 6.044 0.500 (5.092, 7.049) 1.059 0.043 (0.975, 1.146)

Time β
(k)
2 0.019 0.014 (−0.008, 0.046) −0.000 0.001 (−0.002, 0.001)

Number of partners β
(k)
3 0.130 0.114 (−0.087, 0.357) 0.015 0.013 (−0.011, 0.041)

Age β
(k)
4 −0.021 0.224 (−0.468, 0.417) 0.001 0.023 (−0.044, 0.047)

STD β
(k)
5 −0.017 0.506 (−1.033, 0.960) −0.021 0.052 (−0.119, 0.084)

Previous Obs. β
(k)
6 0.305 0.038 (0.230, 0.382) 0.055 0.017 (0.024, 0.089)

Parameters of skew-t distributions for random errors

Skewness λ
(k)
e 1.364 0.145 (1.079, 1.645) 0.115 0.009 (0.099, 0.133)

DF ν
(k)
e 3.620 0.480 (3.026, 4.802) 3.016 0.016 (3.000, 3.060)

Scale σ
(k)
e 0.735 0.078 (0.590, 0.896) 0.037 0.002 (0.033, 0.041)

Parameters of extended MST for random intercepts

Skewness λ
(k)
b 2.824 0.514 (1.781, 3.748) 0.102 0.045 (0.019, 0.194)

DF ν
(k)
b 17.31 9.705 (4.644, 41.82) 3.363 0.373 (3.009, 4.374)

Scale σ
(k)
b 0.759 0.263 (0.378, 1.402) 0.169 0.018 (0.138, 0.209)

Correlation ρ 0.047 0.153 (−0.256, 0.341)

only consider the extended MST distribution for the ran-
dom effects. In the same spirit, we can use extended MST
distribution for the error terms. This will increase the com-
plexity of the analysis, however. In the situations where the
multiple outcomes have more than one mode, a finite mix-
ture of univariate and multivariate skew-t distributions may
be used for multivariate outcomes.

In the analysis, we considered up to four random effects
for two correlated outcomes. Conceptually, the proposed
method can be applied to more than four random effect.
However, the number of parameters of the unstructured cor-
relation matrix for q random effects is roughly q2/2. The
computational burden will increase substantially for high-
dimensional random effects. In practice, we suggest not to
use a large number, say 10, of random effects.
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